
Received 1 August 2023, accepted 10 September 2023, date of publication 14 September 2023,
date of current version 19 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3315595

Open Source Solutions for Vulnerability
Assessment: A Comparative Analysis
DINIS BARROQUEIRO CRUZ , JOÃO RAFAEL ALMEIDA , AND JOSÉ LUÍS OLIVEIRA
Institute of Electronics and Informatics Engineering of Aveiro (IEETA), Department of Electronics, Telecommunications and Informatics (DETI), LASI,
University of Aveiro, 3810-193 Aveiro, Portugal

Corresponding author: Dinis Barroqueiro Cruz (cruzdinis@ua.pt)

This work was supported by the European Union/European Federation of Pharmaceutical Industries and Associations (EU/EFPIA)
Innovative Medicines Initiative 2 Joint Undertaking under Grant 806968.

ABSTRACT As software applications continue to become more complex and attractive to cyber-attackers,
enhancing resilience against cyber threats becomes essential. Aiming to provide more robust solutions,
different approaches were proposed for vulnerability detection in different stages of the application life-
cycle. This article explores three main approaches to application security: Static Application Security Testing
(SAST), Dynamic Application Security Testing (DAST), and Software Composition Analysis (SCA). The
analysis conducted in this work is focused on open-source solutions while considering commercial solutions
to show contrast in the approaches taken and to better illustrate the different options available. It proposes
a baseline comparison model to help evaluate and select the best solutions, using comparison criteria that
are based on community standards. This work also identifies future opportunities for application security,
highlighting some of the key challenges that still need to be addressed in order to fully protect against
emerging threats, and proposes a workflow that combines the identified tools to be used for vulnerability
assessments.

INDEX TERMS Application security, static application security testing, dynamic application security
testing, software composition analysis, vulnerability assessment.

I. INTRODUCTION
Continuous security threats pose a significant challenge
for organizations, as new vulnerabilities and attacks are
constantly emerging [1], [2], [3]. These vulnerabilities are
introduced during the development process [4], [5] and these
issues are often recurring [6], meaning that their detection is
far simpler than a zero-day attack. Public efforts exist to keep
track of vulnerabilities like the CVE program1 and efforts
to prevent security risks are seen within the CWE2 program
which presents hardware and software weakenesses that can
have security ramifications.

According to ENISA’s Threat Landscape report for
2022 [7], these known vulnerabilities are still problematic
and can be identified in the majority of web solutions. This
report identifies 11 006 occurrences of such vulnerabilities

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .
1https://cve.mitre.org
2https://cwe.mitre.org

in different domains (as shown in Table 15 of the report).
In order to stay ahead of these threats, it is important for
organizations to adopt a proactive approach to security that
involves continuously testing and analyzing their applications
for vulnerabilities. Continuous secure development practices
allow this approach by integrating security testing and
analysis into the software development process, organizations
may reduce the impact of known vulnerabilities [8].

The creation and maintenance of safe online applications
depend heavily on secure software development which entails
using best practices and procedures that put security first at
every stage of the development process [9]. Organizations
are prioritizing security as web applications have become
integral to the internet and as such provide motivation
for their wrong usage, this leads to a number of com-
mon patterns in vulnerabilities such as SQL Injections or
Cross-site Scripting (XSS) [10]. ENISA’s Threat Landscape
report for 2022 further supports this purpose by identi-
fying web applications as one of three main data breach
vectors.

100234 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-5687-4888
https://orcid.org/0000-0003-0729-2264
https://orcid.org/0000-0002-6672-6176
https://orcid.org/0000-0001-7654-5574


D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

The analysis on AppSec tools has already been performed
previously. Curphey and Araujo [11] provided one of the
first analyses of this type by introducing threat modelling
concepts and mapping out different types of vulnerabilities
for web application security. The comparison produced
is simple by considering the main features each tool
considered has along with when it is used during the
SDLC and the expertise level necessary to operate them
and understand their results. As vulnerabilities became more
intricate and specialized, reviews such as the one proposed
by Alzahrani et al. [12] narrow down the focus to specific
problems, namely focused on Insufficient Transport Layer
Protection, Information Leakage, Cross-Site Scripting, and
SQL Injection. However, these comparisons rely on simple
aspects such as the features each tool has and the source-code
availability. Amankwah et al. [13] documents a comparison
that provides insight not only into the tools selected but
also into strategies for analysis. This work brings small
contributions into benchmarks for comparison between tools.

Besides these comparisons, there has been an effort to
create and test different benchmarks for comparison between
solutions [14], [15], [16], [17]. One of the issues that
we identified in the mentioned reviews is the lack of
comparison metrics since those are mostly based on tool’s
functionalities. The work proposed in this article builds upon
the research done by previous work and it also expands
the list of comparison of tools resulting in a purposive
review of automated tools to analyse web applications.
The analysis was based on the three main approaches
for application security: Static Application Security Testing
(SAST), Dynamic Application Security Testing (DAST), and
Software Composition Analysis (SCA). This work is focused
on open-source solutions while considering commercial
solutions as well to show contrast in the approaches taken
and better illustrate the universe of options. This analysis
aims to provide guidelines to software engineers regarding
which tools should be incorporated in their CI/CD pipelines,
to better identify known vulnerabilities at early stages in the
development process.

II. BACKGROUND
Given the importance of web applications, some metrics
and concepts were established to simplify the comparison
between automated solutions developed for vulnerability
scanning.

A. APPLICATION SECURITY
Application Security (AppSec) encompasses the methodolo-
gies used to identify, address, and protect software against
known vulnerabilities within the applications. AppSec started
as a manual process but this was expanded to include auto-
matic operations that can be reproducible and faster to exe-
cute. It is employed throughout the Software Development
Life Cycle (SDLC) and it may involve a multidisciplinary
effort [18].

Themajor objective is to find and address software security
vulnerabilities prior to them being exploited. In the testing
process, vulnerabilities are discovered and information about
them is produced through analysis, and reporting. Such
testing offers advantages beyond a well-written project; it
aids in the detection and prevention of possible issues, which
is crucial for the majority of developed solutions. While
different subdivisions exist, to simplify its characterization,
we can consider the seven subdivisions of AppSec for our
purposes.

For monitorization, Web Application Firewall (WAF) [19]
serves as a defense mechanism by inspecting HTTP traffic
that reaches the application and traffic that gets returned from
it, essentially protecting the server from exposure. Similar to
WAF, Runtime Application Self-Protection (RASP) [20] is
a technique used to track and analyze user behavior during
runtime and report on the potential exploitation of known
vulnerabilities. Unlike perimeter-based protections likeWAF,
RASP can rely on the current context of the application to
report on potential attacks. It also has a wider range of actions
it can take, as it can influence the application in real-time [20].

Some analysis don’t require running software and analyse
problems statically. Software Composition Analysis (SCA)
creates a list of third-party components of the solution it is
analysing. With this list, SCA can then report on vulnerabil-
ities that have been disclosed about the third-party software
for specific versions, this also takes into account dependency
graphs, which can sometimes produce false positives in
real-life projects if they are analyzed statically [21]. Dynamic
calls can help address this issue.

When considering the direct analysis of the application
source code, it is used Static Application Security Testing
(SAST). This inspects static source code and reports on
weaknesses found, ranging from syntax errors to invalid
insecure references. The most common approach is to create
symbol tables, Abstract Syntax Trees (AST), control-flow
graphs, and the main program control graph. These structures
are then queried based on the type of vulnerability the tool is
looking for, using simple or sophisticated algorithms [22].

In case of being possible to have a running instance of the
product in a controlled environment, Dynamic Application
Security Testing (DAST) can be used to conduct large-scale
scans from an attacker’s perspective. This simulates mali-
cious inputs and collects information on how the application
responds to this data. This is donewithout access to the source
code. DAST contrasts with SAST by working following a
black-box-like approach by performing attacks. SAST works
as white-box testing, finding vulnerable patterns that might
not be vulnerable in production [23].

On a hybrid approach, Interactive Application Security
Testing (IAST) [24] employs techniques between SAST
and DAST. It interacts with the application using a
dynamic approach, whether it be manual or automated,
and then correlates the results with a static analysis
performed to give the root cause of the vulnerabilities
discovered. This process is much more complex than SAST

VOLUME 11, 2023 100235



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

or DAST but also produces much more comprehensive
results [24].

Finally, Mobile Application Security Testing (MAST) [25]
is a broad term that encompasses a variety of techniques used
in mobile security testing. These techniques can utilize both
DAST and SAST approaches, as well as recover forensic data
from the device. Threats and attacks to mobile devices can
include sniffing, spamming, spoofing, phishing, and many
others [25]. In our analysis we focused on exploring SAST,
DAST and SCA techniques.

B. VULNERABILITY ASSESSMENT
Vulnerability assessment, in a broader sense, is the process
of identifying, documenting, and classifying vulnerabilities
within a system. In the context of information technology
systems, this definition narrows down to finding, document-
ing, classifying, and possibly mitigating security weaknesses
within an information system, as seen in Figure 1. In this
context, a vulnerability is a flaw that can be exploited to
disrupt the normal functionality of a program [26].

AppSec relies heavily on vulnerability assessment to
produce information on potential risks allowing for a
prioritization and remediation of problems. A continuous
AppSec process requires ongoing vulnerability assessment to
maintain its efficiency. However, to promote consensus and
facilitate communication within the community, some stan-
dards were defined. The CWETop 25 is a list compiled by the
community of the 25 most serious flaws in software security.
These flaws are not vulnerabilities, but rather conditions that,
in certain situations, can lead to a vulnerability [27]. The
OWASP Top 10 serves as a standardized awareness resource
for developers and web application security. It encompasses
a wide consensus on the most significant security risks
associated with web applications [28].

Both the OWASP Top 10 and CWE Top 25 have been
around for some time but are kept up to date and as such,
while older versions can be useful for historic reasons, the
most recent versions represent the reality of the most critical
problems. It is important that AppSec tools report on the most
critical security risks in web applications, and the OWASP
Top 10 represents a broad consensus on these risks.

C. CYBERSECURITY INTEROPERABILITY
To share information and safeguard the cyberspace, there is
a necessity for information sharing inside this environment.
The primary prerequisites are a structured format (preferably
machine readable) and the capacity to provide as much
context and information as feasible [29]. While vulnerability
assessment requires standards for a consensus onwhat is most
critical, it also requires standards for how the information of
a certain issue is described.

Standards like the Structured Threat Information eXpres-
sion (STIX) format allow representation of cybersecu-
rity threats, this is possible due to it’s range of data
objects to represent different types of information, the data

objects include information about a threat actor, malware,
Tactics, Techniques and Procedures (TTP) and incident
information [30].

While STIX offers a broader representation of cyberse-
curity incidents, standards like OVAL (Open Vulnerability
and Assessment Language) narrow down the usability for
vulnerability specific information sharing. Based on the same
concepts of data objects, OVAL includes specific fields for
vulnerability information, definition of the problem, testing
conditions and details about the affected component [31].

With AppSec using automated scanning tools to produce
results on security issues, the Static Analysis Results
Interchange Format (SARIF) follows STIX and OVAL in
conceptual detail but narrows down it’s focus even more on
tool output and as such the data structures offered refer to tool
and issue information along with detailed information on the
location of the problem.

D. SOFTWARE PACKAGING
Containers are a way to package software and all of
its dependencies with the major objective of being exe-
cutable/deployed efficiently while offering a certain amount
of isolation. The first containers were simple applications of
isolation technologies like chroot, with other solutions being
built on top of Linux kernel features like namespaces and
cgroups [32]. With the microservices architecture gaining
ground, containers became a solution for the deployment
and isolation of these services [33] using technologies like
Docker,3 LXC,4 or OpenVZ.5 Container orchestration was
the next logical step, with solutions like Kubernetes and
Docker Swarm providing load balancing, auto-scaling, limit
control, and overall management of containers.

