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ABSTRACT Space communication poses several unique challenges that are not always present in typical
terrestrial communications. Currently, communication with satellites is based on point-to-point links, and
development of an interplanetary internet is an active research area. Delay Tolerant Networking (DTN) has
been proposed as a way to mitigate the long delays and disruptions found in deep space. A specialized
version of DTN, called High-rate Delay Tolerant Networking (HDTN), has been developed by NASA to
support a variety of missions requiring store-and-forward capability. However, there are still several features
that are desired for HDTN including data fragmentation, multicast, and anycast. This project proposes the
application of fountain code in HDTN as a means of fragmenting, distributing, and reassembling data (in
the form of bundles) across multiple nodes (i.e. satellites) to any number of receivers (i.e. ground stations).
Fountain code is shown to be a promising encoding method for use with the HDTN protocol suite due to its
short runtimes, small encoded file sizes, and loss tolerance.

INDEX TERMS Delay tolerant networks, fountain code, data fragmentation, multicast, opportunistic
routing.

I. INTRODUCTION
Space communication poses several unique challenges that
do not typically present themselves in standard terrestrial
networks. These challenges include disruptions due to
weather or other extraneous sources, as well as extended
transfer times of large data objects, such as high resolution
image files stemming from long distances between sender
and receiver. NASA, as well as multiple other government
agencies and industry, has been developing delay tolerant
networking (DTN) to provide an architecture and set of
protocols to form the future interplanetary internet [1]. A spe-
cialized version of DTN, called High-Rate Delay Tolerant
Networking, has been developed by NASA Glenn Research
Center to provide increased functionality to DTN [2]. There
are several capabilities that are currently being investigated
for HDTN, including high-speed data compression, data
fragmentation, streaming, and DTN multicast. This paper
investigates fountain code as an efficient method of uplink
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and downlink data transfer available for use with HDTN,
particularly in a distributedmanner amongmultiple receivers.

The use-case for this work focuses on a Low-Earth orbit
satellite that may perform a variety of high resolution imaging
or sensing tasks, such as those needed for Earth science,
weather, and climate-related research. Due to the size of
the images and constraints of the satellite communciation
system, the downlink may require multiple orbital passes
around the earth ormay be distributed amongmultiple ground
stations in different locations. An example of this type of
experiment is given in [3]. The authors used an early reference
implementation of DTN, called DTN-2. They noted several
drawbacks to the early DTN prototype including lack of
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FIGURE 1. Example use-case of bundle fragmentation and reassembly.

reliability, error detection, and checksums. In addition, they
commented on the complexity of the protocols, lack of
standardization, and issues related to time synchronization.
In our work, the use of fountain code inherently incorporates
redundancy and reliability into file transfers and simplifies
the bundle reassembly process. Fig. 1 shows a diagram of this
process. The satellite will have access to ground station 1, 2,
and 3 at different points in time. At each time step, a different
fragment of the data will be received at the ground station,
which is then transferred via the terrestrial network to the
mission operations center.

In order to overcome the challenges presented in space
communications – long round-trip times, disruptions to
connectivity, and asymmetric link data rates – this work
proposes the potential implementation of fountain code in
High-rate Delay Tolerant Networking as a way to effectively
distribute bundles across multiple receiving nodes. Applica-
tion of fountain code in an HDTN environment would serve
to mitigate the issues mentioned above, provided that the
receiving nodes in the network are able to reliably reassemble
the bundles they receive into one cohesive message.

The main objectives of this project are to investigate the
manner in which fountain code can be used to fragment,
distribute, and reassemble data bundles back into their
original data format, develop a prototype implementation of
the proposed fountain code design based on the open-source
HDTN software provided, test the prototype software on
various configurations of single-board computers, and pro-
vide software documentation detailing proper installation and
operation of the software.

