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ABSTRACT Determining object location information in an image can enable more accurate CNN
classification. Several extended CNN models have been developed to include both object location and
classification into a unified model, at a cost of increasing compute complexity, increasing the number of
parameters, and typically having a lower number of classification categories. We show that key-points within
classifiable objects can be identified in early layer feature maps of a simple CNN without dependence on
deeper layer processing or classification predictions. A statistical analysis of early feature maps is used
to create a method for identifying and locating key-points that, with high probability, correspond to object
locations in the image. This method uses only the forward pass of the simple CNN and requires no additional
training. The method is tested on an image data set with known ground truth object locations as a function
of the number of key points for four related selection methods. Results for object locations derived from
key-points compare favorably to results obtained from R-CNN and are consistent over a range of key point
set sizes.

INDEX TERMS Key-point, CNN feature maps, region proposals, kurtosis.

I. INTRODUCTION
In the past decade CNN models have been developed and
improved from relatively simple architectures which accu-
rately classify a single dominant object from a training set to
more advanced models that include both object identification
and location. Models such as VGG [1], Resnet [2] and
Inception [3] can classify up to 1000 distinct object types,
achieving classification performance of up to 94% for top
five classifications for natural image scenes. Single purpose
models such as VGG are widely recognized as very efficient
and accurate for the simple classification of a single object.

Natural images often contain multiple objects of interest
that may vary widely in size. Recent efforts have focused
on identifying image regions, each of which attempts to
isolate a single object. The use of regions in the form
of bounding boxes can improve the prediction and reduce
or eliminate ambiguity in the case of multiple objects
in the image. Prior to 2012, earlier studies on object
location included Selective Search [4], Histogram of Oriented
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Gradients [5], and Scale Invariant Feature Transforms [6].
These model-based approaches applied filters or kernels
directly to the input images. More recent approaches use
CNN backbones and network extensions to accomplish the
more complex goal of object detection, localization and
classification in a single network. Object detection was added
to the classification process by identifying or estimating the
object size and location in the training process. Combined
with the classification task, this results in a system that
can isolate and identify multiple unique objects within
an image. Approaches such as YOLO [7], SSD [8], and
Fast and Faster R-CNN [9], [10] are examples of models
that combine these two tasks into a single model, at a
cost of increasing the number of parameters, computational
complexity, and training time. More recent advances based
on extensions to R-CNN include [11], [12] which integrates
a coordinate attention block in addition to Sparse R-CNN [13]
to locate region proposals. In addition these complex models
typically have a more limited classification variety than
simple networks and are more computationally expensive to
execute. Table 1 briefly summarizes the comparison between
the simple VGG and R-CNN models. The inference pass for
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TABLE 1. Comparison between VGG and R-CNN models.

VGG produces a confidence for classification identification
for a single object, and the inference pass for R-CNN
produces a confidence classification and location for one or
more objects.

Considerable progress has been made in improving the
detection and localization performance with recent models
and approaches, but the performance of these models
is still significantly lower than that of more simplified
classification task. Liu et al. [14] summarized the current
state-of-the art approaches for object detection. In Faster R-
CNN for example, the region proposal function is a separate
network within the model that evaluates the later convolu-
tion/activation layers to extract region proposals which define
the local regions containing an object. Compared to simple
classification models, a higher resolution input is required
to produce reasonable proposals for multiple objects. Other
models such as YOLO and SSD have different mechanisms
for determining region proposals. They all require substantial
compute complexity in multiple layers to obtain a final set of
regions. A more recent advance in object localization is the
G-CNN [15] in which bounding boxes are formed by starting
with a multi-scale regular grid and iteratively improving
the bounding boxes during training. The number of region
proposals for the models mentioned above ranges from a few
hundred up to 5,000 to 10,000 per image.

