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ABSTRACT Traditional wheeled robot vision algorithms suffer from low texture tracking failures.
Therefore, this study proposes a vision improvement algorithm for mobile robots in view of multi feature
fusion; This algorithm introduces line surface features and Manhattan Frame on the basis of traditional
algorithms, and proposes an improved algorithm in view ofmulti-sensor fusion to improve tracking accuracy.
The experiment shows that the average Root-mean-square deviation of the position of the improved mobile
robot vision algorithm in view of multi feature fusion is 0.02 in nine data packets of the Tum dataset;
The average Root-mean-square deviation of the position of the data packet successfully tracked by the
traditional wheeled robot vision algorithm is 0.016; It improved the average accuracy by 11.11%, which is
31.03% higher than the average accuracy of the Manhattan wheeled robot vision algorithm. Compared to the
multi feature fusion based vision improvement algorithm for mobile robots and the closed-loop detection
based multi-sensor improvement algorithm, the accuracy of the closed-loop detection based multi-sensor
improvement algorithm has increased by 0.655% and 10.47%, respectively. The outcomes indicate that the
improved algorithm can improve the accuracy of mobile robot tracking, thereby expanding its application
range.

INDEX TERMS Multi feature fusion, mobile robots, visual algorithms, multi sensor fusion, encoder.

I. INTRODUCTION
With the development of intelligent robot technology,
wheeled robots have gradually entered the public’s field of
vision [1]. Compared to other types of robots, wheeled robots
have advantages such as strong flexibility, fast movement
speed, and low maintenance costs, and are widely used in
fields such as logistics, surveying, education, and health-
care [2]. In the autonomous movement of wheeled robots, the
Simultaneous Location andMap Creation (SLAM) algorithm
was first used for localization. Through SLAM technology,
robots can explore and navigate independently in unknown
environments [3]. Later, the camera based robot vision SLAM
algorithm was gradually applied to wheeled robots. With the
development of deep learning technology, visual SLAMalgo-
rithms can be combined with deep learning, but deep learning
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requires a large amount of data, which limits its application
scenarios [4]. Traditional robot visual tracking algorithms
may experience significant tracking errors and tracking fail-
ures, mainly due to hardware, environment, and control
algorithms [5]. Among them, robot vision algorithms may
experience saturation during the error integration process,
resulting in inaccurate path tracking and planning. There-
fore, the study proposes a vision improvement algorithm for
mobile robots based on multi feature fusion, with the aim
of improving the tracking performance of robots. The main
content and innovation of the research are mainly divided
into two aspects. The first aspect is to improve the ORB-
SLAM2 algorithm by using point, surface, and surface feature
fusion to minimize the objective function to estimate the
current pose, thereby improving tracking performance. The
second aspect is to improve the multi feature fusion algorithm
by integrating monocular cameras, encoders, and inertial
measurement units, utilizing back-end optimized objective
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functions, etc., to improve positioning accuracy. The research
is divided into four parts. The first part is a summary of
existing robot vision algorithms, the second part is the design
of improved algorithms for mobile robot vision, the third
part is the verification of the effectiveness of the improved
algorithms, and the fourth part is a summary of the research.

II. RELATED WORKS
In an unknown environment, the SLAMalgorithm enables the
robot’s own sensors to simultaneously locate and establish an
environmental map, which is used for positioning, planning,
and control. According to the main sensor types, SLAM
algorithms are divided into laser SLAM and visual SLAM.
With the improvement of processor computing speed, the
advantages of cameras such as low cost, rich information, and
easy installation have gradually become prominent. Visual
SLAM has gradually become one of the research hotspots
and has broad application prospects in the field of robotics.
Researchers have conductedmany studies on the SLAMalgo-
rithm for robots, such as W. Zhang’s scientific research team
proposed a SLAM optimization algorithm for node coverage
robot in view of improved Particle filter; This algorithm
utilizes sensor node construction to improve the coverage of
location information nodes and optimizes them in local states;
The relevant outcomes illustrate that the positioning stability
of this method is superior to traditional SLAM algorithm [6].
B. Fang’s research group proposes a dynamic scene SLAM
algorithm in view of boundary box and depth continuity; This
algorithm uses a deep bounding box to fill in pixels for ran-
dom search, and eliminates the influence of the target through
dynamic feature filtering; The experimental results show that
the positioning accuracy and real-time performance of this
method in complex dynamic scenes meet the design expec-
tations [7]. Hu et al. proposed an improved ORB-SLAM
front-end tracking algorithm that utilizes a uniform velocity
model to track effective frames and adjacent frames, and
matches similar frames; Experimental data shows that this
method can increase the number of effective tracking frames
and reduce the computational complexity by two times [8].
Dong et al. proposed an improved RGB-D SLAM scheme
that utilizes ORB for feature point extraction and descriptor
calculation, and matches the current frame (CF) with the
map; The research results show that this method reduces the
Root-mean-square (RMS) deviation by 9% on average, and
improves the indexing effect of point cloud images [9]. Su and
Yu proposed a deep image SLAM reconstruction algorithm in
view of multi-layer image invariant feature transformation;
This algorithm utilizes the Convolutional neural network of
multi-layer image invariant features to optimize the point fea-
ture extraction and reconstruction, and constructs a smooth
and complete spatial model through 3D point cloud stitching;
Comparative experiments have shown that this algorithm
saves 0.093 seconds of time compared to ordinary extraction
algorithms, and the reconstruction results are superior to
algorithms such as Kintinous [10].