The rest of this paper is organized as follows. Section I
introduces the overall content and contributions. Section II
gives an overview of the HDTN implementation, and
discusses the major design concepts for this work. Section III
covers related work in fountain codes for DTN and
the relation to opportunistic routing and multi-destination
approaches. Section IV discusses the design of the fountain
code encoder and decoder prototypes, as well as integration
with HDTN. Section V discusses the software verification
approach and performance analysis. Section VI concludes the
main portion of the paper with recommended future work.
Finally, the Appendix demonstrates the basic prototype usage
for the encoder and decoder modules.

II. BACKGROUND
This section introduces the concepts from delay tolerant
networking that have served as the basis of our work.

A. HDTN OVERVIEW
The High-rate Delay Tolerant Networking project [4] has
been developing a performance-optimized DTN implemen-
tation focused on supporting high-rate communications
systems (greater than 1 Gbps), such as optical terminals and
relays. The HDTN software is publicly available at [5]. The
software provides multiple convergence layers, applications,
store-and-forward capabilites, and routing. Currently, the
HDTN software supports existing Delay Tolerant Net-
work (DTN) protocols like Licklider Transmission Protocol
(LTP) [6] and Bundle Protocol (version 6 [7] or version 7 [8]).
Future planned capabilities include DTN multicast, neighbor
discovery, distributed storage, streaming, and opportunistic
routing. The work in this article studies fountain code as a
possible technique to distribute packets in a reliable manner,
which relates to many of the new planned features. Figure 2
shows the high-level architecture of the HDTN bundle agent.

B. ENUMERATING THE DESIGN CONCEPTS
DTN, or delay-tolerant networking, is an architecture and
set of protocols designed for networks in which an end-
to-end path through the network does not always exist and
delays between nodes make traditional terrestrial protocols
infeasible. Environments like deep space introduce delays
of lengths that are normally intolerable, hence the need for
‘‘delay-tolerant’’ space communications. DTN encompasses
a set of protocols with which it can employ automatic retrans-
mission, interoperability, efficiency, security, and other vital
operations with respect to its data units, called bundles.
DTN’s resilience in suboptimal conditions make it an ideal
candidate for the basis of networking in a space environment.
HDTN seeks to build upon DTN in the effort of increasing its
transfer speeds and delay tolerance.

Fountain code is a technique by which a data transmission
can be decoded using a potentially unordered subset of
the original transmission. When a message is transmitted,
the fountain code splits it into blocks and applies the
Exclusive-Or operation (XOR) on blocks at random [9].
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FIGURE 2. High level HDTN architecture.

FIGURE 3. An example of message encoding and decoding using fountain
code.

The transmitter sends the encoded message along with
information about how the message was encoded. The
receiving fountain code decodes the message by applying
the XOR operation once more according to the encoding
information. This process makes it possible for a large bundle
of data to be fragmented, transmitted, and reconstructed. This
technique is highly scalable in comparison to the traditional
TCP suite and is thus ideal for use in the environment of
downlink communication with large files. Figure 3 shows the
basic fountain code concept.

Fountain code is a promising way to distribute data and
improve reliability for DTN’s since it does not require a
feedback packet for acknowledgement. The original file can
be reassembled from any subset of encoded data from a set
equal or slightly larger than the original data [10]. Many DTN
protocols such as LTP [6] have been developed to attempt
to reduce the number of acknowledgement packets required
to reliably transmit data since long round-trip times greatly
impact performance.

Anycast is a method by which a network can handle
addressing and routing between transmitting and receiving
nodes. An incoming transmission is routed to the nearest

receiver node that is capable of handling the transmission
with appropriate buffer capacity and general efficiency. In this
case, ‘‘nearest’’ refers to physical distance, thus motivating
the network router to select a destination node that is nearest
to the original transmitter node.

Multicast is another network addressing and routing
method. An incoming transmission may have multiple des-
tinations, and the network routes it to only these destination
nodes. It is often optimal in comparison to broadcast, which
routes traffic to all receiver nodes, since a node may be
transmitting sensitive data that it does not want just any node
to receive.