Object localization and isolation problems are more
challenging when considering object scale, deformed objects
and occlusions, and a first step to establish region proposals
is to identify key-points of objects in an image. This study
focuses on discovering key-points that can be used to form
local partitions for cropping and subsequent classification
using a simple CNN model. The objective of this study
is to create a robust key-point identification method that
does not require a complex CNN/object detection model or
training. It uses a simpler CNN architecture that has been
trained on ground truth data using network hyper-parameters
appropriate for a specific application. In contrast to the region
proposals described above, this approach leads to partitions
that have a high probability of containing an object without
additional training or the need for a separate region proposal
network. Moreover, if we can select points from early feature
maps, the computing cost is limited to only the first few layers
of the network. These regions can be used to crop the input
image such that each region can be processed individually.
The classification confidence for each cropped image is used
to validate the objects. We target images in which the number
and size of objects match or are compatible with models such
as R-CNN, YOLO or SSD. We use the VOC data set [16]

for evaluating performance because it is often used in testing
for object detection and classification, and it contains ground
truth bounding boxes for multiple objects.

II. BACKGROUND
CNNmodels generally consist of a collection of convolution,
activation and pooling layers followed by fully connected
and classification layers. The feature extraction and encoding
functions for the CNN model are executed in these hidden
layers. In the training process, the convolution kernels are
optimized to encode features in the convolution layers such
that the final layer feature maps can be decoded to form
a classification probability for the training set, typically
through fully connected layers and softmax.

Following the notation of Khan et al. [17] let layer l be
a convolution layer that processes Kl−1 channels from the
previous layer to produce Kl output channels. The output for
the k th channel in (1) is the sum of Kl−1 convolutions using
convolution kernel ekl (u, v, c) for the c

th input channel.

f kl+1(p, q) =

Kl−1∑
c=1

Ul∑
u=1

Vl∑
v=1

f cl (p− u, q− v)ekl (u, v, c) (1)

For l = 1 the input to the layer is the resized image
where f c1 (p, q) = i(x, y, c) is an element of the input tensor
I ∈ RX×Y×C . The input resolution of the model is (X ,Y ) and
C is the image channel count, which is three for RGB images.
If layer l is an activation layer, a non-linear point

processing activation function, which is typically tanh,
RELU, or Leaky RELU is defined by

f kl+1(p, q) = ga(f kl (p, q)) (2)

where ga() is the activation function. A feature map is defined
as the output of the activation layer.

The convolution and activation sequences in a deep model
encode features from the input image. Features from the last
feature map are input into one or more fully connected layers
and decoded into a classification vector using a function such
as softmax. Although variations on the basic CNN have been
developed such as ResNet which uses residual layers [2] and
Inception which uses a Network-in-Network approach [3],
the principle of activation response still applies.

The receptive field of the feature maps in a given layer of
a CNN model is determined by the size of the convolution
kernel and the receptive field of the previous layers, which in
turn is determined by the previous layer convolution kernel
sizes and pooling operations. Pooling layers are used to
decrease the feature map resolution and increase the receptive
field relative to the size of the convolution kernel. Typically
max pooling or average-pooling methods are used, often
2 × 2. In the early layers, before the first pooling layer, the
feature maps are represented at the same spatial resolution as
the resized input image, thus retaining a 1:1 correspondence
between the (p, q) coordinates of the feature map and the
center of its receptive field in the input image.
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High activation values from the feature maps, which are
strong responses of the associated convolution kernels, are
most likely to propagate through pooling operations, and
may survive to influence the final feature map layer. The
evaluation of receptive fields and hidden layer information
by Zhou et al. [18] established a connection between object
identification and hidden layer features in deep CNNs.
Further exploration of the use of local information to
establish region proposals is described by Ding et al. [19].
It uses the results described in [20] which adds an opti-
mized SIFT method to a CNN model to establish object
key-points.

If key-points can be identified using only early layers of a
CNN model, a foundation for evaluating early feature maps
can be created to establish a prediction for object regions
of interest using feature maps with small receptive fields.
These regions can then be used for subsequent partitioning
and cropping. When resized to the CNN input resolution,
the cropped version of the original image is more likely to
have a higher classification confidence in a simpler CNN if it
isolates the object because the object will not be dominated
by a stronger object in the input image.