Robot vision algorithms refer to the visual technologies
and algorithms applied in the process of robot perception,
recognition, understanding, and operation. With the devel-
opment of computer technology, the application range of
machine vision detection technology is becoming increas-
ingly widespread, which can be applied in fields such as
agriculture and industry. Many researchers apply machine
vision to specific scenarios and make improvements based
on actual situations, such as B. Li’s research group proposes
a navigation path detection algorithm in view of improved
random sampling consistency; This algorithm uses inverse
perspective mapping to construct the original wheat image,
and combines the acquisition boundary Corner detection to
improve the recognition performance; This study indicates
that robot visual navigation can help improve the effective-
ness of crop processing [11]. S. Liang’s scientific research
team uses support vector machine to optimize the auto drive
system of the vehicle, extracts and trains the features of the
input image to get the classifier model, and then realizes
the target detection and recognition of the robot; This study
indicates that robot vision and cruising can improve the safety
of vehicle autonomous driving [12]. Cui et al. utilized the
edge detection principle of machine vision for trajectory
planning, and combined it with the toilet seat trimming pro-
cess to construct a new edge detection method that utilizes
reflection areas to eliminate false edges in the image; This
study indicates that this method can improve the accuracy of
edge detection [13]. T. Liu’s research group proposes a reso-
lution enhancement algorithmwith total change constraint for
visual recognition of industrial materials; This algorithm uti-
lizes spectral imaging systems and Fourier theory to calculate
kernel functions; The experiment showcases that this method
can markedly segment overlapping bands and improve the
visual sensing accuracy of industrial robots [14]. E. The
Cristofalo research group proposes an active perception con-
troller; In this controller, the extendedKalman filter is utilized
for estimating the position of the robot, and the derived
controller is utilized for estimating the 3D position of the
feature; The results indicate that this method is superior to
traditional active sensing methods and helps to improve the
estimation accuracy of aviation robots [15].

In summary, the relevant robot vision algorithms assume
that wheeled robots perform planar motion and use encoder
pre integration to calculate the encoder observation values
between two or more frames of images, increasing encoder
constraints and improving positioning accuracy. Due to the
encoder’s pre integration time reaching tens or even hundreds
of milliseconds, when the ground is rough or there are small
objects, the robot does not move in the plane, which can
lead to significant observation errors, leading to a decrease
in positioning accuracy and even tracking failure. There-
fore, in response to the problems of accuracy degradation
and tracking loss in low texture and robot turning scenarios
caused by visual SLAM, a mobile robot vision improve-
ment algorithm based on multi feature fusion is proposed to
improve the tracking performance of visual robots.
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FIGURE 1. An improved ORB-SLAM2 algorithm framework in view ofMFF.

III. DESIGN OF IMPROVED ALGORITHM FOR MR VISION
This chapter is about the design of vision improvement algo-
rithms forMR; The first section of this chapter introduces line
and surface features into the depth camera version and pro-
poses an improved MR vision algorithm in view of MFF. The
tracking and local map threads of the algorithm correspond
to visual odometry and backend optimization, respectively;
The second section of this chapter is an improved algorithm
in view of multi-sensor fusion; The algorithm includes sensor
pre-processing, joint initialization of vision Inertial measure-
ment unit encoder, sliding window optimization and closed-
loop (CL) optimization. Encoder pre-processing and related
constraints are introduced in combination with nonlinear
optimization methods to improve the positioning accuracy.

A. IMPROVED ORB-SLAM2 ALGORITHM IN VIEW OF
MULTIPLE FEATURE FUSION
At present, wheeled robots are widely used, with two and
three wheeled MR being common [16]. This study is in
view of the background of a two wheel differential MR and
improves the visual algorithm (VA) of the MR. This study
introduces line and surface features into the depth camera
version and proposes an improved feature point detection
and extraction - simultaneous localization and mapping 2
(Oriented FAST andRotated BRIEF Simultaneous Looseness
andMapping 2)ORB-SLAM2 algorithm in view ofMFF. The
framework of the improved ORB-SLAM2 algorithm in view
of MFF is shown in Figure 1.
The improved algorithm consists of two parts: visual

odometer and backend optimization, corresponding to the
tracking thread and local map thread of ORB-SLAM2,
respectively. The visual odometer is responsible for real-time
processing of color and depth maps, completing initial-
ization and estimating the current frame pose, and deter-
mining whether to insert the current frame as a keyframe
into the backend. Backend optimization is responsible for
processing keyframes, reconstructing new map points and
lines through triangulation, and estimating state variables

such as keyframe pose, point, line, and surface positions
in local maps using nonlinear optimization methods.The
ORB-SLAM2 algorithm’s tracking and local map threads
correspond to visual odometry and backend optimization,
respectively. The improvement lies in the introduction of line
surface features and Manhattan Frame (FM). The real-time
processing of color and depth maps is completed through a
visual odometer to initialize and estimate the CF pose, and
determine the insertion status of key frames. The specific
processing process cannot be separated from the extraction
and processing of point, line, and surface features. Key frames
are processed through backend optimization, triangulation
reconstruction of map points and lines, and estimation of key
frame pose and position of points, lines, and surfaces using
nonlinear optimization methods.