III. RELATED WORK
Table 1 summarizes a literature review of fountain code in
DTN, replication-based techniques and opportunistic routing
in DTN. This section will further discuss the related papers
on fountain code for DTN, as well as opportunistic routing.

A. FOUNTAIN CODES IN DTN
Packet replication is often used as a way to decrease delivery
delay and improve the probability of delivery. Epidemic
routing and flooding are the two most common naive
approaches. Flooding based approaches replicate all packets,
whereas epidemic routing replicates packets for any node that
has not already seen the packet [11]. Forward error correction
and fountain codes are proposed as a way to store partial
frames of data among multiple nodes in [12]. The work is
based on a simulation of both fixed erasure codes (Reed
Solomon type codes) and rateless fountain codes. The authors
note that typically in fountain codes, the coding is done at the
source. There would need to be additional work to develop an
approach that handles coding and storage at a relay node.

Fountain codes are applied to file transfer for vehicular
delay tolerant networks in [10]. The authors propose the use
of fountain coding in the application layer along with UDP
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TABLE 1. Literature review summary.

as the transport layer and develop a DTN routing algorithm
based on Ad hoc On-Demand Distance Vector (AODV) [13].
This approach allows packets to be received in any order, does
not require acknowledgements, and allows the application
layer to provide a large amount of storage buffer to prevent
packets from being dropped.

Forward error correction, uncoded data, and the Tetrys
transport protocol are compared in [14]. The authors
developed Tetrys, which is a transport layer that enables
robust streaming overDTN. Tetrys is based on an ‘‘on the fly’’
coding mechanism that is able to ensure reliability without
retransmission and fast in-order bundle delivery.

B. OPPORTUNISTIC ROUTING
The type of replication mechanisms that fountain code seeks
to improve upon are frequently used in opportunistic routing
algorithms. In this type of routing, a deterministic contact
plan may not be known, so methods to detect available
nodes and replication of packets to multiple destinations are
often used. An overview of DTN routing is given in [15].
It compares approaches for deterministic versus stochastic
cases for unicast routing, multicast and anycast methods,

as well as the differences between mobile ad hoc networks
and DTNs. Network Coding Opportunistic Routing (NCOR)
is proposed in [16] as a way to improve upon packet
replication techniques often used in opportunistic routing for
DTN’s where node storage and transmission capabilities are
limited. Cluster-based routing is proposed in [18] and [19].
In particular, [18] uses multicast techniques for cluster
messaging. Trusted routing schemes are used in both [19]
and [20]. Ring Road Routing is discussed in [17]. While it is
a deterministic style of routing, the approach uses discovery
of nodes via beacons to detect multiple ground stations and
make contact predictions.

IV. DETAILED DESIGN
Our fountain code algorithm has been implemented in the
style of a Luby transform (LT) code [21]. LT codes are a
fairly simple form of error correcting algorithm developed
by computer scientist Michael Luby. This style of fountain
code was chosen because it utilizes the exclusive-or (XOR)
operation, which is fairly straight-forward and simple to
implement. The software implementation consists mainly of
encoder and decodermodules written in Python. Data bundles
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generated by a transmitter using HDTN are fed into the
encoder, and the encoded data is transmitted to the receiver(s).
Each receiver accepts the encoded data and passes it through
the decoder module to recover the original data.