Although the baseline CNN model was designed to
produce a classification prediction at the output, several
authors have investigated the meaning of the hidden layers
in the network. Some approaches have been developed to
analyze the relationship between individual feature maps and
other layers in a CNN model and the classification output.
This relationship provides a foundation for evaluating early
feature maps to establish a prediction for object key-points.
A key-point is defined as a unique or distinctive pixel or
small region of an image that is invariant to rotation, scale
and distortion. Similar to earlier key-point detectors such as
SIFT [6] or SURF [21], key-points in feature maps are the
result of training and the underlying training data set rather
than being based on a general model of a key-point. Five
significant methods for interpreting featuremaps are Saliency
Maps [22], [23], Layerwise Relevance Propagation [24], [25],
Visual Attention [26], Activation Maximization [27] and
Feature Importance Ranking [28].

Saliency maps, introduced by Law and Strother [22],
define the difference in loss functions in a neural network.
Simonyan et al. [23] generated saliency maps from CNNs
that highlight the key areas of an object based on a prior
prediction of a class. The saliency map is determined
using back propagation and partial derivatives of the clas-
sification score with respect to the input image. Further
improvements and variants of saliency maps, including
GradCAM, have been described in [29], [30], [31], and [32].
An additional improvement in saliency detection was made
by Kummerer et al. [33] in which a collection of feature
maps from a trained network was functionally combined to
determine the saliency location or gaze of an image.

In contrast, Layer-Wise Relevance Propagation introduced
by Bach et al. [24], [25], [34] determines the importance of
each pixel in an input image by back-propagating a measure

of relevance from each intermediate layer and feature map.
As in saliency maps, LRP also relies on a prior classification
to start the backward propagation of the LRP values. Let Rj
represent the relevance of the jth neuron in one layer with J
neurons and let Rk represent the relevance of the k th neuron
in the subsequent layer with K neurons. The value of the k th

neuron is a RELU operation

ak = max(0,
J∑
j=0

ajwjk ) (3)

where aj is the activation value for the jth neuron in the J th

layer with a0 corresponding to the bias, and wjk is the weight
for neuron j contributing to neuron k. The weighted sum

Rj =

K∑
k=1

ajwjk∑J
j′=0 aj′wj′k

Rk (4)

determines the relevance value for any neuron in a layer.
Variations of LRP include LRP-ϵ, which adds a regulariza-

tion constant, and LRP-γ :

LRP-ϵ : Rj =

∑
k

ajwjk
ϵ +

∑
0,j′ aj′wjk

Rk (5)

LRP-γ : Rj =

∑
k

aj(wjk + γw+

jk )∑
0,j′ aj′ (wj′k + γw+

j′k )
Rk (6)

The LRP-γ version is used to increase the relevance of
neurons in early layers by increasing the influence of positive
weights (γw+

jk ) This facilitates the final determination of the
relevance of the input pixels and highlights the importance of
identifying useful information in the early layers.

LRP provides a framework for associating neurons or
feature elements from a feature map to the final class
by back propagation of the class relevance. A similar
relationship between the lower layers of a network and
the final classification was described by Zhang et al. [26].
This approach is defined as a top-down attention process
based on the probabilistic Winner-Take-All algorithm, WTA,
which was initially developed as a selective tuning visual
attention model [35]. In the probabilistic WTA model the
back propagation process is described as an ‘‘Excitation
Backprop’’. Let P(aj) be the Marginal Winning Probability
for neuron aj in the layer below the layer containing aj. The
Marginal Winning Probability (MWP) is given by

P(aj) =

∑
ai∈Pi

P(aj|ai)P(ai) (7)

wherePi is the parent node set of ai. The conditional winning
probability P(aj|ai) is given by:

P(aj|ai) =

{
Ziâjwji if wji ≥ 0
0 otherwise

(8)

where âj represents the bottom up feature strength and is
a positive value output of the activation function. The top
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down feature expectancy is described by wji, and Zi is the
normalizing factor such that∑

aj∈Ci

P(aj|ai) = 1 (9)

where ai ∈ Ci are the child neurons connected to aj.
Finally, for Excitation Backprop, the authors introduced

a variation called Contrastive Top-Down Attention. This is
achieved by calculating another Marginal Winning Probabil-
ity, constructed from the negative or complementary values of
the weights. From (8) this would have the effect of selecting
the remaining weights that are negative in the original
MWP case. Subtracting the two probabilities removes any
contribution from common winner neurons and amplifies the
discriminative remaining winner neurons.