Virtualization technologies have become very important
with the boom in cloud computing, and containers have
become the preferred lightweight virtualization option as
development becomes faster and more agile. Containers offer
better mechanisms for orchestration and efficiency, although
they lack in isolation compared to virtual machines [34]. Vir-
tual machines and Linux containers have been compared [35],
demonstrating that neither method significantly increases
CPU or memory utilization, but virtual machines exhibit an
issue with I/O access because it requires more layers. While
virtual machines have improved over time, containers began
off in a superior position. As a result, containers have far
less space for efficiency growth. The majority of bottlenecks
within containers seem to be caused by methods that reduce
the efficiency of the interfaces while making them more
user-friendly.

The container virtualization technology Docker provides
a way to standardize program packaging and execution
through the use of images and containers. Images act as
both the fundamental building pieces and the framework of a

3https://www.docker.com
4https://linuxcontainers.org
5https://openvz.org

100236 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

FIGURE 1. Vulnerability assessment model.

container. These images give the environment a fundamental
configuration while allowing the user to add components.
Using containers, which are instances of Docker images,
they can be started, stopped or destroyed [36]. Docker
employs certain mechanisms to achieve a certain level
of isolation based on internal security mechanisms and
their relationship to the host. Bui6 analysed this relation
discovering that containers implement filesystem, device,
process, and resource isolation. This entails providing each
container with its own view of the filesystem and preventing
write access to specific directories and files, as well as
whitelisting controllers with cgroups for device isolation,
using Linux namespaces for process isolation, and using
cgroups to restrict resources and fend off Denial of Service
(DoS) attacks. Additionally, network namespaces, which
provide each container with a different IP address and routing
table, are used to achieve network isolation.

Combe et al. [37] verifies Bui’s findings while also
highlighting certain security issues. The research contends
that while defence against external threats is taken into
account, defence against other containers is weak. The report
adds that since insecure images might potentially be an issue,
it is crucial to assure image distribution by having developers
sign their images. The study also shows how insecure local
configurations can be a problem and can jeopardize security.
For instance, sharing the host network with containers can
facilitate certain options and tasks, but it can also compromise
security. A literature survey by Sultan et al. [38] creates
a complete risk model when considering containers. This
model takes into consideration four use cases: i) protecting
a container from the application it is running; ii) protecting a
container from another container; iii) protecting a host from
a container; and iv) protecting a container from a malicious
host. The first three cases can be addressed with existing
software based on Linux security features, and a hardware
solution is proposed to address the last case.

Application Security tools must be packaged in a way that
allows: i) consistency when ran in different infrastructures;
ii) portability by packaging all dependencies in one unit; and

6https://arxiv.org/pdf/1501.02967

iii) efficiency by being as lightweight as possible. This is
made possible by using technologies like Docker which is
also widely adopted within the community.

E. CONTINUOUS INTEGRATION, DELIVERY AND
DEPLOYMENT
The goal of Continuous Integration, Delivery and Deploy-
ment practices (CI/CD) is to provide a product frequently to
customers by integrating automation into the various stages
of development, essentially improving process efficiency and
reducing the likelihood of human error.

1) SOFTWARE DEVELOPMENT LIFE CYCLE
The traditional methodology of software development is
based on very well-defined phases such as planning, design-
ing, implementing, testing, and delivering the solution. These
phases are done sequentially, and one phase cannot start
until the previous one is completed. In an agile approach,
the development is still grounded in these phases, but the
process is divided into small increments, where each iteration
uses each of the phases of development. Leau et al. [39]
discuss the differences, advantages, and disadvantages of
traditional software development strategies to the Software
Development Life Cycle (SDLC) and agile methodologies.
These two are generalized and illustrated in Figure 2.

However, agile methodologies have become more promi-
nent, as it is more business-driven with requirements being
defined as time goes on, making testing and client feedback
continuous instead of leaving these aspects until the end
of the SDLC. Traditional approaches do make it easier to
estimate the cost of a process, as the totality of requirements
must be defined at the start of the process. The continuous
integration, deployment, and delivery are a solution to
the incremental nature of agile SDLC, since in traditional
methods, deployment/delivery and testing were left until the
end of the process [40].

2) CONTINUOUS INTEGRATION
The term Continuous Integration (CI) as it is known today
was introduced by Beck [41]. It aims to provide rapid

VOLUME 11, 2023 100237



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

FIGURE 2. Traditional and agile software development life cycle.

integration of new developments in a software solution. This
considers the building and testing of the application. Fowler
and Foemmel [42] present a comprehensive description of
CI practices. The process is described as having a single
source repository, to enable code changes that can then be
merged using a version control system. The code is then
built automatically to ensure the changes did not cause a
compilation error. The build should also include a suite
of tests to cover the application. Other practices are also
described, such as the importance of everyday commits, the
immediate fixing of broken builds, the efficiency needed
for good integration, and making the testing as close to
production as possible. Transparency of the process is also
seen as a major factor in the success of this approach, as it
produces more communication between partners. A final
remark is made mentioning that continuous deployment is the
next logical step [42].

CI has been normally used alongside an agile software
development process. It can automate the building of
software, but it can also automate testing, whether that may
be unit testing or more complex forms. The benefits of
such methods include: i) finding integration bugs earlier;
ii) speeding up the development process; iii) an easier way
to pinpoint errors when fewer parts are tested at a time;
iv) helping to follow the agile development process by design;
and v) avoiding most last-minute problems. Some drawbacks
are also encountered like i) initial work and commitment
to creating the CI infrastructure; ii) smaller projects can
become unnecessarily complex with CI; iii) CI does not
have intrinsic value and is mostly based on how good
the testing is; and iv) tracking deliverables and builds can
become complex if there is a lot of code created in small
amounts.

3) CONTINUOUS DELIVERY AND DEPLOYMENT
Following in the footsteps of automation, continuous delivery
and deployment address the last stage of the development
life cycle by automatically packaging and distributing the
solution. Continuous delivery and deployment are the prac-
tices that allow the inclusion of new features, configuration

changes, correction of issues, and even experiments in a
production environment. These inclusions must be safe,
relatively quick, and repeatable. This practice is better suited
for an agile SDLC by design, with each feature developed or
major release being available for testing or validation.

Continuous delivery is a subset of continuous deployment,
because continuous delivery produces deployable artifacts,
but they are then deployed manually. Chen [43] shows a
real-life company application of continuous delivery (and
continuous integration) in which benefits and challenges are
not only considered from a product point of view, but also
how the company as a whole must adopt these practices.
While continuous deployment might be the ultimate goal
of automatic software development, Leppänen et al. [44]
provide an inside look into the field of these practices within
companies and found that continuous delivery is adopted,
but automatic deployment, while possible, is actively not
chosen by these companies because of a loss of control during
the move to production. These findings are corroborated
by Shahin et al. [45] in their empirical study, which also
reflects an interesting point by clearly dividing the terms
Continuous Delivery and Continuous Deployment, which are
often combined or misused.

These techniques work in harmony with CI, with some
challenges [46], as this can produce a build of the software
and possibly test it, to be deployed (or delivered) later.
Chaining of these events is possible and recommended to
make sure that if a build or tests fail, the deployment
is not produced, as this would not only lead to more
resource consumption, but also a faulty deployment. The
chaining of these practices in automation constitutes a
CI/CD Pipeline. CD has benefits that include: i) low-
risk releases; ii) higher-quality releases; iii) lower costs,
as problems are caught earlier; and iv) improved productivity
and efficiency. This automation does have some drawbacks
which include: i) difficulty in testing certain projects as
automation can be challenging; ii) infrastructure scaling can
be complex, considering the resources needed for automating
a deployment; and iii) documentation needs to be updated
with the deployment process.

100238 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

4) PIPELINES
The goal of CI/CD pipeline is to fully automate the processes
of integrating CI/CD effectively, dependably, and repeatedly.
The degree of automation in these pipelines might vary and
they are likely to change as teams become more used to
the procedures by discovering new ways to automate each
phase [47]. The benefits of a CD/CD pipeline are closely
tied to the benefits of CI/CD itself. These benefits include
i) reduced deployment time; ii) early detection of errors
(resulting in better code quality); and iii) the creation of
an efficient, sometimes reusable infrastructure that leads
to tighter feedback loops. While these benefits are also a
direct result of agile development methods, they are realized
through the implementation of a CI/CD pipeline [48].

These pipelines need two primary components: a server to
conduct the many agreed-upon phases of CI/CD that adhere
to the given specifications and a version control system to
store andmaintain code repositories. The CI/CD server can be
self-hosted or managed by a third party, just like the version
control system. Although a self-hosted version will demand
more labor and upkeep, it can provide finer control over
the solution. A third-party alternative, however, offers fewer
possibilities for customisation. An important aspect of a
CI/CD pipeline is modularity, where each step is independent
and easier to maintain and troubleshoot [49]. This can also
make the pipeline more efficient, as the entire process can
be shortened if the application fails in earlier steps. Besides,
we need to consider different applications of such pipelines.
For instance, the use of CI/CD in blockchain distributed
applications [50], [51].

The seven types of security application testing described
previously can be integrated into a CI/CD pipeline. These
tests can be seen as testing the application, with SAST
and SCA typically being performed during continuous
integration, since they involve analyzing the software without
running it. Tests that require running the software, such
as DAST or IAST, are commonly conducted after the
software has been deployed in a testing environment.
Monitoring solutions are not typically considered part of the
testing process, but they can be used to complement the
deployment [52].

III. EXPLORATION TOOLS
In this work, we search for open-source tools and free
solutions that can be used to perform SAST, SCA and DAST
assessments. This research also contains some commercial
solutions to better illustrate some of the solutions available.
The search was primarily done within GitHub.7 To create a
baseline of comparison, selection criteria were adapted from
OWASP [53].

This research was directed towards a project which uses
Django as the development framework and as such solutions
are geared towards Python and JavaScript, we also considered
container solutions and dynamic analysis focused on web

7https://www.github.com/

application. The selection criteria is listed bellow in order of
importance (from most to least), but not all items should be
seen has having the same impact. Depending on the needs of a
certain project, the intrinsic value of each criteria can change
and the importance given on the initial ranking can change
as well. The ranking described here can be adapted to what
better applies to a specific project. Therefore, the final list of
considerations is:

1) Programming Language - The tool is designed for the
language standards that the solution we are analyzing
uses

2) Budget - The solution is free, has a free version or is
paid

3) CI/CD - The tool is available for integration with
CI/CD pipelines (This criteria also reflects the ease of
this integration)

4) OWASP Top Ten - The tool has the ability to detect
vulnerabilities based on the OWASP Top 10

5) SARIF - The tool’s output is interoperable (Provides
SARIF reporting)

6) Framework Understanding - The tool is able to
understand frameworks/libraries that the project relies
on

7) Ease of Setup - The tool is of easy installation and
usage, the preferred method for deployment is docker

Some criteria is divided into 4 levels: i) Level 0 (blank
space) indicates that the solution does not conform at all
to the comparison criteria; ii) Level 1 (low) indicates that
the solution conforms minimally to the comparison criteria;
iii) Level 2 (medium) indicates that the solution conforms to
the selection criteria with small limitations; and iv) Level 3
(high) indicates that the solution completely conforms to the
criteria.

These levels don’t always apply, the interoperability
comparison criteria is seen as binary, either the tool suports
output in this format or it doesn’t (In this case the criteria is
assessed using a ✓symbol).

The study performed is more or less uniform when
considering the amount of solutions for each type of scan
(Figure 3). Dependency scanning and container scanning lack
a bit behind in the total number of solutions but we believe the
universe of tools to be vast enough in all types of application
security testing considered.

This uniformity trend is not seen when considering the
amount of solutions that are recommended for interoper-
ability and ease of deployment (Figure 4). Secret scanning,
dependency scanning and dynamic scanning all found only
one solution each that meets the comparison metrics.

Most tools are still actively maintained (Figure 5) which
is important because outdated tools will not keep up with
the current issues that should be reported. This classification
was performed considering that if the solution has not been
updated this year, is a public archive or is explicitly stated that
it is no longer maintained then it was classified as such.