A. ENCODER
The encoding process begins by reading a file as binary data.
This allows the data to be separated cleanly in multiples of
bytes and manipulated with the XOR operation later. The
exact size of each segment of the separated data is determined
by a parameter called BUNDLE_BYTES, which specifies the
number of bytes per bundle to be created. It is likely that
the data does not contain a number of bytes that is an exact
multiple of BUNDLE_BYTES, so the final bundle will need
to be padded with zeros, if necessary. Zero padding is used
because the result of XORing any number with 0 is the first
number. Encoding is then initiated with the original data,
its number of segments, and the desired encoded data size,
defined as the original data segment number multiplied by a
REDUNDANCY constant parameter.
One of the main goals of LT code is to introduce

redundancy in a more intelligent way than simply sending
multiple copies of the same data. The creator of LT code,
Michael Luby, designed a probability distribution for this
purpose. The ideal soliton probability distribution is used
to determine exactly how likely it is for a given number of
data segments to be XORed in the creation of one encoded
data bundle. It is the optimal solution to the delicate balance
of maximizing redundancy while still guaranteeing that the
encoded data can be decoded. The ideal distribution function
is defined as

ideal_soliton(1) =
1
K

(1)

and

ideal_soliton(i) =
1

i(i− 1)
, (2)

where 2 ≤ i ≤ K and K is the maximum number of XOR
neighbors possible [21]. For the purposes of this encoder,
K is defined as the number of data segments created from
the original data.

After obtaining the ideal soliton distribution, the encoding
process begins. Algorithm 1 shows the encoding algorithm
pseudocode.

Randomly choosing a number of XOR neighbors, even
from the ideal soliton probability distribution, may lead to
an unsolvable encoding. To help ensure that this does not
happen, the encoder must create at least one encoded bundle
that is created from a single original data segment. Thismakes
the distribution of XOR neighbors less than ideal, but having
a solvable encoding is more important.

The created encoded data is fairly large, so it is then
compressed using the GZIP utility [22], creating a zipped file.
After the encoding algorithm is complete, the resulting set of
encoded data is ready to be sent to the receiver via HDTN.

Algorithm 1 Encoder
1: Obtain an ideal soliton distribution of size
original_data_bundle_count

2: Define an empty list to which encoded data will be added

3: for i = 0 to original_data_bundle_count do
4: if i = 0 then
5: xor_neighbors ≤ 1
6: else
7: xor_neighbors ≤ a random number of neighbors

according to ideal soliton
8: end if
9: Take xor_neighbors number of bundles to be used as

components
10: Set the current encoded bundle value to the first

component value
11: for j = 1 to xor_neighbors do
12: XOR the current encoded bundle value with the

value of component j
13: end for
14: Add the final encoded bundle value and list compo-

nents to the encoded data list
15: end for

B. DECODER
Before the decoder does anything, it decompresses the
encoded file. Then, similarly to the encoding process, the
decoding process begins with reading the encoded data as
a set of binary data in segments. This is done by finding
text data between curly braces in the encoded data and
transforming it into dictionaries. The decoder also initializes
a list to which the decoded data will be appended as it is
decoded. Rather than being empty, this list is initialized as
an array of −1’s. This gives the decoder a way to distinguish
between solved and unsolved portions of the decoded data,
as the XOR operation will never output a negative number in
this configuration. Algorithm 2 shows the decoding algorithm
pseudocode.

The decoder iterates over the encoded data, making a list
of occurrences for each component. For example, in the list
of component occurrences, index 0 contains a list of indices
representing encoded bundles that used component 0 in the
encoding process. Then, the decoder begins checking for
bundles that are ready to be solved. Such a bundle would be
recognizable by having only one unsolved component left in
its list of components. Upon finding a solvable bundle, the
decoder checks to see if the remaining component is already
solved. If not, it sets the value of that component to be the
same as the value of the encoded bundle. Then, it checks the
list of bundles in which the solved component appears. For
each of these other bundles, it XORs the component value
with the other bundle value and removes the component from
the component list of that bundle. This process repeats until
no bundles have been solved during the current decoding
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Algorithm 2 Decoder
1: for all bundle in encoded_data do
2: for all component in bundle do
3: Record that component appears in bundle in list

component_occurrences
4: end for
5: end for
6: while more than one component has been solved during

the current iteration do
7: for all bundle in encoded_data do
8: if there is only one component left unsolved in

bundle then
9: Remove the encoded bundle from the list of

encoded data
10: if the component has not been solved through

another bundle then
11: Set the decoded data entry at the same

component index to the encoded bundle value
12: for all other_bundle_containing_component

in encoded_data do
13: Set the value of other_bundle to the XOR of

itself and the value of the component
14: Remove the newly solved component from

the list of components for this bundle
15: end for
16: end if
17: end if
18: end for
19: end while

iteration, indicating that no more decoding is possible. The
resulting output is identical to the original data.