The representative regions in the image are the features of
the image, which are divided into key regions and descrip-
tors to establish image association relationships. The area
where the features are located in the image is called the
key area, which is divided into key points, lines, and sur-
faces. The description information of the features is called
a descriptor to calculate the similarity and differentiation
of the features. Point features are widely used in SLAM,
and the improved algorithm selects ORB point features for
analysis. The centroid calculation of image blocks is shown in
equation (1). 

c = (
m10

m00
,
m01

m00
)

mbd =

∑
x,y∈B

xbyd I (x, y)
(1)

In equation (1), the center of mass is represented by c;
The pixel value of the pixel coordinate (x, y) in the image
is represented by I (x, y); The image area is represented by B;
b and d represent different positions of 0 and 1, and the corre-
sponding pixel values under different values are represented
by mbd . The key point direction is the reference direction
of descriptor extraction. The feature similarity during point
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feature matching is inversely proportional to Hamming dis-
tance. In a certain threshold range, two point features are
considered to match. The threshold range in the improved
algorithm is [50,100]. The next level feature of point features
is line features, which describe the contour of the object. This
study uses Fast Line Detector (FLD) to describe key lines
and extracts binary Line Band Descriptor (LBD) descriptors.
In the process of line feature matching, judge in view of
Hamming distance. A higher level than points and lines is
the surface feature, which describes the object surface. The
research optimizes the Hierarchical clustering (AHC) algo-
rithm to achieve the extraction of surface features from the
depth map. The observed values of line features are shown in
equation (2).

l̃ = 0(p̃s) × 0(p̃e)/(∥0(p̃s)∥ · ∥0(p̃e)∥) (2)

In equation (2), the observed values of line features are
represented by l̃; The coordinates of the starting pixel and
the ending pixel are represented by p̃s and p̃e, respec-
tively; Homogeneous coordinate operation is represented by
0(·); The vector modulus operation is represented by ∥·∥.
The optimized surface feature representation is shown in
equation (3).

ϒ(π̃ ) = [arctan(ñy/ñx), arctan(ñz), dπ ]T (3)

In equation (3), the surface without redundancy is repre-
sented by ϒ(π̃ ); Improve the representation of AHC surface
features with π̃ ; The normal vector of the camera coordinate
system (CS) for the CF is represented by ñ = [ñx , ñy, ñz];
The distance between the origin of the camera CS and the
face in the CF is represented by dπ . Before the algorithm
starts, an initial 3D map needs to be constructed, and the
position calculation of the world CS is demonstrated in
equation (4).

Pwh = d̃h5−1(P̃h) (4)

In equation (4), the pixel coordinates and depth of the
h-th feature point are represented by P̃h and d̃h, respectively;
The world CS position of the h-th map point is represented
by Pwh ; The backprojection function is represented by 5−1.
This study used the Levenberg Marquardt (LM) method for
solving the least squares problem in VA. The process of
solving the least squares problem under the LM method is
shown in Figure 2.

When solving the least squares problem using the LM
method, the increment is constantly searched for and updated
based on the given initial value, causing the objective func-
tion to decrease. When the increment is small enough or
reaches the iteration number, it ends and outputs the optimal
solution.The key for solving the least squares issue is the
calculation of the objective function and Jacobian matrix and
determinant. The algorithm estimates the CF position through
the optimal positioning under the LM method. The objective

FIGURE 2. The least squares problem solving process under LM method.

function under the LM method is shown in equation (5).

F(Rckw , pckw ) =

H1∑
h=0

∥∥ep,k−h∥∥26p,k−h
+

I1∑
i=0

∥∥el,k−i∥∥26l,k−i

+

J1∑
j=0

∥∥eπ,k−j
∥∥2

6π,k−j
(5)

In equation (5), the inverse of the world CS pose of
the camera CS ck is represented by (Rckw , pckw ); The Covari-
ance matrix of point, line and plane measurement noise is
expressed as 6p,k−h, 6l,k−i and 6π,k−j respectively; The
total number of matching point sets is represented by H1,
and the number of matching line set buses is represented
by I1; The total number of matching faces in the set is
represented by J1; Themeasurement error terms of point, line,
and surface are represented by ep,k−h, el,k−i, and eπ,k−j. The
relevant expression for point measurement error is shown in
equation (6).