The visualization of information is an important aspect of
each tool. While vulnerability identification is the main focus

VOLUME 11, 2023 100239



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

FIGURE 3. Distribution of the number of tools by type of application
security considered.

FIGURE 4. Number of tools that are recommended by application security
scanning type.

FIGURE 5. Number of tools are actively maintained by type of scan.

of the solutions explored, it is important that the information
be presented in adequate formats for further integration with
other components or for pure user visualization. Figure 6
presents three types of visualization of results that were
considered: i) Command-line; ii) Report generation and
iii) User interface with dashboards or information and graphs.
The results highlight that graphical interface is not highly
represented and most solutions have report formats for
exporting results (The results contemplate the fact that most
solutions will have more than one type of visualization

available). Figure 7 considers specific report types and these
results are divided by scanning type.

FIGURE 6. Percentage of all visualization types provided by all solutions
analysed.

FIGURE 7. Types of report formats devided by scanning type.

A. STATIC APPLICATION SECURITY TESTING (SAST)
SAST tools analyze the source code or compiled versions
of the source code to identify security problems. These
tools can be integrated with CI/CD pipelines to continuously
analyze code and report vulnerabilities, by offering: i) good
scalability; ii) the detection of previously known and doc-
umented vulnerabilities; and iii) reporting which illustrates
the location of the problem for an easier fix. However, not
all types of vulnerabilities can be accounted for with static
analysis and the level of false positives can be problematic.

1) SECRET SCANNING
Version control platforms like GitHub have grown in
popularity and give access to massive amounts of public
information, however, not all of this information should
be public. For instance, during the development stages,
some private information can be added to a commit by
mistake. Knothe and Pietschmann8 created a tool that could
harvest emails from public commits and create relation-
ships between no-reply emails and user emails, eventually

8https://arxiv.org/pdf/1908.05354.pdf

100240 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

identifying a person and making them vulnerable to highly
targeted phishing and spam attacks. Organizations that use
public repositories for collaborative software development,
may disclosure private information when making project
information public when releasing it as open-source. Secret
scanning involves looking for keys, passwords, tokens, and
API keys that were inadvertently left inside a repository and
can be accessed by people without the proper authorization.
Some new approaches include using machine learning to
enhance the process and reduce false positives, but most
secret detection is made using only regex patterns and looking
for patterns with high entropy [54].

Techniques for secret detection were described first by
Sinha et al. [55]. These included, GitHub search, regex
search, and program flow to make sure the analysis is not
happening on meaningless bytes. It also described some
mitigation techniques, such as the use of pre-commits and
the disallowance of committing certain files. Meli et al. [56],
on the other hand, conducted a large-scale analysis on
GitHub, which resulted in a massive amount of data that
provided insight into the types of secrets being committed
by mistake. It created statistics that are worrying, but also
provided root cause analysis on these issues while building
better mechanisms on top of an already existing solution
for secret scanning. An interesting takeaway is the fact that
randomness is associated with a good secret, but building
structure into these secrets to make them more easily
detectable does not compromise their security. Both these
studies reported that a committed secret is a far greater
problem than it appears, as version control systems keep
a history of development and the entire history must be
rewritten to remove these secrets. However, the information
can be seen as compromised, and caching services can be
used to recover these secrets.

Based on the selection and comparison criteria, these tools
provide a good overview of what is available. However,
some commercial solutions can bemore user-friendly but less
flexible when it comes to customizing them. While open-
source options are more flexible but may lack user-friendly
interfaces, they can be easily integrated in various CI/CD
platforms. Table 1 illustrates the differences of each solution
considered based on the comparison criteria and for a more
detailed description of the solutions, the reader is redirected
to the Secret Scanning Appendix.

Most solutions considered are command line options,
GitLeaks and TruffleHog show up as the standard solutions
for the problem by detecting secrets based on regular
expressions and by scanning the repositories history. Git-
Secrets and SecretLint provide a different approach by
allowing both a traditional scan as well as the implementation
of pre-commit hooks to prevent secrets from being committed
to a repository in the first place. Git-Hound and Detect-
Secrets deviate from the standard methodology in that the
former bases its design on building a baseline of secrets and
reporting updates to that baseline, while the latter enables
domain searches in GitHub for use in bug bounty schemes.

False positives, play a big role in secret detection
solutions and while solutions like GittyLeaks take a more
verbose approach to the problem by reporting anything
that remotely resembles a secret, Repo-Supervisor and
Whispers provide only a set of languages they can scan to
focus the analysis and diminish false positives. Commercial
solutions like GitGuardian and SpectralOps allow for a
web interface to show the findings and better integration with
the most common CI/CD providers while allowing for the
management of multiple projects.

When considering the comparison criteria previously
defined and the history search features that GitLeaks
contains. This tool can cover with efficiency concerns over
secret scanning.

2) CONTAINER SCANNING
Building secure and reliable containers depends heavily
on different factors, one important aspect is following
best practices, which are established through collaborative
work within the open-source community. Adhering to these
practices leads to better-quality images. There are tools that
can check containers for compliance with these guidelines,
such as the CIS Benchmarks.9 Container static scanning can
also involve checking the software within a container image
for known vulnerabilities and, in some cases, attempting
to identify malware within the image. While static analysis
can be useful for identifying known malware hashes, it is
limited in its ability to detect custom programs or study
behavior. Static analysis may not be as effective as identifying
vulnerabilities using hybrid mechanisms that also incorporate
dynamic techniques [57].

Gonzalez-Barahona et al. [58] initially created the idea
of technical lag as a technique to gauge how up-to-date
is the system. Then, Zerouali et al. [59] applied this
concept to containers when considering about third-party
software vulnerabilities. Technical lag in this sense refers
to the discrepancy between the most recent version of
a container and the version that is currently in use. It
is also mentioned that package stability frequently takes
precedence over security considerations because changing
a particular library can result in the product breaking and
necessitating more work to repair. Although dependency
vulnerabilities can be found via container scanning, it is
ultimately up to the developers to determine whether to
update the dependencies [58], [59].

There are a wide range of options for container static secu-
rity, and using a combination of different tools with different
objectives can yield better results and better coverage of
potential issues. Some solutions, such as Anchore Engine
and Clair, have gained prominence in the literature for being
part of implemented continuous integration and delivery
CI/CD pipelines [60] and for comparisons in vulnerability
reporting [61]. Other solutions, such as Aquasec10 and

9https://www.cisecurity.org/cis-benchmarks/
10https://www.aquasec.com

VOLUME 11, 2023 100241



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

TABLE 1. Secret scanning solutions comparison, the recommended tool for easy deployment and interoperability is highlighted in grey.

Anchore,11 offer fully-fledged management systems for
cloud infrastructure, which are typically managed by teams
of engineers. These systems are often based on smaller
tools that can be integrated into other solutions. It’s worth
noting that container scanning can overlap with software
composition analysis SCA as checking for vulnerable
packages installed is an important aspect of container
scanning.

The tools listed on Table 2 give a overview of which tools
are available for dealing with various concerns when using
container scanning, based on the selection and comparison
criteria. This table illustrates the differences of each solution
considered based on the comparison criteria. By analyzing
Docker files and running rule checks for bad practices,
Dockle and Hadolint demonstrate the simplest method for
scanning containers. Hadolint also analyzes the shell code
contained in the files. The command line tools, such as Trivy
and the duo Grype and Syft, which were developed by
organizations but are widely used, can analyze the image and
the packages inside them, reporting on known vulnerabilities
for these dependencies.

The architectures of Clair and Dadga are more complex
than those of the prior solutions, but the former allows for
the activation of a monitorization mode to report on newly
discovered vulnerabilities, while the latter shifts the focus
to untrusted images by additionally scanning for trojans
and malware within images. Docker Bench aims to assist
in directing the safe development of Docker containers
into production. Falco can recognize shells operating inside
containers or containers running in privileged mode and
find vulnerabilities in a dynamic manner. By taking into
consideration the comparison criteria and the different
aspects some tools cover. The combination of Dockle and
Hadolint for Dockerfile linting can be one of the best
approaches based on this analysis. The use of both allows
the identification of different aspects. The use of Trivy or
Grype with Syft provides only package scans. Grype may

11https://anchore.com

also generate some overlap withDockle orHadolint because
of a wider coverage of problems.

3) CODE SCANNING
Code scanning looks for vulnerable patterns within the source
code (or compiled code) of a project, such as code smells,
anti-patterns, or simple security concerns. Lebanidze [62]
shows a conceptual road map for static analysis tools,
focusing on the technical aspects of static code analysis rather
than the tools that implement them. The first generation
of these tools was simple, using basic methods of word
matching to report potential problems. However, this led to
limited analysis and a high number of false positives. This
was built upon with a shift from simple one-man scripts
to open-source software created by the industry. Instead of
simple word matching, these tools used token construction
of the program and separated their vulnerability data set
for better knowledge sharing. The knowledge base also
expanded to cover more problems, and some tools started
supporting multiple languages. One of the first tools to show
these second-generation concepts was Lint, developed by
Johnson [63] with simple rule checks for the C programming
language.

More sophisticated ways of addressing the problem were
later developed, introducing the Abstract Syntax Tree for
program representation. Some tools will model the program
and update themodel as they analyze it line by line, producing
simpler results than a process that includes the entire
project and can correlate different files and instructions.
The knowledge base, sharing methods, and capability for
multi-language analysis kept growing along with the methods
developed. This may raise some questions about of what a
program does and how to model its dependencies on other
components, which seems to be the direction the industry
is taking. However, the remarks about a closer relationship
with a code reviewer to address more software flaws rather
than bugs themselves do not seem to have taken effect, as the
current approach to authorization problems, for example,
seems to be addressed using dynamic testing [62].

100242 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

TABLE 2. Container scanning solutions comparison, the recommended tools for easy deployment and interoperability are highlighted in grey.

The solutions in Table 3 illustrate tools that report security
vulnerabilities for a certain language domain, to the common
theme of an integrated solution with access to dashboards.
Python and JavaScript are the languages considered here,
as the universe is too vast to explore for all programming
languages.

Source code analysis can target a variety of issues.
For example, Radon reports on straightforward problems
like code complexity, PyLint searches for code smells,
anti-patterns, and coding convention issues, and Bandit
branches out to focus on security issues. In JavaScript,
ESLint performs similarly to PyLint. Semgrep advances
this strategy by reporting on more intricate vulnerabilities
that call for context and is available in multiple languages.
To achieve better results, several open-source tools choose
to combine other open-source items. Flake8 creates a
straightforward analysis of errors and coding conventions
for Python. While Prospector builds on this work and adds
security considerations (using Bandit), Horusec offers a
comprehensive collection of tools for various languages and
covers various aspects of code analysis while also scanning
for dependency issues.

Commercial solutions like DeepSource, SonarQube, and
Codacy combine proprietary static scanning tools with
open-source projects to provide analysis on a variety
of languages and access to issues within a management
dashboard to view a number of projects. These projects also
enable integration with the main CI/CD providers and offer
suggested fixes for issues that are discovered.

The project specifications may define in the most part
the tools that can be used for code scanning. For overall
coverage with a simple solution, Horusec provides already
integration of a variety of tools. However, the separate usage
of Bandit and Semgrep can give more granular control over
the solutions.

B. SOFTWARE COMPOSITION ANALYSIS (SCA)
SCA tools analyze the third-party dependencies of a project
and report on vulnerabilities for the versions in use.
The analysis is performed using a package manager to
identify dependencies. These tools can be integrated with
CI/CD pipelines to continuously analyze code and report

vulnerabilities. This type of analysis provides a security
report on the third-party components in use while some tools
offer monitoring and notifications for new vulnerabilities.
However, they do not provide an actual risk assessment,
and the analysis on large codebases can result in significant
technical debt.

The question of whether open-source software is more
secure than proprietary software is one that is up for debate,
according to Payne [64]. Despite the lack of empirical data
in this study, it is generally agreed that open-source software
has the potential to be safer, although this is not always the
case. Instead, assessments by knowledgeable developers are
what eventually results in secure software. Kula et al. [65]
identified that the community regularly uses open-source
software in their projects without sufficiently considering
security risks.