Although Saliency maps and LRP provide a linkage
between output classification and input pixel contributions,
they do not directly add to the understanding of how hidden
layer feature maps are influenced by image input patterns and
content. In [27] Erhan et al. defined Activation Maximization
as a process for finding input patterns from an image that
maximize an activation in a hidden layer. From this, we can
conclude that the presence of high activation values in the
hidden layers corresponds to input locations or regions that
maximize or nearly maximize the response to the associated
combination of kernels in the receptive field.

Related toActivationMaximization is the idea that features
extracted in the convolution layers can be ranked according
to their contribution to the classification task. Wojtas and
Chen [28] describe a feature selector network that is jointly
learned with a classification model to produce a ranking
of features that correlates to the underlying classification
prediction. This study was motivated by Random Forests [36]
and dropout [37], and based in part on the earlier development
of a framework for feature selection by Song et al. [38].
Extending the ideas of Feature Importance Ranking, the early
layers of the network can contain features that indicate the
presence and positions of key-points when ranked.

III. ANALYSIS OF EARLY FEATURE MAP LAYERS
Features from images processed by CNN models are
extracted through layers of feature maps that encode spa-
tial information which is ultimately used to determine a
classification prediction and probability. Techniques such
as Saliency Maps, LRP, Excitation Backprop and Feature
Importance Ranking suggest that key-points can be iden-
tified within a feature map that can propagate to the last
convolution/RELU layer. LRP and Saliency maps methods
demonstrate a direct correspondence between high feature
map response for a region that contains an object or portion
of an object and the resulting classification prediction from
the final layer in the model.

While the convolution layers and feature extraction for
simple CNN models are mainly needed for object classifi-
cation, our focus is on identifying the presence and location
of objects in an image using information in the convolution

layers and feature maps. The possibility of extracting
information from early layers of a network to find object
key-points in an image can be inferred from the LRP and
Saliency results. In the LRP framework of [24], the authors
noted that in LRP-γ (6), early feature maps are factored
into the LRP equation by spreading the relevance of whole
features rather than individual pixels. A second example
from [27] shows that feature values can be maximized by
matching the associated region of an image to the underlying
kernels in a given feature map. We conclude from these
previous studies that the results from every activation layer in
a CNN model contain potentially useful information relating
to the spatial extent and location of an object or key-points of
an object, and it is possible that sufficient information may
be obtained from a limited number of layers.

The success of transfer learning is another indication that
the features extracted throughout the levels of a CNN are
directly leveraged for a large class of objects beyond the
original training set [39]. This would imply that the final
classification is not needed to identify key-points in a trained
network. In transfer learning the entire pre-trained feature
extraction collection of convolution, activation and pooling
layers is used without modification. Only the last few layers
are trained for a new collection of classes with an associated
training data set. This pre-trained backbone is robust to
feature definitions even beyond the original training data set.
Tammina [40], highlighted the contribution of early layer
feature maps to transfer learning.

We postulate that the feature map information in the
forward pass alone using a trained CNN model can be used
to predict regions likely to contain an object or part of an
object. Moreover, we propose identifying locations in early
feature maps that are key-points of objects. We focus on
the early feature maps without feedback from subsequent
layers and on the relationship between feature map outputs
and key-points that belong to significant objects. We expect
the selection space from the feature maps to be sparse
because relatively few selections from the feature maps
identify unique characteristics or key-points of an object.
These key-points can form the basis for constructing clusters
and partitions for cropping and subsequent classification.
As described by Menikdiwela et al. [41], a key idea in
establishing a region of interest is to combine feature
maps at each pooling layer with appropriate up-sampling.
We extend this work to determine key-points in an early
feature map layer that correspond to locations of objects in
the input image. Moreover, clusters of key-points increase
the likelihood that the associated region contains an object
or a portion of an object that is a member of the collection of
trained classes, as described by Lowe in [6]. Considering the
success of transfer learning, a cluster of key-points may also
indicate the presence of an object that is not a member of the
trained classes.