ep,k−h = p̃ckh − 5(Rckw P
w
h + pckw ) (6)

In equation (6), the position of the h-th map point and
its CF observation values are represented by Pwh and p̃ckh ,
respectively; The forward projection function is represented
by 5. The relevant expression for line measurement error is
shown in equation (7).

el,k−i
= (l̃cki )T0(5(Rckw P

w
si + pckw )) + (l̃cki )T0(5(Rckw P

w
ei + pckw ))

(7)

In equation (7), the starting and ending points of the i-th
line in the world CS are represented by Pwsi and P

w
ei , respec-

tively; Its CF observation is represented by l̃cki . The formula
for calculating the surface measurement error term is shown
in equation (8).

eπ,k−j = ϒ(π̃ck
j ) − ϒ([(Rckw n

w
j )
T , dwj − (nwj )(R

ck
w )T pckw ]T )

(8)

In equation (8), the world CS surface of the j-th face is
represented by πw

j = [(nwj )
T , (dwj )]

T ; The CF observation
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value is represented by π̃
ck
j . Under the call of g2o library,

combined with the Jacobian matrix and determinant of point,
line and plane error terms, the automatic calculation of all
error terms Jacobian matrix and determinant can be realized.
Combined with the objective function under LM method,
the CF pose can be solved. If the new frame tracking fails,
it needs to be repositioned and the CF pose estimated. When
calculating the pose of the CF, it is affected by the incomplete
perpendicularity of the line and surface direction vectors. The
coordinate axis vector needs to be corrected by combining
singular decomposition method. After singular decomposi-
tion, the pose of the CF is shown in equation (9).

R̃wck = RwcrR
cr
MF (R

ck
MF )

−1 (9)

In equation (9), the CF pose is represented by R̃wck ; The
reference frame posture is represented by Rwcr ; The coordinate
axis matrix is represented by RcrMF ; The reverse vector of the
coordinate axis is represented by RckMF . In the improved algo-
rithm, the calculation of themap position of the CF’s 2D point
line includes point line matching in the visual odometer. After
successful matching, the 2D point of the CF is obtained, and
its depth value andmap point line position are calculated. The
remaining point lines need to be matched with triangulation,
as shown in Figure 3.

FIGURE 3. Triangulation of points and lines.

In point and line triangulation, the optical centers of frames
n and k are represented by On and Ok , respectively; Map
points are represented by P; The starting and ending points
of map lines are represented by Ps and Pe, respectively. Local
map optimization involves solving the pose of key frames and
the position of points, lines, and planes, with the definition of
state variables as shown in equation (10).

χ = [Rwc0 ,R
w
c1 · · · ,Rwck′ , p

w
c0 , p

w
c1 , · · · , pwck′ ,P

w
0 ,Pw1 , · · · ,PwH ,

Pws0 ,P
w
s1 , · · · ,PwsI ,P

w
e0 ,P

w
e1 , · · · ,PweI , π

w
0 , πw

1 , · · · , πw
J ]

(10)

In equation (10), the local map keyframes and the total
number of points, lines, and surfaces are represented by K ′,
H , I , and J , respectively. The objective function is shown in

equation (11).

F(χ ) =

K ′∑
k=0

(
Hk∑
h=0

∥∥ep,k−h∥∥26p,k−h
+

Ik∑
i=0

∥∥el,k−i∥∥26l,k−i

+

Jk∑
j=0

∥∥eπ,k−j
∥∥2

6π,k−j
+

∥∥eMF,k
∥∥2

6MF,k
) (11)

In equation (11), the number of point, line, and surface set
elements matched in the k-th keyframe is represented by Hk ,
Ik , and Jk , respectively; The error term of MF measurement
and the noise Covariance matrix are represented by eMF,k and
6MF,k respectively; Combining the construction of Jacobian
matrix and determinant and the call of g2o library, the key
frame pose and point line plane position in the local map can
be solved. In local maps, keyframesmay increase rapidly over
time, and excess keyframes need to be eliminated.

B. IMPROVED ALGORITHM IN VIEW OF
MULTI-SENSOR FUSION
The improved algorithm for MFF may encounter issues
of reduced accuracy and tracking loss when features are
sparse [17]. Therefore, this study proposes an improved algo-
rithm in view of MFF, which introduces the encoder error
term into the objective function to improve scale observability
and reduce cumulative positioning error. The framework of
the improved algorithm in view of MFF is shown in Figure 4.

The improved algorithm includes sensor pre-processing,
joint initialization of vision Inertial measurement unit
encoder, sliding window optimization and CL optimiza-
tion. Encoder pre-processing and related constraints are
introduced, combined with nonlinear optimization methods,
to improve the positioning accuracy. In CL testing, adaptive
adjustment of the quantity of point features is used to improve
the success rate of the CL. In Inertial measurement unit
preprocessing, the measurement model in discrete time is
shown in Formula (12).