The first approach to creating SCA solutions was focused
on reading the software manifest and comparing the pack-
ages’ versions with a database of vulnerabilities. More
recent approaches try to address the excess of false positives
produced by this method, with the inclusion of a library as a
dependency, this does not mean that vulnerable components
are used in the project. Some solutions try to determine
if vulnerable components are reachable through static or
dynamic analysis of the code, with the best results coming
from a combination of both [66], [67].

Table 4 contains some options for SCA, including
commercial and open-source solutions that range from
standard approaches to improvements on traditional version
matching. These solutions are primarily geared towards
Python and JavaScript (specifically their package managers).
However, some of them support a wide range of programming
languages. This table illustrates the differences of each
solution considered based on the comparison criteria.

The recovery of dependencies and matching of vulnerable
versions to the manifest are common practices used by all
solutions; Satefy is a well-known example that is exclusively
applicable to Python. Since they already have the platform,
some dependency managers have developed package audit
tools. Examples include Yarn audit and Npm audit, which
enable automatic reporting when a new dependent is added
to a project. A single solution that manages multiple package

VOLUME 11, 2023 100243



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

TABLE 3. Code scanning solutions comparison, the recommended tools for easy deployment and interoperability are highlighted in grey.

TABLE 4. Dependency scanning solutions comparison, the recommended tool for easy deployment and interoperability is highlighted in grey.

managers may provide a more comprehensive solution to the
problem, as is the case with OWASP Dependency Check,
which updates itself using the NVD feed, and FOSSA,
which offers a management system for numerous projects
with CI/CD integrations but maintains the same analytical
foundations.

Some other approaches include Steady’s effort to reduce
false positives by reporting only on vulnerabilities where the
vulnerable code inside libraries is used within the project.
This process produces more accurate results but can lead to
issues being missed by a tool since the vulnerability database
is far smaller. Source Clear is a commercial solution that
provides access to a proprietary database of vulnerabilities
for further reporting. Black Duck Software Composition
Analysis can scan third-party components inside the code
base to prevent from proprietary code being used where it
should not.

The only solution providing software deployment flexi-
bility and interoperability of results is Dependency Check.
This solution does have the drawback of lack of efficiency as
database vulnerabilities are downloaded on each scan.

C. DYNAMIC APPLICATION SECURITY TESTING (DAST)
DAST tools analyze applications by performing actual
attacks on a running instance of the solution from a black-
box perspective, where the inner workings of the application

are not considered. These tools can be integrated with
CI/CD pipelines, which involve deploying the application
to a testing environment and conducting attacks to gather
data on potential vulnerabilities. The attacks use a general
approach that may miss specific issues, the root cause of
issues is not reported, and these scans take much longer
to complete than those of SAST or SCA. However, this
type of analysis is language-independent and checks for
vulnerabilities that were previously not accounted for such as
injection, authentication, or server configuration issues [68].

Dynamic web analysis complements static analysis meth-
ods by providing black-box-type tests to simulate attacks.
These scans often use fuzzing as a technique to test the
application and understand how it responds to invalid,
unexpected, or random input. Fuzzing was introduced by
Miller et al. [69] with the goal of understanding if the
application handles unexpected input properly or not, and
what consequences it has on the application. Fuzzing began
as a simple technique of submitting random data to a system
in order to check for crashes and how the application
handles such data. Over time, fuzzing has evolved into
two main types: I) mutation-based; and ii) generation-
based. Mutation-based fuzzing involves modifying valid
input (a seed) and testing the system within a universe
of valid inputs. Generation-based fuzzing takes this a step
further by creating valid inputs from scratch using a provided
model [69].

100244 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

Originally, the concept of ‘‘fuzzing’’ referred to black-
box fuzzing, in which no internal logic was considered.
However, other approaches have been developed to automate
the process by creating inputs based on the internal logic
and source code of a system. These techniques were first
introduced by Godefroid et al. [70], [71] in their work on
symbolic execution for automated fuzzing. When applied to
web applications, fuzzing can be used to produce attacks or
variations of attacks such as SQL Injection, XSS, and other
types of injections.

An attack’s readiness to launch is merely a portion of
the issue; their placement must also be taken into account.
The configuration can be manual, but most web scanners
implement spidering (Web Crawlers) to map an entire
application by starting with a simple URL and identifying the
hyperlinks that are retrieved from the web pages in a recursive
way [72]. Most spidering that was directed at application
security, has improved upon the first web crawlers to also
identify possible injection points like URL query parameters
and POST parameters. With the introduction of AJAX to
improve the web experience, spidering became harder as
every state change in the application does not necessarily
have an associated REST URL. The solutions that load web
pages, discover event triggers, and create a module of the
changed state when those inputs are triggered have been
developed as a response to this problem [73].

The solutions present in Table 5 are only a subset
of dynamic analysis, focused on web applications. These
solutions are also transversal to all web applications by
being language-independent. In most cases, these take a
target URL as input and work from that domain to identify
other locations. This is done by performing black-box testing
injection techniques to produce alerts on possible problems.
This table illustrates the differences between each solution
considered based on the comparison criteria.

Although OWASP Zap shows a strong standard for
security dynamic scanning, Wfuzz seeks to make the
implementation of fuzzing attacks more straightforward
while Arachni also learns from the modifications it makes
within the application. A unified foundation for already
created tools is provided by Golismero. Other methods take
into account many factors, such as the source code of web
pages, like Wapiti does. Nikto is an effective tool for server
reconnaissance using banner grabbing, analysis may also
be done on the client-side using browser analysis and The
Browser Exploitation Framework. In order to protect TLS
setups and scan for known flaws in the protocol, Vega offers
many of the same features asZapwhile adding a strong focus
to TLS. Nogotofail is exclusively made for this use.

Commercial solutions start scaling these concepts and
allow for project management, CI/CD pipeline configuration
and monitorization features like Detectify provides, Stack-
Hawk provides much of the same but focuses its analysis on
web API testing. By offering a comprehensive perspective of
an organization’s assets and their weaknesses, Invicty brings
things to a whole new level of complexity.

OWASP Zap provides the only compatibility of results
with SARIF, making it the best option for interoperability
while also having a solid and repeatable way for deployment.

IV. DISCUSSION
This section aims to spark the discussion on certain issues
and opportunities left unsolved in Application Security.
These issues range from the combination of different tools
to the vast amount of false positives reported, to the
paradoxical concerns with the creation of one true standard
for vulnerability information sharing and simplifying the
integration of different outputs into a centralised document.

A. INTEROPERABILITY AND DEPLOYMENT
From the research done, two major requirements are iden-
tified for a good and functional solution: i) deployment
flexibility; and ii) interoperability. Deployment flexibility
refers to the ability of the solution to be deployed and
run on any host, regardless of the underlying infrastructure.
This becomes relevant to enable the use of the solution
in a variety of contexts and environments, making it more
widely applicable and useful. Interoperability, on the other
hand, refers to the ability of different systems, devices,
or applications to work together and exchange information
seamlessly. In the context of this solution, interoperability
is crucial to facilitate the integration of different solutions
and the combination of their results. As we have seen before,
Docker offers a platform for software packaging that makes
the use of application security tools efficient, consistent, and
repeatable in different underlying infrastructures. Many of
the solutions explored either have native support for Docker
installation (provided by the developer) or have users who
have ‘‘Dockerized’’ the application, this can be seen in
table 6. This demonstrates the widespread adoption of Docker
as a tool for normalizing environments and facilitating the
deployment and execution of software.

The use of SARIF enables the uniformization of scan
results, providing a variety of options after all scans are
completed. It is possible to integrate SARIF with GitHub [74]
to present results and display problems. This common
format also allows for the production of PDF or HTML
documents. Interoperability also allows for better handling
of vulnerabilities, including the ability to ignore or remove
certain issues. This addresses the problem of False Positives,
where issues might be overlooked because of context.

Leveraging the deployment ease and the combination
of results, one could create an orchestrator and provide a
framework for the integration of AppSec tools that report in
SARIF and have been ‘‘dockerized’’. A final pipeline of tools
could include,Horusec for code scanning,Dockle,Hadolint
and Trivy for a big coverage of image issues, GitLeaks for
secret scanning and repository search history, Dependency
Check for an analysis on the third-party components the
solution relies on, and finally, for some dynamic coverage,
OWASP Zap should be used.

VOLUME 11, 2023 100245



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

TABLE 5. Dynamic scanning solutions comparison, the recommended tool for easy deployment and interoperability is highlighted in grey.

TABLE 6. Docker providers per solution that reports in SARIF.

B. VULNERABILITY MANAGEMENT SYSTEMS
As a natural byproduct of software innovation, most vul-
nerability assessment systems in use today are restricted to
their fields of expertise. Using static code scanning or actual
application attacks, the sections on SAST, SCA, and DAST
demonstrate several methods for analysis on specific issues.

Currently, there is a critical need for comprehensive
vulnerability management solutions on a global level. But
some commercial tools provide what are referred to be
vulnerability management solutions. These solutions aim to
offer a comprehensive assessment of a project’s or business’
security state, emphasising areas in need of improvement.
They aim to develop a prioritisation system, identify the
attack surface, and search for potential vulnerabilities across
a range of challenges. This system typically rates vulnera-
bilities based on the threat they pose, from critical, posing a
serious risk that requires immediate attention, to low, posing
little risk.

These systems’ capacity to continuously monitor services
and provide results in aesthetically pleasant ways is a major
feature. Additionally, some sophisticated solutions might
provide automatic correction of identified issues. They can
also incorporate data from penetration tests into the list of
vulnerabilities found.

One important factor to keep in mind is that these systems
gather information and provide it in a way that is simple
to understand, making it simpler to comprehend the overall

security posture. Prioritising vulnerabilities is essential for
efficiently addressing security issues. These systems depend
on certain structures built on proprietary languages to
ensure interoperability, highlighting the significance of the
interoperability debate already explored in this article.

The concept of Global Vulnerability Management Sys-
tems is paramount. Such systems use interoperability and
deployability concepts and these are essential for enhancing
overall cybersecurity practices. As the existing tools confirm,
bridging the gap with comprehensive, globally accessible
vulnerability management systems remains a vital goal.

C. INFORMATION OVERLOAD
The information retrieved from vulnerability assessments
must be reliable and relevant even though standards provide
a common basis for information exchange. While problems
are discovered, it is never entirely obvious at first if the
discovered material actually poses a cybersecurity risk. This
is particularly true for automated scans, which produce
findings on possible vulnerabilities that are afterwards
categorized as either a problem or something to be ignored
because they are predicated, for the most part, on pre-defined
rules independent of context.

Confusion matrices help visualize how well a particular
algorithm performs [75]. In this model, true positives are
vulnerabilities identified by automated scans and pose a
security problem, false negatives are vulnerabilities not

100246 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

identified that can cause harm and false positives are issues
identified by automated tools but in reality do not correspond
to actual risk.

False positives in application security testing tools are a
problem felt by developers and security engineers in the
industry. Tools can be overly verbose in indicating warnings.
Static analysis relies on inferring context from the code
being analyzed, rather than actually running it. This can
lead to false positives. Dynamic analysis is not immune to
false positives, but the conceptual architecture of the two
approaches is a key factor in their occurrence. False positives
can be divided into two types: i) those caused by errors in the
scanning tool; and ii) those that are correctly identified but
deemed to be non-problems by virtue of the context they are
inserted in.

The first type is considered an actual mistake with the
intended purposes of the tool performing the analysis. It
can happen because some rule triggered when it was not
supposed to, if some flow was adopted when that was not
the objective, or if it classifies a certain variable as a wrong
type. These issues are a design problem from the scanning
solution. However, almost all widely used solutions have
either eradicated these problems or are in the continuous
process of doing it.