With networks that usemax pooling functions that preserve
high activation values in subsequent layers, strong activations
in the early layers of simple networks have a higher
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probability of propagating through the network than weak
activations. In the earlier layers, strong feature map outputs
may be generated by some objects in the input image which,
although they will not be selected in the final layers as the
dominant objects in the image, may have been identified
had they been the only object in the image. These points
can be used to form clusters that correspond to localized
areas containing objects that can be cropped from the original
image and subsequently used as new inputs for a simple CNN.
This increases the effectiveness of the simple CNN in several
ways without retraining. Multiple objects may be identified
rather than only a single object, and the relative location
of multiple objects can be established. In addition the input
resolution to the CNN may effectively be increased by the
cropping operation

We use an approach similar to that of Ding et al. [19]
in which key-points are used to establish anchor regions
for training an R-CNN model. The prediction of key-points
in our method is determined from early feature maps of
a pre-trained simple CNN model as opposed to optimized
SIFT [20]. We selected the VGG 16 model [1] for our simple
CNN because it is widely used in research to study object
classification and detection. It is a simple model, with only a
single path through the network and consists of either 13 or
16 convolution layers. The input size is 224 × 224 pixels
and larger images must be resized to a reduced spatial
resolution.

The selectedVGG16model was trained using the ILSVRC
data set for 1000 classes [39]. This data set is representative
of several common object classes and sub-classes in natural
images. The earliest layer of interest is the deepest layer that
has the same resolution as the input image, which, for VGG,
is the RELU output following the second convolution layer.
Identifying key-points in this layer enables us to form clusters
with the same spatial resolution as the resized input image.
It is also possible to consider activation layers deeper into the
network, specifically layers immediately prior to the deeper
pooling layers. The last activation layer prior to the fully
connected layers used for classification has a resolution of
(X/2Np ,Y/2Np ) where Np is the number of 2 × 2 pooling
layers in the network. As noted in [42], deeper layers in the
CNN increase the receptive fields but decrease the positional
resolution relative to the model input resolution. Using the
deepest layer, key-point detection would produce predictions
with a region ambiguity of (x ± 16, y ± 16) pixels relative
to the input image to the model, and the receptive field is
212 × 212, effectively the entire image. This introduces a
substantial margin into the resulting bounding box estimates.
In addition, in deeper layers, dominant objects may have
already eliminated the key-points for other objects.

If the analysis of the activation layer before the first
pooling layer does not produce an accurate set of key-points,
selecting the activation layer before the second pooling layer
would result in a margin for the bounding box prediction
of (x ± 1, y± 1). This may be offset by the fact that deeper
layers have increased receptive fields and may have stronger

FIGURE 1. Test images with ground truth bounding boxes.

activations of key-point regions. We refer to the key-point
regions in this case, because every layer after the first pooling
layer has spatial ambiguity, which is a function of the number
of pooling layers prior to the layer of interest.

A. ANALYSIS OF FEATURE MAP DISTRIBUTIONS
We begin by assessing the statistical characteristics of early
feature maps to develop a method for selecting a small
number of points from the collection of feature maps that
have a high probability of being identified as key-points of
objects. Two example test images in Figure 1, taken from
the VOC test data set, demonstrate different arrangements
of multiple objects. Image (a) is an example with multiple
‘‘boat’’ objects with bounding boxes that are not overlapping.
The VGG model can only identify one of the three instances
in the image. Image (b) shows an example of a test image in
which there are multiple objects with overlapping bounding
boxes. Key-points may be generated by surrounding objects
as well as the dog.

For Figure 1(a) the top VGG classification is ‘‘boat’’ with
a confidence of 0.99. The other four classifications in the top
five, ‘‘dock’’, ‘‘seashore’’, ‘‘promontory’’ and ‘‘breakwater’’,
all had confidence values less than 0.1. For this image VGG
performs well with a high confidence classification, but there
is ambiguity as to which instance of ‘‘boat’’ the classification
prediction belongs and no indication that there are multiple
objects. For R-CNN, there are three instances of detection of
‘‘boat’’, all with confidence greater than 0.99. In addition, the
three estimated bounding boxes generated by the R-CNN are
very close to the VOC ground truth bounding boxes.

In Figure 1(b) the top VGG classification is ‘‘dog’’ with
a confidence of 0.95. The other four classifications in the
top five, which all have a confidence of less than 0.05,
are ‘‘doormat’’, ‘‘yurt’’, ‘‘sliding door’’ and ‘‘stove’’. The
R-CNN detection is ‘‘dog’’ with a confidence of 0.998, and
the estimated bounding box is very close to the ground
truth bounding box. No other objects were identified by the
R-CNN.