{
ãk+l/n = ak+l/n + R

bk+l/n
w gw + bak + na

ω̃k+l/n = ωk+l/n + bωk + nω

(12)

In equation (12), the body acceleration and angular veloc-
ity are represented by ãk+l/n and ω̃k+l/n, respectively; The
true values of acceleration and angular velocity are repre-
sented by ak+l/n and ωk+l/n; The vector of gravity in the
world coordinate is represented by gw, and the Rotation
matrix of the airframe CS at the time of Inertial measurement
unit data in frame l of the world coordinate is represented by
R
bk+l/n
w ; The Gaussian measurement noise of acceleration and

angular velocity is represented by na and nω, respectively;
The acceleration and angular velocity offsets between two
frames are represented by bak and bωk , respectively. The
average acceleration and average angular velocity of the body
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FIGURE 4. An improved algorithm framework in view of MFF.

of the gravity vector are calculated as shown in equation (13).

abkk+l/n,k+(l+1)/n

= 0.5[Rbkbk+l/n (ãk+l/n − bak )

+Rbkbk+(l+1)/n
(ãk+(l+1)/n − bak )]

ωbk+l/n,k+(l+1)/n = 0.5[ω̃k+l/n + ω̃k+(l+1)/n] − bωk

(13)

In equation (13), the average acceleration and average
angular velocity are represented by abkk+l/n,k+(l+1)/n and
ωbk+l/n,k+(l+1)/n ; The rotation of the body CS at frame l relative
to frame 0 is represented by Rbkbk+l/n . The settlement of Inertial
measurement unit observation value between two images is
shown in Formula (14).

ãbkbk+1
= 0.5abkk,k+1/nT

2
I +

n−1∑
l=1

l−1∑
i=0

abkk+i/n,k+(i+1)/nT
2
I

+

n−1∑
l=1

l−1∑
i=0

abkk+l/n,k+(l+1)/nT
2
I

β
bk
bk+1

=

n−1∑
l=0

abkk+l/n,k+(l+1)/nTI

γ
bk
bk+1

= qbkbk+1

(14)

In equation (14), the velocity increment, relative
displacement, and relative rotation between two frames are
represented by ãbkbk+1

, β
bk
bk+1

, and γ
bk
bk+1

, respectively. The
acceleration measurement value of Inertial measurement unit
needs to remove the gravity vector to realize its transfor-
mation to the world CS. The first step of encoder pre-
processing is to calculate the body speed observation value to
determine the encoder error term in the joint initialization and
optimization of vision Inertial measurement unit encoder, and

determine the degree of wheel slip through the calculation of
robot slip factor. The linear and angular velocities of the robot
body in the encoder coordinates are calculated as shown in
equation (15) [18].  vek =

vr + vl
2

ωek =
vr − vl
D

(15)

In equation (15), the left and right wheel speeds at frame k
are represented by vl and vr respectively; The linear velocity
and angular velocity in the encoder coordinates are repre-
sented by vek andωek , respectively; The distance between two
wheels is represented byD. At this point, the encoder speed at
this moment can be represented by the matrix of linear speed
and converted into the speed observation value of Inertial
measurement unit. The speed measurement accuracy of the
encoder’s two wheels will be affected by wheel slip, thereby
affecting the accuracy of linear and angular velocities; The
angular velocity measurement of the Inertial measurement
unit is accurate. The measured values of the three angular
velocity meters can be used as a reference, and the slip
factor can be solved by using the angular velocity difference
between the two units. The value range of the slip factor
is 0 to 1, and a smaller value indicates a more pronounced
slip phenomenon [19]. When the algorithm starts, the initial
value of the state variable required for the sliding window
optimization is obtained through initialization calculation,
which specifically includes the position, attitude and speed of
the airframe, the location of the location map, and the angular
velocity offset of the Inertial measurement unit. Compared
to traditional multi-sensor fusion algorithms, the improved
algorithm introduces the encoder error term into the objective
function to achieve accuracy and improvement in the calcula-
tion of body speed, gravity vector, and scale factor, ensuring
that initialization can proceed normally when the signal-to-
noise ratio of the accelerometer is small. Early judgment

100664 VOLUME 11, 2023



X. Hu et al.: Improved ORB-SLAM2 Mobile Robot Vision Algorithm Based on Multiple Feature Fusion

of slip factors helps to stabilize the initialization results;
If the slip factor is too small, initialization needs to be exited;
When the slip factor is appropriate, the fixed frame data pre-
processes the image before initialization. The initialization
process is shown in Figure 5.

FIGURE 5. Initialization process.