C. HDTN INTEGRATION
In the current HDTN framework, there are two methods by
which data can be acquired to pass through the network
protocol. By default, HDTN creates its own data with the
BPGen module, generating bundles to be passed through the
HDTN protocol. HDTN also contains the functionality to
pass an input file through the protocol.

If using the input file functionality in HDTN, the
integration of fountain code with HDTN is rather simple.
An input file can be passed to the encoder, which outputs the
encoded data file. The encoded data can then be transmitted
through HDTN. Once it is received, it can be passed to the
decoder, which outputs the original data. In essence, the
functionality of HDTN is completely contained between
the encoder and decoder scripts.

If utilizing the BPGen module within HDTN to create
bundles, the optimal solution is to use the encoder and
decoder as modules within the existing HDTN framework.
For the encoder, bundles would be redirected from the current
BPGen encoding process to a buffer. This buffer would then
be passed to the proposed encoder script to be processed.

FIGURE 4. Encoding and decoding runtime.

Once all of the bundles are processed, they would be placed
back into the buffer and returned to the Ingress module to be
used within the rest of the HDTN software. A similar process
would be used to integrate the proposed decoder script with
the pre-existing BPSink and Egress modules. Due to time
constraints, this integration of the encoder and decoder scripts
with the HDTN framework has been left as future work.

V. SIMULATION AND RESULTS
Verification of the fountain code software was conducted by
examining the time elapsed in encoding and decoding data,
as well as the impacts of the bytes and redundancy parameters
on file sizes and loss tolerance.

A. ENCODED DATA SIZE AND RUNTIME
The encoder and decodermodules calculate the runtime of the
encoding and decoding processes on every execution. A study
of this property can be completed by testing the encoder and
decoder scripts with input files of various sizes. On Ubuntu
20.04.4 LTS, the ‘‘yes’’ command was used to create various
dummy files for testing purposes. For example, a 15 MB
dummy file was created using the command ‘‘yes this is a
15mb file | head -c 15000000 > 15mb’’. The result is a file
called ‘‘15mb’’ consisting of the repeated phrase ‘‘this is a
15mb file’’ that is 15 MB in size. Twenty-six such files were
created, with sizes ranging from 1 MB to 1100 MB. Each file
was put through the encoder and decoder ten times, with both
modules set to the settings of 64-bit data type, no transmission
loss, 65536-byte bundle size, and a redundancy coefficient of
2.0. The results are visualized in Figure 4, comparing input
file size with encoding and decoding runtimes.

The nature of the relationship between runtime and file
size appears to be linear in nature, with the decoder runtime
increasing much more rapidly than the encoder runtime.
Decoding takes significantly longer than encoding across
all tested file sizes, which is the expected behavior. Future
work relating to runtime will focus on improving the
efficiency of the encoder and decoder modules. In addition,
runtime of each module increases as bundle size decreases,
so future work may also include finding intelligent methods
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TABLE 2. Reliability approach and results comparison.

FIGURE 5. Redundancy versus loss tolerance.

FIGURE 6. Input filesize versus encoded filesize.

of determining appropriate bundle sizes based on input file
size.