The second relates to warnings or errors reported by
scanning tools that are later analyzed and deemed not
problems because they don’t pose a security threat. When
evaluated, the security engineer or the developer may flag the
issues as non-problematic considering the context around it.
One example of this is issues that are mitigated in another
place of the project, the tool that discovered the problem
could not relate the instance of the error and the mitigation
and reported the instance as a problem. Contextual false
positives become even more problematic when the analytical
tools are used in legacy projects or projects that did not start
the development cycle considering this type of analysis.

D. ONE TRUE STANDARD
SARIF acts as a standard syntax for interoperability in
vulnerability reporting. Although its declared scope is
limited, it is primarily focused on scanning tools and context-
specific data. In the past, various other standards have been
proposed, each presenting essential information to share.
Although these standards have gained acceptance, using
multiple standards creates interoperability challenges, and
dilutes the purpose.

The problem is further compounded by the fact that while
standards offer syntax interoperability, a structured set of
rules for knowledge transmission, the embedded information
within this ‘‘grammar’’ remains specific to its author, with
varying levels of detail and relevant data about the problem.

Standards often encompass diverse data structures to
represent different vulnerability types. The issue lies in the
optional nature of these fields, as seen in SARIF, where a
vulnerability can be reported with minimal information like

a message, severity level, and rule identifier. This flexibility
makes the quality and quantity of the information hostage to
the producer of the report.

The idea of having one true standard for vulnerability
reporting is appealing, but it comes with inherent trade-offs.
A broad spectrum of information to cover would result in
a highly complex specification while reporting information
too superficially would render the standard impractical for
various scenarios.

To address these challenges effectively, researchers must
explore ways to extend and unify vulnerability definition
languages. Striking the right balance is essential, enabling
comprehensive reporting without overwhelming complexity.
By doing so, we can foster better interoperability and
information exchange.

E. TOOLS AS SOLUTIONS
In this study, we identified that by combining specific
tools, we are able to detect at earlier stages some of
the vulnerabilities reported by ENISA’s threat landscape
2022 report [7]. Most of them through dynamic analysis
(XSS, SQL injection and CSRF) in a direct way. SAST and
SCA can catch issues that are indirectly connected to broader
types of vulnerabilities (Incorrect Authorisation, Improper
Authentication).

Projects using a version control system can better introduce
to these tools in order to produce meaningful results in a
repeatable way. If a CI/CD pipeline is already implemented
the process should be smoother. However, when this is not
the case, one can be implemented to provide a baseline
for security and for the development process, including the
deployment automation within the project. Smaller projects
can use these tools with more specific goals in mind with a
one-time use to find problems.

Most solutions cover only some aspects of the broader con-
cepts they encompass. For example, on container scanning
solutions, tools like Dockle and Hadolint provide coverage
for Dockerfile linting while Trivy scans for vulnerabilities in
installed packages.

All different subdivisions of AppSec topics were discussed
to provide a set of tools and a framework for a pipeline
to be built with different specifications. This is true for
secret scanning as some projects may use git and have that
version control system implemented. This enables the history
search for secrets. Code Scanning shows better coverage
when combining tools that search for formatting problems,
look for common anti-patterns scans and also scan for
security focussed issues. Dynamic scans can be completed
around Zap to fill in the gaps which are missing, such as
banner grabbing by Nikto. Dependency scanning solutions
complement each other if they cover different types of
package installation systems. To better encapsulate the results
the identified tools that report in SARIF give a baseline of a
full pipeline for expansion.

VOLUME 11, 2023 100247



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

F. THREATS TO VALIDITY
The research conducted is a purposive review and as
such does not follow a rigorous method of solution or
article selection, while this provides more flexibility and
the potential for the exploration of works that falls outside
the predefined purpose. For example, the consideration of
solutions that cannot work for the project in question but are
useful to conceptualize ideas on certain topics. It does have
its shortcomings as it offers little assurance of a balanced
perspective on the issue. We try to mitigate this issue by
creating a set of comparison criteria based on community
standards but the issue will always persist.

V. CONCLUSION
Application security tools play a big role in cybersecurity. To
understand and compare these tools effectively, it is essential
to evaluate them against a common baseline. These factors
include aspects such as CI/CD environment integration,
results interoperability, deployment flexibility, and the types
of vulnerabilities they report.

The number of options available is extensive, and this
article offers a comprehensive analysis and comparison
of solutions across different types of Application Secu-
rity. Through this work, valuable insights are provided,
highlighting the shared characteristics among these tools.
Such analysis aids the cybersecurity community in selecting
appropriate tools for integration.

However, it is important to acknowledge that additional
concerns exist, which could serve as future research direc-
tions. These concerns revolve around the interoperability
formats that exist, the need to address false positives
effectively, and the development of an original and open
standard for vulnerability reporting. Recognizing these
ongoing challenges emphasizes the importance of continued
research in the field of application security.

By addressing these concerns and fostering collaboration,
we can collectively strive for stronger cybersecurity practices,
benefiting organizations and individuals alike.

APPENDIX A
SECRET SCANNING APPENDIX
GitLeaks12 is a command-line tool created to detect hard-
coded secrets. This detection is based on regular expressions
with some generic expressions to catch high entropy strings
and some more strict expressions to find known types of
secrets. It scans for secrets within the repository’s history,
meaning secrets that were once present within the repository
will also be flagged. However, it involves the use of some sort
of version control based on Git, but adds further security as
with public software, someone could do a GitHub search and
find secrets that are still useful for an attack.

GittyLeaks13 is a command-line tool that takes a much
more verbose approach when finding secrets. It is designed

12https://github.com/zricethezav/gitleaks
13https://github.com/kootenpv/gittyleaks

to find emails, passwords, and usernames. This tool is much
more sensitive to anything that remotely resembles secrets,
causing the false positive rate to skyrocket. This is due to
generic regex expressions looking for words like ‘‘password’’
or ‘‘key’’, and while this can be useful, it will require much
more validation from post-analysis.

Detect-Secrets14 is a command-line tool that takes a
different approach. Instead of performing individual scans,
this tool hopes to create a baseline of secrets and have the
developer audit and fix any issues with the information.
This baseline can then be used as a comparison point for
future scans. However, implementing this tool with a CI/CD
solution can be challenging as this baseline would have to be
stored and updated within the environment.

TruffleHog15 is a command-line tool with over 700 cre-
dential detectors. Each detector represents a different type
of secret that can be found using the tool. The developers
of TruffleHog encourage the addition of new detectors by
treating them as modules. This tool also has the ability
to scan remote repositories and file systems to locate
secrets. It will search through the entire history of a
repository, across all branches, to ensure that no secrets are
left behind, even if they are not currently present in the
repository.

Git-Secrets16 is a command-line tool that encourages
a more preventive approach to secret management by
suggesting the use of pre-commit hooks17 to prevent secrets
from being committed to the repository in the first place.
This approach is generally preferred because it is easier
to remove secrets from a repository than it is to remove
them from its history. Git-Secrets also has a scanning
function that can be integrated into CI/CD pipelines. Its
detection is madewithmodular providers that can be installed
to create a more minimalist solution, allowing users to
install only the providers that are relevant to their specific
projects.

Secretlint18 is a command-line tool that offers both
scanning and pre-commit options to prevent secrets from
being committed to a repository. One key difference between
Secretlint and other tools is its flexibility in creating and
modifying rules for identifying and accepting secrets. It uses
JSON syntax to make it easy to add or remove rules, making
the solution modular and allowing users to install only the
parts that are relevant to their specific projects. The goal of
Secretlint is to make it as easy as possible to customize secret
detection and prevention.

Git-Hound19 is a command-line tool that searches exclu-
sively through GitHub content for sensitive information using
its search capabilities. Its creator primarily intended it to be
used for cashing in on bug bounties, allowing users to search

14https://github.com/Yelp/detect-secrets
15https://github.com/trufflesecurity/trufflehog
16https://github.com/awslabs/git-secrets
17https://pre-commit.com
18https://github.com/secretlint/secretlint
19https://github.com/tillson/git-hound

100248 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

within GitHub by domain to narrow down the search space.
While Git-Hound still uses regex rules that can be added
and modified, it also has a scoring system to distinguish
between real secrets and false positives. However, its focus
on bug bounties and domain search makes it difficult to
integrate into a continuous integration and delivery CI/CD
pipeline.

Repo-Supervisor20 created by Auth0,21 is a tool that
can be used on the command line to scan local repositories
or integrated with GitHub’s webhooks,22 which send a
POST request to a specified endpoint when an event such
as a pull request occurs. In both cases, the main goal
is to reduce the number of false positives. To achieve
this, Repo-Supervisor only allows certain types of files to
be scanned (JavaScript, JSON, YAML), and it reads the
specified structure of these files rather than just scanning
through bytes. This allows it to use language parsing, which
helps to reduce the false positive rate by avoidingmeaningless
bytes.

Whispers23 is a command line tool that supports a variety
of languages to be parsed and analysed, the specification of
files leaves fewer false positives, it does lack however in
special formats of secrets, having the most known credential
types but missing a lot of standard formats, it focuses mainly
on base64 detection and ASCII, easily detectable secrets by
other solutions are not considered because of the simplicity of
this solution with it’s matching rules. It will also detect secret
files like java properties files.

GitGuardian24 is a tool designed to analyze source
code and detect secrets based on over 300 known types of
secrets. It offers a web interface and integration with GitHub
repositories. In addition to finding secrets, it can also identify
the active developers involved in the process. The simpler
tool for identifying secrets is ggshield,25 a command-line
tool that is based on user authentication through an account
created within the GitGuardian framework. It cannot be used
independently to detect secrets. This solution is free for small
teams or teams using public GitHub repositories, with some
restrictions.

SpectralOps26 is a commercial, fully-fledged secret
scanning solution that is known for its user-friendly interface,
which allows users to manage multiple projects and track
all found secrets in each one. It also checks for security
misconfigurations. Integrations with CI/CD pipelines can be
easily made through the SpectralOps web interface, which
serves as a central location for future analysis. SpectralOps
offers limited free usage.

20https://github.com/auth0/repo-supervisor
21https://auth0.com
22https://docs.github.com/en/developers/webhooks-and-

events/webhooks/about-webhooks
23https://github.com/Skyscanner/whispers
24https://www.gitguardian.com
25https://github.com/GitGuardian/ggshield
26https://github.com/zricethezav/gitleaks

APPENDIX B
CONTAINER SCANNING APPENDIX
Hadolint27 is a tool that helps build Docker images based
on best practices. It is written in Haskell and parses the
Dockerfile into an AST, allowing it to perform rule checks
on the tree. Hadolint also uses ShellCheck,28 a bash linter,
to check for issues in bash code within the Dockerfile. While
the simplicity of Hadolint’s specific checks can result in fewer
false positives, it may not provide as much information as
other tools.

Dockle29 is a simple command-line tool for building
Docker images based on best practices. It uses the CIS
Benchmarks as checkpoints to report potential problems in
the image being analyzed. Dockle, which is written in Go,
shares many characteristics with Hadolint.
Falco30 consumes kernel events and correlates information

from Kubernetes to alert on suspicious behavior. It can
detect incidents such as a shell running inside a container,
a container running in a privilegedmode, a suspicious process
spawn, or a suspicious network connection. In addition
to being a prevention system, Falco also functions as a
continuous monitoring system that can alert in real time.

Dadga31 performs static analysis on docker images/
containers to find known vulnerabilities, as well as trojans,
viruses, malware, and other malicious threats. This is
particularly useful in an uncontrolled environment, where the
volatility of images and containers makes it harder to trust
that they are free of malware. To run an analysis, Dadga
first loads CVE and malware signatures into a MongoDB
database, then compares the software within the images to the
stored information. However, the solution has many moving
components, which can make it difficult to integrate into a
CI/CD pipeline.

Clair32 can scan docker images and OCI33 images for
known vulnerabilities. The process consists of three phases:
first, the image is indexed and a representation of it is
created using the manifest; then, this representation is
matched against known vulnerabilities, often by checking for
vulnerable versions of installed software; finally (optional if
the scan is a one-time occurrence), if the service is running
in monitoring mode, Clair will send a notification if a
new vulnerability is discovered. Clair has a more integrated
approach, with dashboards and a more complex architecture,
and the Clair API serves as the front for all communication
with the system.