The first step in the initialization step is to determine the
reference CS. The first frame image CS can be utilized as
a reference, and combined with the five point method, the
camera pose of the frame image with the largest relative
parallax in the first frame is calculated. Through triangle
matching, two-dimensional point features are obtained, and
the three-dimensional pose of the point in the reference coor-
dinate is calculated [20]. Subsequently, the PnP method is
utilized for tracking the 3D location map and calculate the
pose of the remaining frames. After matching the features of
the remaining 2D points, the reconstruction of the location
map can be achieved. Finally, the camera pose and location
of the location map in the sliding window without scale
are optimized. The second step is to calculate the attitude
at different image times and the external parameters of the
Inertial measurement unit, and take the position and attitude
of the reference CS at zero time of the airframe as the obser-
vation value. The optimal solution of the angular velocity
offset of the Inertial measurement unit of all image frames
is calculated by minimizing the objective function. The third
step is to calculate the body velocity, gravity vector, and scale
factor; The fourth step is to compare the gravity vector to
obtain a more accurate gravity vector; The fifth step is to
rotate the reference CS to the world CS, and obtain the pose,
velocity, and position of the frame image in the world CS in
view of variables such as camera pose. After initialization is
completed, sliding window optimization processing is carried
out before the data preprocessing results of the next frame are
conveyed. The optimization of vision Inertial measurement
unit encoder sliding window is shown in Figure 6.
Sliding window optimization includes the objective func-

tion solution of vision, Inertial measurement unit and encoder
data to obtain the positioning results. This study intro-
duces the encoder error term into the objective function for

FIGURE 6. Vision inertial measurement unit encoder sliding window
optimization.

improving the accuracy of robot positioning. The CL detec-
tion and optimizationmethod of the improved algorithm is the
same as the original algorithm to eliminate cumulative errors.
Firstly, key frame features are extracted for CL detection and
optimization [21]. This study adaptively adjusts the bright-
ness difference threshold in view of the extraction of the num-
ber of ORB point features. The threshold needs to be lowered
when there are fewer point features to improve the success
rate of the CL. The foundation of CL detection is the word
bag constructed by ORB point feature descriptors. The first
step is the extraction of ORB features. By adjusting the
brightness difference threshold, key points are extracted and
their descriptors are obtained; The second step is to search for
similar CL frames in view of descriptors and word bags; The
third step is to combine the CF and descriptor for feature point
matching, to obtain matching point pairs, and use Ransac
algorithm to remove mismatched point pairs; The fourth step
is to use the 3D coordinates of the matching points and the 2D
pixel coordinates of the CL frame to calculate the machine
posture in the world CS of the CL frame [22]. The CL error
term and sequence error term form the objective function of
CL optimization, which optimizes the position and heading
angle of the 4-degree-of-freedom airframe in the CL. The CL
optimized body position, original roll angle, and pitch angle
form a 6-degree of freedom body posture, thereby forming
the positioning results under the CL.

IV. EXPERIMENTAL ANALYSIS OF MR
VISION ALGORITHM
This chapter conducts experimental verification and analysis
on the algorithm proposed in Chapter 2. The first section
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of this chapter is the experimental analysis of the improved
ORB-SLAM2 algorithm in view of MFF. The Tum dataset is
used to experiment on MR, and the traditional ORB-SLAM2
algorithm and Manhattan SLAM algorithm are compared.
The second section of this chapter is the experimental analysis
of the improved algorithm in view of multi-sensor fusion,
and compares the improved ORB-SLAM2 algorithm in view
of MFF.

A. EXPERIMENTAL ANALYSIS OF IMPROVED ORB-SLAM2
ALGORITHM IN VIEW OF MULTIPLE FEATURE FUSION
This study conducted experiments on MR using the Tum
dataset for verifying the performance of the improved
ORB-SLAM2 algorithm in view of MFF.And compare
the traditional ORB-SLAM2 algorithm with Manhattan
SLAM algorithm, as well as the commonly used point
line feature fusion SLMA algorithm (labeled PL SLAM)
and loop detection SLAM algorithm (labeled LD SLAM)
from 2021 to 2022, and closes the closed loop optimization
thread of the ORB-SLAM2 algorithm and the dense thread
optimization of the Manhattan SLAM algorithm. This is
to ensure the fairness of the comparative experiment and
preserve the sparse mapping thread. The trajectory of the
algorithm on the Tum dataset is illustrated in Figure 7.

Figure 7 shows that on low texture data packets, the tradi-
tional ORB-SLAM2 algorithm has less point feature extrac-
tion and may experience tracking failures. The commonly
used PL-SLAM and PL-SLAM algorithms from 2021 to
2022 have added line features and improved tracking failure,
but the accuracy of trajectory estimation is relatively low.
Improved ORB-SLAM2 algorithm and Manhattan SLAM
algorithm by adding line and surface features, achieving suc-
cessful prediction of motion trajectories and improving the
stability of the algorithm in low texture scenes; The trajectory
of the improved ORB-SLAM2 algorithm is closer to the
real trajectory, improving the authenticity of the algorithm’s
tracking. In the experiment, the location RMS deviation is
used to quantify the error of the algorithm. The comparison
between the location RMS deviation and MF quantity of the
algorithm on the Tum dataset is shown in Table 1.