B. REDUNDANCY AND LOSS TOLERANCE
The redundancy parameter for the encoder module allows the
user to control the size of the encoded data file. When the
encoded data is created, its size is determined by the size of
the original data multiplied by the redundancy scalar. Ideally,
increased redundancy should result in higher loss tolerance
for the encoded data. The loss tolerance of the encoded
data can be tested using the transmission loss percentage
parameter, which simulates data loss after creating the data.
This property was examined by passing a 10 MB dummy file

FIGURE 7. Bundle size versus encoded filesize.

through the encoder and decoder modules with redundancy
scalars ranging from 1.3 to 3.0 and examining how much
of the resulting encoded data could be lost before it was
rendered unsalvageable. Figure 5 shows the relationship
between redundancy and loss tolerance.

As expected, the loss tolerance of the encoded data
increases as the redundancy increases. Though the general
positive correlation is clear, the data shows that certain
redundancy values result in lower loss tolerance. Future work
in this area would include intelligent determination of where
these ‘‘pitfalls’’ would exist and, thus, how to avoid them.

C. INPUT DATA SIZE AND ENCODED DATA SIZE
An important consideration when performing any type of
data encoding is the size of the encoded version of the data.
This is especially important in the case of a network protocol
such as HDTN, where transmission of as small a file as
possible would be preferable. To examine the relationship
between input and encoded data sizes in this fountain code
implementation, a set of dummyfiles was created. OnUbuntu
20.04.4 LTS, the ‘‘yes’’ command was used to create various
dummy files for testing purposes. For example, a 1 MB
dummy file was created using the command ‘‘yes this is a
1mb file | head -c 1000000 > 1mb’’. The result is a file called
‘‘1mb’’ consisting of the repeated phrase ‘‘this is a 1mb file’’
that is 1 MB in size. Twenty-six such files were created, with
sizes ranging from 1 MB to 1100 MB. Each file was put
through the encoder, and the size of the resulting encoded data
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TABLE 3. Testing data for encoding runtime, decoding runtime, and
encoded filesize based on input filesize.

TABLE 4. Testing data for comparing bundle size and output filesize.

was recorded. The relationship between input and encoded
file sizes is shown in Figure 6.
The relationship between these factors appears to be linear.

The steep declines in encoded file size at each power of
ten (10 MB, 100 MB, and 1000 MB) is of note, and is
likely attributed to the way in which GZIP file compression
is achieved. More importantly, however, is the comparison
between input and encoded file sizes. The encoded file size
is always less than half of the input file size, showing the
efficiency of this encoding method.

D. BUNDLE SIZE AND ENCODED DATA SIZE
As discussed earlier, given a constant input file, the runtime of
the fountain code software decreases as bundle size increases.
Thus, it was hypothesized that this was due to larger bundle

TABLE 5. Testing data for comparing redundancy scalar and resulting loss
tolerance.

sizes resulting in smaller encoded data file sizes. To test this
hypothesis, a 5 MB file was passed through the encoder with
various bundle sizes, ranging from 256B to 65536B. Figure 7
shows the relationship between bundle size and encoded data
file size.

The encoded data file size decreases as the bundle size
increases. The graph of this relationship resembles that
of the familiar function y = 1/x, showing that extremely
small bundle sizes will result in inefficient encoded file
sizes. However, since increasing the bundle size has rapidly
diminishing returns, it would be best to locate an optimal
bundle size for a given input file size. This concern is reserved
for future developments of this software module.

E. RESULTS COMPARISON
We compared our novel fountain code approach to several
related works studying reliable transport for unicast and
multicast in delay tolerant networks. LTP is frequently
recommended for use in long delay, error prone links. The
approach described in [25] compared TCP, LTP, and UDP
convergence layers for scenarios with delays ranging from
1000 ms- 5500 ms with bit error rates (BER) up to 10−5.
LTP was further optimized in [23] by aggregating multiple
bundles in a single LTP block to reduce the number of
required acknowledgements. The metric used in [23] is
Goodput (Bytes/sec), which is a measurement of error-free,
completed data received, as opposed to throughput, which
does not consider lost or corrupted data. The results show that
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aggregating multiple bundles per block provides a significant
advantage. Global Selective Acknowledgements are used
in [24] to provide global information about the receipt of
packets throughout the network and is suitable for both
unicast and multicast. The metrics used for evaluation are
round trip delay and success probability. The system was
tested in several multi-hop scenarios and shows the ability
to reach up to 0.75 success probability.