Docker Bench34 has a specialized approach to Docker,
using the CIS Docker benchmarks.35 The command-line tool

27https://github.com/hadolint/hadolint
28https://github.com/koalaman/shellcheck
29https://github.com/goodwithtech/dockle
30https://github.com/falcosecurity/falco
31https://github.com/eliasgranderubio/dagda
32https://github.com/quay/clair
33https://github.com/opencontainers/image-spec/blob/main/spec.md
34https://github.com/docker/docker-bench-security
35https://www.cisecurity.org/benchmark/docker

VOLUME 11, 2023 100249



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

is simple, with a single script running automated tests to
check for the these benchmarks. The results are shown in the
terminal, with each check having three possible levels (INFO,
WARN, and PASS). The user can then choose to remediate
WARN problems that appear, the tool also offers possible
solutions for each problem.

Grype36 and Syft37 are command-line tools publicly
available for widespread use, created by Anchore.38 Syft
creates SBOM (Software Bill of Materials) files, which
are lists of the ingredients that make up the image it
analyzes. With or without this file, Grype can then analyze
the image using a vast database of known vulnerabilities,
comparing them to the software present within the image.
The combination of these tools produces a report on the
vulnerabilities present within the software and filesystem of
the analyzed image.

Trivy39 is a command-line tool created by Aqua Security40

for finding vulnerabilities and misconfigurations in container
images, as well as in the files of a project or operating
system, repositories, and Kubernetes. It catches issues such
as problems with packages installed on certain container
images and dependency problems within the project, and it
also allows for the remote scanning of GitHub repositories.
Trivy is widely available and shares many characteristics with
the Grype and Syft combination.

APPENDIX C
CODE SCANNING APPENDIX
Radon41 is a simple command-line Python tool that com-
putes metrics about Python code. These metrics are lines
of code,42 McCabe cyclomatic complexity,43 Halstead met-
rics,44 and the maintainability index45 (a Visual Studio metric
that calculates the maintainability of code from 0 to 100).

PyLint46 is a command-line tool that analyzes Python
code, supporting versions 3.7.2 and above. It can enforce
coding standards while looking for code smells and making
suggestions for code refactoring. The tool parses the files
and, on the first analysis, can infer values from the code to
make the analysis more accurate. It allows for some flexibility
when creating new checks for specific uses and relies on
community plugins to enhance the experience.

ESLint47 statically analyzes JavaScript code and reports
problems found. It can run as a command-line tool, but it has

36https://github.com/anchore/grype
37https://github.com/anchore/syft
38https://anchore.com
39https://aquasecurity.github.io/trivy/v0.30.4/docs/vulnerability/

scanning/image/
40https://www.aquasec.com
41https://radon.readthedocs.io/en/latest/
42https://en.wikipedia.org/wiki/Source_lines_of_code
43https://en.wikipedia.org/wiki/Cyclomatic_complexity
44https://en.wikipedia.org/wiki/Halstead_complexity_measures
45https://learn.microsoft.com/en-us/visualstudio/code-quality/code-

metrics-values?view=vs-2022
46https://pylint.pycqa.org/en/latest/
47https://eslint.org

a strong focus on being able to integratewithmostmajor IDEs
to make development easier and to catch problems earlier. It
offers many options when configuring analysis for a project,
and developers can even add comments within the JavaScript
code to impact the analysis.

Flake848 is a wrapper around three tools: PyFlakes49

which checks for errors within Python code, PyCodeStyle50

which checks the Python code against the style conventions
in PEP 851 and Ned Batchelder’s McCabe script52 which
checks for the McCabe Cyclomatic Complexity53 in Python
scripts. The scanning done is very simple, which means some
problems are left undiscovered, but it does what is intended
strictly.

Bandit54 is designed to find security issues in Python code.
Each file is processed, and an AST is built and then analyzed
to report problems. This tool works within a command-line
interface and is installed via pip.

Prospector55 analyzes Python code and outputs informa-
tion about errors, potential problems, convention violations,
and complexity using a command-line interface. It uses a
compilation of open-source tools to do this, such as Bandit
and PyLint. Prospector tries to differentiate itself from other
competitors by offering customization to reduce the amount
of useless information, while also providing some default
configurations.

Semgrep56 is a command-line tool that helps finding bugs.
It can be used before committing code or during CI/CD
pipelines, and it supports many languages, including Python
and JavaScript. It will show higher-level vulnerabilities
within the files and can detect specific vulnerabilities in
known frameworks.

Horusec57 uses other open-source tools to identify security
flaws within a code base. This is extendable to other tools
with some configuration. This compilation of other solutions
covers 20 languages, with the most popular (such as Python,
JavaScript, Ruby, Go, and Java) having multiple tools that
cover different aspects, including dependencies, security
concerns, and basic SAST analysis. Lesser-known languages
have only one or two tools associated with them. This makes
sense because the fewer they are known/used, the fewer tools
are produced to help development with them. However, it is
also paradoxical because one could argue that they are less
known/used because there is less support for them. Horusec
offers many configuration options, and vulnerability ignoring
can be associated with a hash to avoid having to ignore each
vulnerability with a specific tool, which would leave too

48https://flake8.pycqa.org/en/latest/
49https://pypi.org/project/pyflakes/
50https://pycodestyle.pycqa.org/en/latest/
51https://peps.python.org/pep-0008/
52https://github.com/PyCQA/mccabe
53https://en.wikipedia.org/wiki/Cyclomatic_complexity
54https://github.com/PyCQA/bandit
55https://prospector.landscape.io/en/master/index.html
56https://semgrep.dev/docs/
57https://docs.horusec.io/docs/overview/

100250 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

many configuration files to be created/understood. Horusec
offers a CLI tool, as well as a local installation of a user
interface that reflects the results of scans produced.

DeepSource58 has a comprehensive and easy-to-use user
interface with direct connections to GitHub, GitLab, and
BitBucket, among others. It provides CI/CD features that can
be installed within the repository for continuous monitoring
of issues. Code scanning relies on smaller open-source tools
and their rules, as well as some proprietary scanning. The
open-source tools used are Bandit, PyLint, and Flake8.
DeepSource also offers automatic fixes, with the option to
implement changes with one click from the interface if it
has access to the repository. It also offers code formatting
options to follow the standard rules of popular formatting
styles. While DeepSource is a commercial solution, it has
a free plan for extensive individual use or for small teams
(<3 members) to get started.

SonarQube59 is a solution with an integrated user
interface that focuses on ‘‘Code Quality’’ and ‘‘Code
Security’’, using metrics such as code coverage. It also
scans for security issues based on the OWASP Top 10 and
supports multiple programming languages, including Python,
JavaScript, and Java. As a commercial, integrated solution,
it offers connections with common community standards
for CI/CD workflows, including pull request decoration that
connects directly to the user interface for easier analysis.
SonarQube has a strong focus on continuous code quality,
with new code being constantly analyzed.

Codacy60 offers many of the same features as SonarQube,
including integration with CI/CD pipelines and security con-
cerns based on the OWASP Top 10. It also supports multiple
programming languages, such as Python and JavaScript.
However, Codacy’s main differentiating point is its focus on
automated code review at specific times, rather than constant
scanning and analysis like SonarQube. Codacy also uses
open-source vulnerability assessment tools such as Bandit
and Prospector.

APPENDIX D
DEPENDENCY SCANNING APPENDIX
Safety61 is a command-line tool that follows the traditional
approach of reading dependency manifests and matching the
versions to a database of vulnerabilities to report problems.
Safety introduces a policy file that allows developers to track
dependency policies, such as ignoring certain vulnerabilities,
setting thresholds for alerts, and suppressing exit codes. It
is exclusively for Python dependencies and can be used to
scan a specific file or path of dependencies within the local
environment.

OWASP Dependency Check62 is a command-line inter-
face that retrieves information (evidence) of dependencies in

58https://deepsource.io
59https://www.sonarqube.org
60https://www.codacy.com
61https://github.com/pyupio/safety
62https://github.com/jeremylong/DependencyCheck

a project and matches them to a CPE.63 It then lists the CVE
entries found for that CPE in the report. OWASPDependency
Check keeps itself updated by using NVD Data Feeds64 to
retrieve new CPE and CVE.

Yarn Audit65 is a vulnerability audit tool integrated with
the yarn package manager.66 It performs a scan on the yarn
packages within a project and must be done online. Unlike
some other tools, yarn audit uses a non-zero exit code strategy
to immediately communicate the types of vulnerabilities
found, as the sum of the codes does not produce ambiguous
combinations.

Npm Audit67 is a tool integrated with the npm package
manager.68 It submits a description of the dependencies
within a project to the npm registry, which then returns
a list of known vulnerabilities. Some fixes can be applied
automatically, while others require manual intervention.

Steady69 is a Java-specific solution that focuses on
reducing false positives by using a code-centric approach
that only flags installed libraries as potential issues if their
vulnerable components are used or reachable within the
code. This approach is limited to a subset of vulnerabilities
described in ProjectKB,70 reducing false positives at the cost
of a smaller universe of vulnerabilities to report.

FOSSA71 is a commercial solution for keeping software
free of third-party component vulnerabilities with continuous
monitoring and other quality-of-life services to help with
integration. It supports a wide range of programming
languages and integrates with various CI/CD environments
and communication and alert platforms. It also offers license
compliance scanning and code scanning capabilities to detect
issues.

SourceClear72 is a commercial solution developed by
Veracode73 that offers a dependency scanning solution for a
variety of programming languages and their most common
package managers. It differentiates itself from other solutions
by not only reporting on vulnerabilities in the NVD, but
also by maintaining a proprietary database of vulnerabilities
that are not publicly available. It does this by searching for
vulnerabilities in sources such as repositories, metadata, and
patch notes. SourceClear also offers a dependency mapping
feature to track multiple levels of dependencies.

Black Duck Software Composition Analysis74 is a
commercial solution that builds on classical dependency

63https://nvd.nist.gov/products/cpe
64https://nvd.nist.gov/vuln/data-feeds
65https://classic.yarnpkg.com/lang/en/docs/cli/audit/
66https://yarnpkg.com
67https://docs.npmjs.com/cli/v8/commands/npm-audit
68https://www.npmjs.com
69https://github.com/eclipse/steady
70https://github.com/sap/project-kb
71https://fossa.com
72https://www.veracode.com/blog/managing-appsec/closer-look-

veracode-sourceclear-solution
73https://www.veracode.com
74https://www.synopsys.com/software-integrity/security-

testing/software-composition-analysis.html?intcmp=ref-bds

VOLUME 11, 2023 100251



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

analysis by also identifying other sources of code, whether
they are open-source or proprietary. By tracking these
artifacts, it is possible to understand if proprietary code is
being used and could pose a risk to the company. This
allows for a more sophisticated approach to dependency
management, as it tracks not only listed dependencies but also
pieces of code or binaries.

APPENDIX E
DYNAMIC SCANNING APPENDIX
Nikto75 is an open-source tool written in Perl that has the
main objective of scanning web servers for vulnerabilities.
This tool reports by checking for outdated versions of more
than 1250 servers and can report specific version problems
in almost 300 server versions. The number of vulnerabilities
reported reaches more than 6,700. This solution will also
report on configuration-related issues and SSL certificate
scanning. It offers some other features, such as multiple
port scanning on a simple web server, scanning with HTTP
authentication, scanning through a proxy, and configuring the
run according to certain parameters (scan time or some types
of scans being excluded).