In Table 1, the location RMS deviation of the failed algo-
rithm packet tracking is null, the average location RMS
deviation of the successful ORB-SLAM2 algorithm packet
tracking is 0.018, and the average location RMS deviation of
the Manhattan SLAM algorithm is 0.029; Among the nine
data packets in the Tum data set, the average value (AEV) of
the RMS deviation of the location of the improved algorithm
is 0.02, and the AEV of the RMS deviation of the location
of the data packets successfully tracked by the ORB-SLAM2
algorithm is 0.016; It improved the average accuracy by
11.11%, which is 31.03% higher than the average accuracy
of theManhattan SLAMalgorithm. Relative to theManhattan
SLAMalgorithm, the improved algorithm has little difference
in the number of MFs in the first four data packets. For
the fifth, eighth, and ninth data packets, the improved algo-
rithm has 273, 1116, and 18 more MFs than the Manhattan

FIGURE 7. The trajectory of the algorithm on the Tum dataset.

SLAM algorithm, respectively; This indicates that the
improved algorithm has more MF for feature extraction and
stronger tracking authenticity. The average time comparison
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TABLE 1. Comparison between the RMS deviation of the algorithm’s position on the Tum dataset and the number of MF.

FIGURE 8. Comparison of average time for processing one frame of
image using algorithms on the Tum dataset.

of algorithms processing one frame of image on the Tum
dataset is shown in Figure 8.
In Figure 8, the average processing time of the ORB-

SLAM2 algorithm for one frame of image is 41.1ms, the
average processing time of the Manhattan SLAM algorithm
for one frame of image is 75.3ms, and the average processing
time of the improved algorithm for one frame of image is
62.1ms. The reason why the ORB-SLAM2 algorithm has
less running time is that it does not extract and process line
and surface features. The improved algorithm’s one frame
image processing time is 13.2ms less than the Manhattan
SLAM algorithm, which improves the real-time performance
of the algorithm by about 17.53%. For further validating the
effectiveness of the algorithm, this study carried comparative
experiments using a conventional indoor dataset. The com-
parison of robot trajectories under different algorithms in the
conventional indoor dataset is shown in Figure 9.

Figure 9 demonstrates that the trajectory estimation of the
improvedORB-SLAM2 algorithm is closer to reality, indicat-
ing that the algorithm has stronger tracking authenticity and
improves the tracking ability of visual robots. The algorithm
accuracy is 9.71% and 15.76% higher than the traditional
ORB-SLAM2 algorithm and Manhattan SLAM algorithm,
respectively.

B. EXPERIMENTAL ANALYSIS OF AN IMPROVED
ALGORITHM IN VIEW OF MULTI-SENSOR FUSION
This study used slip experiments for verifying the slip detec-
tion effect of the improved algorithm in view of multi-sensor

FIGURE 9. Comparison of robot trajectories under different algorithms in
conventional indoor datasets.

fusion (referred to as the multi-sensor improved algorithm).
The trajectory and displacement comparison of the improved
algorithm with and without slip detection are shown
in Figure 10.

Figure 10 (a) shows a comparison of the trajectories of
the improved multi-sensor algorithm with and without slip
detection. It indicates that the trajectories of the improved
multi-sensor algorithm with slip detection have a high degree
of overlap with the real trajectories, while the latter half
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TABLE 2. Comparison of position RMS deviation between two improved algorithms.

FIGURE 10. Comparison of trajectory and displacement of improved
multi-sensor algorithms with and without slip detection.

of the trajectories of the improved multi-sensor algorithm
without slip detection have poor authenticity. Figure 10 (a)
shows the comparison of horizontal displacement between
the improved multi-sensor algorithm with and without slip
detection. It shows that the difference between the horizontal
displacement of the improved multi-sensor algorithm with
slip detection and the actual trajectory displacement is less
than 0.1m, and the maximum difference between the horizon-
tal displacement of the improved multi-sensor algorithm
without slip detection and the actual trajectory is 0.5m.
Figure 10 (a) shows a comparison of the vertical displacement
of the improved multi-sensor algorithm with and without
slip detection. It can be seen that the vertical displacement
of the improved multi-sensor algorithm with slip detection
has a higher overlap with the actual trajectory displacement;
This indicates that improved algorithms with slip detection

FIGURE 11. Comparison of trajectories between two improved algorithms
on conventional indoor datasets.

can improve positioning accuracy by reducing wheel slip.
To further validate the effectiveness of the improved multi-
sensor algorithm, the experiment compared the improved
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TABLE 3. Comparison of runtime between two improved algorithms.

FIGURE 12. Comparison of displacement and heading angle between two
improved algorithms in conventional dataset Quad packets.

ORB-SLAM2 algorithm in view of MFF (referred to as the
multi feature improvement algorithm). The trajectory com-
parison of the two improved algorithms on a conventional
indoor dataset is shown in Figure 11.