Our method is evaluated based on compressed file
size, encoding/decoding run-time, and loss tolerance. The
fountain code method is able to reduce file size, while also
providing redundancy and loss tolerance as described in the
sections above. Future tests will focus on assessing delivery
probability and Goodput as relevant metrics. Table 2 shows a
summary of the evaluation comparisons.

VI. CONCLUSION
Fountain code is suggested as a promising encoding method
for HDTN, as it can fragment, distribute, and reassemble
bundles across multiple nodes and receivers, while also
providing loss tolerance. This makes it well-suited for use in
space networking environments, where communication paths
are often disrupted and data transmission can be delayed or
lost. The application of fountain code is expected to improve
the scalability and efficiency of HDTN in space networking
environments, where delays and disruptions can occur at
magnitudes not present in typical communications on the
ground, thus making it possible to transmit large amounts
of data over long distances and under hostile conditions.
This is an important development for space exploration and
satellite communication, as it will allow NASA scientists
and engineers to confidently gather and transmit more
data, enabling the engagement of more advanced scientific
research and space networking endeavors in the future.

Future work will focus on testing the fountain code
application with two HDTN nodes over an emulated link.
The HDTN laboratory at GRC has acquired a Netropy 10 G4
network emulator, which will be used for simulating long
delays (up to 10 seconds), packet loss, and reordering. The
HDTN LTP implementation will be tested alone and then
enhanced with the fountain code application. In addition to
this testing, the fountain code prototype will be integrated and
tested with HDTN multicast capabilities.

APPENDIX
A. FOUNTAIN CODE PROTOTYPE
The fountain code prototype described in this article is in the
process of release to the public via the NASA Open Source
Agreement. Once released, the software repository will be
linked to themainHDTN repository information page located
at https://github.com/nasa/HDTN/wiki.

B. ENCODER PROTOTYPE USAGE
The encoder module takes several command line arguments.
The ‘‘-b’’ or ‘‘–bytes’’ flag sets the size of each encoded
bundle in bytes, with a default value of 65536. The ‘‘-r’’ or

TABLE 6. Encoder usage information.

TABLE 7. Encoder usage information (Optional arguments).

TABLE 8. Decoder usage information.

TABLE 9. Decoder usage information (Optional arguments).

‘‘–redundancy’’ flag sets a redundancy scalar that correlates
with error tolerance and encoded file size and has a default
value of 2.0. The ‘‘-tlp’’ or ‘‘–transmission-loss-percentage’’
flag allows for simulation of data loss during encoding to
test the error tolerance of the encoded data. Since it is
intended for testing purposes only, its default value is 0.0. For
32-bit systems, the ‘‘–x86’’ flag can be used to make sure
that the encoded data is created using a 32-bit datatype. The
usage information is detailed in the figure below, and can be
accessed by running the program with the ‘‘-h’’ or ‘‘–help’’
flag. Table 6 shows basic usage of the encoder prototype and
Table 7 shows optional arguments to use with said prototype.

C. DECODER PROTOTYPE USAGE
Like the encoder, the decoder module takes command line
arguments. The ‘‘–x86’’ flag can be used to make sure that
the encoded data is created using a 32-bit datatype, which is
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necessary when using systems running on 32-bit operating
systems. The usage information is detailed in Table 8 below,
and can be accessed by running the program with the ‘‘-h’’ or
‘‘–help’’ flag. Table 9 shows the optional arguments that can
be used with the decoder prototype.
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