OWASP Zap76 [76] is an open-source tool oriented
towards penetration testing. It is, in essence, a proxy with
some added features that help with the pentest process.
These features include the ability to intercept and alter
requests, active and passive scanners for traditional reporting
on known vulnerabilities with standard attacks, traditional
spidering, and AJAX spidering which can help identify
certain endpoints that are available and possibly should not
be. It also has brute force scanners, port scanners, and
some features for web sockets. Authentication has also been
addressed with the possibility to create a context where
we can authenticate as a user and perform automated tasks
while logged in. This solution comes with a user interface,
but the scanning capabilities have been adapted into docker
containers that can be easily deployed for fast and reliable
scans. There are already implemented versions, for example,
within GitHub Actions.77

Golismero78 is an open-source framework for security
testing. This solution is platform independent and has no
native library dependencies, as the entire solution was written
in pure Python (Python2 to be exact). This can make
installing harder and, since Python2 is no longer supported,
it could cause problems in the future. The command line
is intuitive to configure the desired type of scan (adding or
removing plugins) and is oriented towards making plugin
development as easy as possible. This tool works as a unifier
for well-known tools (Nikto being one of them, for example).
It also integrates standards like CWE, CVE, and OWASP
to make the representation broader. The project has not

75https://github.com/sullo/nikto
76https://www.zaproxy.org
77https://github.com/marketplace/actions/owasp-zap-baseline-scan
78https://github.com/golismero/golismero

been updated since 2020, which might raise some concerns
regarding the maintainability of the solution.

Wapiti79 is an open-source web vulnerability scanner
that performs its testing by crawling the web pages and
looking through the source code for forms and scripts where
injections might occur. This tool acts like a fuzzer but
one that also automatically detects entry points to then
attack. The objective being centered on injection allows
for the reporting of problems like SQL Injections, XSS,
Command Injection, or Cross-Site Request Forgery as the
most common, or smaller information like unexpected HTTP
methods or simple fingerprints of web applications. It allows
for reporting in many standard formats with different levels
of verbosity.

Arachni80 is an open-source framework designed to
help pentesters assess the security of web applications. It
covers a wide range of elements, including forms, links,
cookies, headers, and request data. In addition to general
features like cookie-jar support, proxy authentication, and
site authentication, it also offers plugins to report on specific
problemswithinweb applications, such as logs on uncommon
headers and tracking of cookies. One of the key differentiators
of Arachni is its adaptability to the dynamic nature of web
applications. When changes are made to the application,
the decision tree for the scan is impacted and the solution
can learn from the execution flow of the web application.
However, Arachni is nearing the end of its life cycle and its
next-generation successor, SCNR,81 is set to take its place.

Vega82 is a free and open-source web application security
scanner that scans for common vulnerabilities such as SQL
Injections, remote file inclusion, shell injection, and XSS.
It also has a major focus on assessing the quality of TLS
configurations and can help improve such configurations.
Vega has a graphical user interface, which rules out possible
integration within CI/CD pipeline. It also has a feature similar
to OWASP Zap, allowing it to act as a proxy to intercept
and alter requests for manual assessment of web applications.
This offers a hybrid solution for some automation but also
gives freedom to the pentester.

The Browser Exploitation Framework (BeEF)83 is a
penetration testing tool that focuses on the web browser.
This solution is different from others because it is solely
focused on client-side attacks. BeEF does not consider
other possibilities but the vulnerabilities present in the web
browser. All attacks are launched to access the internal
environment of a user (the browser). As a graphical interface
application, it hooks a browser to then proceed with
information gathering and later with attacks. It also offers,
besides the interface, a restful API that allows for scripting
within BeEF. This solution is not within the objectives of
testing a web application per se, but it is definitely worth

79https://github.com/wapiti-scanner/wapiti
80https://github.com/Arachni/arachni
81footnotehttps://ecsypno.com/scnr-documentation/
82https://subgraph.com/vega/
83https://github.com/beefproject/beef

100252 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

considering the robustness of the application the user is using
to communicate with our solution.

Wfuzz84 is an open-source web security assessment tool
that takes a very simple premise very far. This premise is
the replacement of the word ‘‘FUZZ’’ with the contents to be
fuzzed. This can be applied to URL, POST requests, cookies,
custom headers, or even authentication. The ‘‘FUZZ’’ word
will be replaced with contents from a file, which means
there needs to be a list of values to experiment with to see
how the application will react. Even though the tool has a
simple premise, some more advanced scenarios can be taken
into consideration, such as payload combinations, different
encoding combinations, result filtering, and the re-utilization
of previous payloads. Working as a command-line tool, this
solution is more oriented towards helping a pentester with
certain types of payloads and not necessarily with the creation
of repeatable fuzzing testing. Although this is possible and
could be adapted to work within a CI/CD environment, this
implementation would not be trivial and is not repeatable
as requests and fuzzing technique will change with each
project.

Nogotofail85 is an open-source tool created by Google
to test HTTPS connections and make sure that no mistakes
were made in the configuration. These mistakes can come
from defaults or just plain problems within a manual
configuration.86 This solution aims to catch known vulnera-
bilities within TLS/SSL connections. With a command-line
interface, it is directed to make one attack and see the
results, then move on to the next and so forth. It is available
for use on Linux and Windows, as well as Android and
Chrome OS.

Detectify87 offers an integrated solution based on DAST
techniques that allow for web application scanning while
also adding a monitoring feature to keep track of changes
even when the product is not actively being scanned.
The two products provided are surface monitoring, which
detects exposed files and misconfigurations, and applica-
tion scanning, which finds security vulnerabilities. This
solution not only emphasizes making sure the scans are
configurable enough for end users, but also proposes a
strong integration with CI/CD pipelines to make it as easy
as possible to integrate within each company’s workflow,
including communication platforms, and not only traditional
pipeline providers. Detectify also shows a comprehensive
solution for testing against subdomain takeovers, in which an
attacker claims a subdomain for themselves.88 These types of
problemswill becomemore apparent when considering large-
scale organizations, and Detectify, being a paid solution,
might be useful for such customers, but an overkill on smaller
projects.

84https://github.com/xmendez/wfuzz/
85https://github.com/google/nogotofail
86https://security.googleblog.com/2014/11/introducing-nogotofaila-

network-traffic.html
87https://detectify.com
88https://ieeexplore.ieee.org/abstract/document/8679122

StackHawk89 offers an integrated solution for web
applications, but also shows some emphasis on web API
testing, considering it an important part of web applications
and services in a company. Another interesting feature that
differs from other solutions is the possibility to add security
within the CI/CD process. This is beyond the scope of
DAST, to an extent (since we are targeting DAST for web
applications), but it can be an interesting concern to tackle
for more mature companies looking to add further security
in a more in-depth approach, instead of securing only the
perimeter (in-depth defense). StackHawk offers a free version
with limited features for only 1 application.

Invicti90 offers an integrated solution for web applications
and services, but starts the process by identifying all web
assets present within the company. This approach only makes
sense for a magnitude of products that most companies will
not achieve. The process this solution offers also targets
root cause analysis of problems. DAST has the problem of
working isolated from the code, and even though problems
are found, the next step, mostly manual, will be to identify
where the problem came from so it can be resolved. Invicti
also employs IAST techniques to produce more detailed
reports on problems and reduce the fixing time of an issue
by cutting down the root cause analysis time.

REFERENCES
[1] A. Chidukwani, S. Zander, and P. Koutsakis, ‘‘A survey on the cyber

security of small-to-medium businesses: Challenges, research focus and
recommendations,’’ IEEE Access, vol. 10, pp. 85701–85719, 2022.

[2] S. Backman, ‘‘Organising national cybersecurity centres,’’ Inf. Secur., Int.
J., vol. 32, pp. 9–26, 2015.

[3] Portuguese National Cybersecurity Centre. (2019). Quadro Nacional de
referência Para a Cibersegurança. Accessed: Feb. 28, 2023. [Online].
Available: https://www.cncs.gov.pt/docs/cncs-qnrcs-2019.pdf

[4] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, ‘‘Security during
application development: An application security expert perspective,’’ in
Proc. CHI Conf. Human Factors Comput. Syst., Apr. 2018, pp. 1–12.

[5] C. Nobles, ‘‘Botching human factors in cybersecurity in business
organizations,’’HOLISTICA J. Bus. Public Admin., vol. 9, no. 3, pp. 71–88,
Dec. 2018.

[6] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Detection
of recurring software vulnerabilities,’’ in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., Sep. 2010, pp. 447–456.

[7] ENISA. (Nov. 2022). Enisa Threat Landscape
2022. Accessed: Feb. 27, 2023. [Online]. Available:
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
/@@download/fullReport

[8] M. Soni, ‘‘Defect prevention: Reducing costs and enhancing quality,’’
IBM, Armonk, NY, USA, Tech. Rep., 2006. [Online]. Available:
https://iSixSigma.com

[9] A. Apvrille and M. Pourzandi, ‘‘Secure software development by
example,’’ IEEE Secur. Privacy, vol. 3, no. 4, pp. 10–17, Jul. 2005.

[10] ENISA. (Nov. 2022). Etl2020—Web Application Attacks. Accessed:
Feb. 27, 2023. [Online]. Available: https://www.enisa.europa.
eu/publications/web-application-attacks

[11] M. Curphey and R. Arawo, ‘‘Web application security assessment tools,’’
IEEE Secur. Privacy Mag., vol. 4, no. 4, pp. 32–41, Jul. 2006.

[12] A. Alzahrani, A. Alqazzaz, Y. Zhu, H. Fu, and N. Almashfi, ‘‘Web
application security tools analysis,’’ in Proc. IEEE 3rd Int. Conf. Big Data
Secur. Cloud (Bigdatasecurity) Int. Conf. High Perform. Smart Comput.
(HPSC), Int. Conf. Intell. data Secur. (IDS), May 2017, pp. 237–242.

89https://www.stackhawk.com
90https://www.invicti.com

VOLUME 11, 2023 100253



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

[13] R. Amankwah, P. Kwaku, and S. Yeboah, ‘‘Evaluation of software
vulnerability detectionmethods and tools: A review,’’ Int. J. Comput. Appl.,
vol. 169, no. 8, pp. 22–27, Jul. 2017.

[14] J. R. B. Higuera, J. B. Higuera, J. A. S. Montalvo, J. C. Villalba, and J.
J. N. Pérez, ‘‘Benchmarking approach to compare web applications static
analysis tools detecting OWASP top ten security vulnerabilities,’’Comput.,
Mater. Continua, vol. 64, no. 3, pp. 1555–1577, 2020.

[15] G. Hao, F. Li, W. Huo, Q. Sun,W.Wang, X. Li, andW. Zou, ‘‘Constructing
benchmarks for supporting explainable evaluations of static application
security testing tools,’’ in Proc. Int. Symp. Theor. Aspects Softw. Eng.
(TASE), Jul. 2019, pp. 65–72.

[16] L. K. Seng, N. Ithnin, and S. Z. M. Said, ‘‘The approaches to quantify web
application security scanners quality: A review,’’ Int. J. Adv. Comput. Res.,
vol. 8, no. 38, pp. 285–312, Sep. 2018.

[17] H. H. AlBreiki and Q. H. Mahmoud, ‘‘Evaluation of static analysis tools
for software security,’’ in Proc. 10th Int. Conf. Innov. Inf. Technol. (IIT),
Nov. 2014, pp. 93–98.

[18] G. McGraw, ‘‘Software security,’’ IEEE Secur. Privacy, vol. 2, no. 2,
pp. 80–83, Aug. 2004.

[19] V. Clincy and H. Shahriar, ‘‘Web application firewall: Network security
models and configuration,’’ in Proc. IEEE 42nd Annu. Comput. Softw.
Appl. Conf. (COMPSAC), vol. 1, Jul. 2018, pp. 835–836.

[20] P. Cisar and S. M. Cisar, ‘‘The framework of runtime application self-
protection technology,’’ in Proc. IEEE 17th Int. Symp. Comput. Intell.
Informat. (CINTI), Nov. 2016, pp. 000081–000086.

[21] N. Imtiaz, S. Thorn, and L. Williams, ‘‘A comparative study of vulner-
ability reporting by software composition analysis tools,’’ in Proc. 15th
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2021,
pp. 1–11.

[22] J. Yang, L. Tan, J. Peyton, and K. A Duer, ‘‘Towards better utilizing static
application security testing,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng., Softw. Eng. Pract. (ICSE-SEIP), May 2019, pp. 51–60.