As can be seen in Figures 11 (a) and (b), under the Quad
and Splay data packets, the trajectories of the multi feature

improvement algorithm and the rated multi sensor improve-
ment algorithm with CL detection are very close to the real
trajectories; This indicates that the cumulative error of these
two algorithms is small and can improve the accuracy of
tracking. In Figure 11 (c), the multi-sensor improved algo-
rithm did not detect a large CL and could not reduce cumula-
tive errors. The multi feature improved algorithm is similar to
the real trajectory; This indicates that the introduction of MF
can reduce the cumulative error of multi feature improvement
algorithms, thereby improving the accuracy of trajectory esti-
mation. The comparison of displacement and heading angle
between the two improved algorithms in the conventional
dataset Quad data package is shown in Figure 12.
Figures 12 (a) and (b) show the comparison of horizontal

and vertical displacement of the algorithm. It can be seen that
after 40 seconds, the maximum vertical displacement error
of the improved multi-sensor algorithm without CL detec-
tion is 0.05m, and CL optimization can eliminate this error.
Compared to the multi sensor improvement algorithm and
multi feature improvement algorithm without CL detection,
the multi sensor improvement algorithm with CL detection
has more accurate estimation of the heading angle, improving
the accuracy of the robot’s heading. The comparing of the
RMS deviation of the two improved algorithms is shown in
Table 2.
In Table 2, packets 1 to 3 are regular indoor dataset pack-

ets, while packets 4 to 5 are feature sparse indoor dataset
packets. Under the data package of conventional indoor data
set, the minimum AEV of the position RMS deviation of
the improved multi-sensor algorithm with CL detection is
0.154m, and the AEV of the position RMS deviation of the
improved multi-sensor algorithm with multiple features and
without loop detection is 0.155m and 0.172m, respectively.
Compared to the multi feature improvement algorithm and
the multi sensor improvement algorithm for CL detection,
the accuracy of the CL detection multi sensor improvement
algorithm has increased by 0.655% and 10.47%, respectively.
The comparing of the running time of the two improved
algorithms is demonstrated in Table 3.
In Table 3, the average running times of the multi fea-

ture improvement algorithm, the multi sensor improvement
algorithm with CL detection, and the multi sensor improve-
ment algorithm without CL detection under conventional
indoor dataset data packets are 63.5ms, 94.4ms, and 72.5ms,
respectively. The average running time of the multi feature
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improvement algorithm, the multi sensor improvement algo-
rithm with CL detection, and the multi sensor improvement
algorithm without CL detection under coefficient indoor
dataset data packets is 23.8ms, 34.9ms, and 33.8ms, respec-
tively. Compared with experimental data, it demonstrates that
the multi feature improvement algorithm possesses strong
real-time performance, and the multi sensor improvement
algorithm with CL detection has a larger computational load
and relatively longer running time.

V. CONCLUSION
With the development of technology and the popularization
of robotics, people are gradually coming into contact with
wheeled robots. In response to the issue of tracking loss in
traditional algorithms, this study proposes an improved ORB-
SLAM2 MR vision algorithm in view of MFF. It integrates
point, line, and surface features on the basis of traditional
algorithms, and proposes an improved algorithm in view of
multi-sensor fusion to improve the accuracy of robot tracking.
The experimental data shows that the AEV of the position
RMS deviation of the improved ORB-SLAM2 MR vision
algorithm in view of MFF is 0.02 in nine data packets of
the Tum dataset; The AEV of the RMS deviation of the
corresponding ORB-SLAM2 algorithm tracking successful
packets is 0.016, which increases the average accuracy by
11.11% and 31.03% compared with the average accuracy
of the Manhattan SLAM algorithm. The improved ORB-
SLAM2 MR vision algorithm in view of MFF has a running
time of 13.2ms less than the Manhattan SLAM algorithm in
one frame image processing, which enhances the real-time
performance of the algorithm by approximately 17.53%. The
disparity in the horizontal displacement and the actual tra-
jectory displacement of the improved multi-sensor algorithm
with slip detection is less than 0.1m, while the maximum dis-
parity in the horizontal displacement and the actual trajectory
of the improved multi-sensor algorithm without slip detec-
tion is 0.5m; This indicates that improved algorithms with
slip detection can improve positioning accuracy by reduc-
ing wheel slip. Compared to the improved ORB-SLAM2
MR vision algorithm in view of MFF and the improved
multi-sensor algorithm for CL detection, the accuracy of
the improved multi-sensor algorithm for CL detection has
increased by 0.655% and 10.47%, respectively. The improved
ORB-SLAM2 MR vision algorithm in view of MFF has
strong real-time performance, and the improved multi-sensor
algorithm with CL detection has a large computational load
and relatively long running time. The introduction of line
and surface features in this study will increase computational
complexity, and future research can optimize them for further
enhancing the real-time performance of the algorithm.The
improved multi feature fusion algorithm proposed in the
study can accurately estimate trajectories in conventional
indoor scenes, with good reconstruction results. It is suitable
for conventional indoor scenes, such as industrial production
detection, warehousing robots, and other fields. However,
in sparse features and outdoor scenes, there is a decrease

in accuracy and tracking loss. The improved multi-sensor
fusion algorithm has achieved high accuracy and robustness
in both indoor and outdoor scenarios, and is suitable for both
indoor and outdoor scenarios. It has potential and advantages
in industrial automation applications.
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