[23] F. M. Tudela, J.-R. B. Higuera, J. B. Higuera, J.-A. S. Montalvo, and
M. I. Argyros, ‘‘On combining static, dynamic and interactive analysis
security testing tools to improve OWASP top ten security vulnerability
detection in web applications,’’ Appl. Sci., vol. 10, no. 24, p. 9119,
Dec. 2020.

[24] Y. Pan, ‘‘Interactive application security testing,’’ in Proc. Int. Conf. Smart
Grid Electr. Autom. (ICSGEA), Aug. 2019, pp. 558–561.

[25] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, ‘‘Mobile application testing: A
tutorial,’’ Computer, vol. 47, no. 2, pp. 46–55, Feb. 2014.

[26] R. Shirey, Internet Security Glossary, Version 2, Informational, document
RFC 4949, Aug. 2007.

[27] Software Weaknesses, 2022, CWE, MITRE, Bedford, MA, USA, 2022.
[28] Owasp Top 10, 2022, OWASP Foundation, College Park, MD, USA, 2022.
[29] K. Rantos, A. Spyros, A. Papanikolaou, A. Kritsas, C. Ilioudis, and

V. Katos, ‘‘Interoperability challenges in the cybersecurity information
sharing ecosystem,’’ Computers, vol. 9, no. 1, p. 18, Mar. 2020.

[30] S. Barnum, ‘‘Standardizing cyber threat intelligence information with the
structured threat information expression (STIX),’’ Mitre Corp., vol. 11,
pp. 1–22, Jan. 2012.

[31] J. Banghart, S. Quinn, and D. Waltermire, ‘‘Open vulnerability assessment
language (OVAL) validation program derived test requirements,’’ Nat. Inst.
Standards Technol., Gaithersburg, MD, USA, Tech. Rep., 2010.

[32] A. Randal, ‘‘The ideal versus the real: Revisiting the history of virtual
machines and containers,’’ ACMComput. Surveys, vol. 53, no. 1, pp. 1–31,
Jan. 2021.

[33] V. Singh and S. K. Peddoju, ‘‘Container-based microservice architecture
for cloud applications,’’ in Proc. Int. Conf. Comput., Commun. Autom.
(ICCCA), May 2017, pp. 847–852.

[34] D. Bernstein, ‘‘Containers and cloud: FromLXC toDocker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[35] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated
performance comparison of virtual machines and Linux containers,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[36] C. Anderson, ‘‘Docker [software engineering],’’ IEEE Softw., vol. 32, no. 3,
pp. 102–c3, May 2015.

[37] T. Combe, A. Martin, and R. D. Pietro, ‘‘To Docker or not to docker:
A security perspective,’’ IEEE Cloud Comput., vol. 3, no. 5, pp. 54–62,
Sep. 2016.

[38] S. Sultan, I. Ahmad, and T. Dimitriou, ‘‘Container security: Issues,
challenges, and the road ahead,’’ IEEE Access, vol. 7, pp. 52976–52996,
2019.

[39] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, ‘‘Software development
life cycle agile vs traditional approaches,’’ in Proc. Int. Conf. Inf. Netw.
Technol., vol. 37, 2012, pp. 162–167.

[40] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, ‘‘DevOps,’’ IEEE
Softw., vol. 33, no. 3, pp. 94–100, May 2016.

[41] K. Beck, ‘‘Embracing change with extreme programming,’’ Computer,
vol. 32, no. 10, pp. 70–77, 1999.

[42] M. Fowler and M. Foemmel, ‘‘Continuous integration,’’ Tech. Rep., 2006.
[43] L. Chen, ‘‘Continuous delivery: Huge benefits, but challenges too,’’ IEEE

Softw., vol. 32, no. 2, pp. 50–54, Mar. 2015.
[44] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen,

M. V. Mäntylä, and T. Männistö, ‘‘The highways and country roads to
continuous deployment,’’ IEEE Softw., vol. 32, no. 2, pp. 64–72,Mar. 2015.

[45] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, ‘‘Beyond continuous
delivery: An empirical investigation of continuous deployment chal-
lenges,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Nov. 2017, pp. 111–120.

[46] M. Virmani, ‘‘Understanding DevOps & bridging the gap from continuous
integration to continuous delivery,’’ in Proc. 5th Int. Conf. Innov. Comput.
Technol. (INTECH), May 2015, pp. 78–82.

[47] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, ‘‘CI/CD pipelines
evolution and restructuring: A qualitative and quantitative study,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2021,
pp. 471–482.

[48] A. M.Mowad, H. Fawareh, andM. A. Hassan, ‘‘Effect of using continuous
integration (CI) and continuous delivery (CD) deployment in DevOps to
reduce the gap between developer and operation,’’ in Proc. Int. Arab Conf.
Inf. Technol. (ACIT), Nov. 2022, pp. 1–8.

[49] M. Meyer, ‘‘Continuous integration and its tools,’’ IEEE Softw., vol. 31,
no. 3, pp. 14–16, May 2014.

[50] T. Górski, ‘‘Continuous delivery of blockchain distributed applications,’’
Sensors, vol. 22, no. 1, p. 128, Dec. 2021.

[51] N. K. Tran, M. A. Babar, and A. Walters, ‘‘A framework for automating
deployment and evaluation of blockchain networks,’’ J. Netw. Comput.
Appl., vol. 206, Oct. 2022, Art. no. 103460.

[52] M. Shahin, M. A. Babar, and L. Zhu, ‘‘The intersection of continuous
deployment and architecting process: Practitioners’ perspectives,’’ in Proc.
10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., Sep. 2016,
pp. 1–10.

[53] OWASP Foundation. (2023). Owasp Source Code
Analysis Tools. [Online]. Available: https://owasp.
org/www-community/Source_Code_Analysis_Tools

[54] A. Saha, T. Denning, V. Srikumar, and S. K. Kasera, ‘‘Secrets in source
code: Reducing false positives using machine learning,’’ in Proc. Int. Conf.
Commun. Syst. Netw. (COMSNETS), Jan. 2020, pp. 168–175.

[55] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye, and S. Mani, ‘‘Detecting
and mitigating secret-key leaks in source code repositories,’’ in Proc.
IEEE/ACM 12th Work. Conf. Mining Softw. Repositories, May 2015,
pp. 396–400.

[56] M. Meli, M. R. McNiece, and B. Reaves, ‘‘How bad can it git?
Characterizing secret leakage in public Github repositories,’’ in Proc.
NDSS, 2019, pp. 1–15.

[57] O. Tunde-Onadele, J. He, T. Dai, and X. Gu, ‘‘A study on container
vulnerability exploit detection,’’ inProc. IEEE Int. Conf. Cloud Eng. (ICE),
Jun. 2019, pp. 121–127.

[58] J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, and D. Izquierdo,
‘‘Technical lag in software compilations: Measuring how outdated a
software deployment is,’’ in Proc. IFIP Int. Conf. Open Source Syst.Cham,
Switzerland: Springer, 2017, pp. 182–192.

[59] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, ‘‘On the
relation between outdated Docker containers, severity vulnerabilities, and
bugs,’’ in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reengineering
(SANER), Feb. 2019, pp. 491–501.

[60] K. Brady, S.Moon, T. Nguyen, and J. Coffman, ‘‘Docker container security
in cloud computing,’’ in Proc. 10th Annu. Comput. Commun. Workshop
Conf. (CCWC), Jan. 2020, pp. 0975–0980.

[61] M. Jagelid, ‘‘Container vulnerability scanners: An analysis,’’ M.S. thesis,
KTH Roy. Inst. Technol., Stockholm, Sweden, 2020.

[62] E. Lebanidze, ‘‘The need for fourth generation static analysis tools for
security–from bugs to flaws,’’ in Proc. Appl. Secur. Conf., 2008, pp. 1–7.

100254 VOLUME 11, 2023



D. B. Cruz et al.: Open Source Solutions for Vulnerability Assessment: A Comparative Analysis

[63] S. C. Johnson, ‘‘Lint, a C program checker,’’ Bell Telephone Laboratories,
Murray Hill, New York, NY, USA, Tech. Rep., 1977.

[64] C. Payne, ‘‘On the security of open source software,’’ Inf. Syst. J., vol. 12,
no. 1, pp. 61–78, 2002.

[65] R. G. Kula, D.M. German, A. Ouni, T. Ishio, and K. Inoue, ‘‘Do developers
update their library dependencies?’’ Empirical Softw. Eng., vol. 23, no. 1,
pp. 384–417, 2018.

[66] D. Foo, J. Yeo, H. Xiao, and A. Sharma, ‘‘The dynamics of software
composition analysis,’’ 2019, arXiv:1909.00973.

[67] S. E. Ponta, H. Plate, and A. Sabetta, ‘‘Beyond metadata: Code-centric and
usage-based analysis of known vulnerabilities in open-source software,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2018,
pp. 449–460.

[68] S. Alazmi and D. C. De Leon, ‘‘A systematic literature review on
the characteristics and effectiveness of web application vulnerability
scanners,’’ IEEE Access, vol. 10, pp. 33200–33219, 2022.

[69] B. P. Miller, L. Fredriksen, and B. So, ‘‘An empirical study of the reliability
of UNIX utilities,’’ Commun. ACM, vol. 33, no. 12, pp. 32–44, Dec. 1990.

[70] P. Godefroid, M. Y. Levin, and D. A. Molnar, ‘‘Automated whitebox fuzz
testing,’’ Tech. Rep., 2008.

[71] P. Godefroid, M. Y. Levin, and D. Molnar, ‘‘SAGE: Whitebox fuzzing for
security testing,’’ Commun. ACM, vol. 55, no. 3, pp. 40–44, 2012.

[72] M. AbuKausar, V. S. Dhaka, and S. Kumar Singh, ‘‘Web crawler: A
review,’’ Int. J. Comput. Appl., vol. 63, no. 2, pp. 31–36, Feb. 2013.

[73] A. Mesbah, A. van Deursen, and S. Lenselink, ‘‘Crawling ajax-based web
applications through dynamic analysis of user interface state changes,’’
ACM Trans. Web, vol. 6, no. 1, pp. 1–30, Mar. 2012.

[74] P. Anderson, L. Kot, N. Gilmore, and D. Vitek, ‘‘SARIF-enabled tooling
to encourage gradual technical debt reduction,’’ in Proc. IEEE/ACM Int.
Conf. Tech. Debt (TechDebt), May 2019, pp. 71–72.

[75] S. V. Stehman, ‘‘Selecting and interpreting measures of thematic
classification accuracy,’’ Remote Sens. Environ., vol. 62, no. 1, pp. 77–89,
Oct. 1997.

[76] S. Bennetts, ‘‘OWASP zed attack proxy,’’ Tech. Rep., 2013.

DINIS BARROQUEIRO CRUZ received the
bachelor’s degree in informatics engineering from
the University of Aveiro, where he is currently
pursuing the master’s degree in cybersecurity.
Since April 2022, he has been collaborating on
a research grant by taking part in the secure
development of the EHDEN portal. His research
interests include application security, vulnerability
assessment, and cryptographic applications to the
medical field.

JOÃO RAFAEL ALMEIDA is currently a
Researcher in the cybersecurity field. He is also
a member of the Coordination Team of the
Cybersecurity Office, University of Aveiro. He
has authored or coauthored over 40 scientific
papers in peer-reviewed journals and conferences,
and coordinated/participated in more than ten
research projects. His research interests include
data privacy, data engineering, threat discovery,
and cybersecurity in general.

JOSÉ LUÍS OLIVEIRA is currently the Director
of the Institute of Electronics and Informatics
Engineering of Aveiro (IEETA) and a Full Profes-
sor with the Department of Electronics, Telecom-
munications and Informatics (DETI), University
of Aveiro. He has authored or coauthored over
300 scientific papers in peer-reviewed journals and
conferences, and coordinated/participated in more
the 40 research projects. His research interests
include data engineering, text mining, distributed

systems, and computational methods in biomedicine.

VOLUME 11, 2023 100255