When considering the feature map information, where
f kl (p, q) is an element of the k th feature map in layer l, we note
that normalizing and centering the feature map distributions
with µ = 0 and σ = 1 will not be useful because the
feature map values propagate through this model without
normalization. However, the mean and central moments of
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each feature map can be used to characterize the maps. For
the k th feature map the mean value µ1(k) is defined by

µ1(k) =
1
PQ

P∑
p=1

Q∑
q=1

f kl (p, q) (10)

and the nth central moment is

µn(k) =
1
PQ

P∑
p=1

Q∑
q=1

(f kl (p, q) − µ1(k))n (11)

The kurtosis of the k th feature map, which is often used as an
indicator of distributions with outliers, is defined in (12).

κ(k) =
µ4(k)

(µ2(k))2
(12)

High values of f k (p, q) in the k th feature map are possible
indicators of key-points of an object near location (p, q) in
the image. Confidence that the high value is significant may
be increased if the kurtosis of the map is high which would
imply that the high values are sparse. The key property of
kurtosis that we exploit is the relationship between high
kurtosis and distributions with long tails or outliers which
are expected for high activation response elements of the
feature maps. For example, if the histogram of a feature map
with outliers was approximately modeled very simply as a
Bernoulli distribution, where the outliers can be assigned to
a value of 1 with a probability of p and the non-outliers can
be assigned a value of 0 with a probability of (1 − p), the
central moments for the feature map distribution computed
from (10) and (11) would be µ2 = p(1 − p) and µ4 =

p(1− p)(1− 3p(1− p)) and from (12), the kurtosis would be

κ =
1 − 3p(1 − p)
p(1 − p)

. For a distribution with sparse outliers,

the probability p would be very small and the approximate

kurtosis would be κ ≈
1
p
, which would be large. Kurtosis

values for individual feature maps vary widely from image to
image, and depend on the response of the underlying kernels
to the input image; however the outlier high values are likely
to propagate to the next layer through max pooling.

Figure 2 shows four feature maps from the test image
in Figure 1(a), which were selected from the collection of
feature maps in the second feature map layer. Feature maps
55 and 51 have the lowest and highest maximum values,
respectively. Feature maps 3 and 20 are the feature maps with
the lowest and highest kurtosis values. The center column
shows the four selected feature maps and the left column
shows the output of the previous convolution layer before the
activation layer. All images were scaled so that the lowest
value is black and the highest value is white. The histogram
of each feature map is shown in the right column with the
horizontal scale set to show the range from zero to the
maximum feature map value. The counts in the histogram
bins were displayed using a logarithmic scale so that outliers
are more visible.

FIGURE 2. Four feature maps from Figure 1(a).

FIGURE 3. Four feature maps from Figure 1(b).

Significant differences are observed in these four feature
maps. In rows 1 and 3 of Figure 2, the feature maps have
lowmaximumvalues and low kurtosis values. A large number
of values close to the maximum value can be observed, and
visual inspection shows that almost all of the relatively high
values correspond to background areas, not to boat objects.
In contrast, in rows 2 and 4, the feature maps have high
maximum values and high kurtosis values. These feature
maps contain very few values near the maximum value,
and the images of the feature maps are much darker than
those of the other two rows. The bright points in these two
feature maps are concentrated in the areas of the three boat
objects.

A similarly selected set of four feature maps from the test
image shown in Figure 1(b) is shown in Figure 3. Again,
the feature maps that have a high maximum value and a
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TABLE 2. Summary statistics for figures 2 and 3.

high kurtosis value have bright points concentrated on the
dog object and on edges in the surrounding structure. The
specific maps that produce the high maximum values and
high kurtosis values depend on the image content, and the
maps selected in Figure 3 are not the same as those in
Figure 2.
Table 2 summarizes the statistics for the four feature maps

in Figures 2 and 3. The column labeled Max Hist Value
shows the number of feature map values in the most populous
bin, which is also the first bin, of each histogram. There
is no close relationship between the mean and maximum
values or between the variance and kurtosis. For the feature
map distributions in rows 2 and 4 of Figures 2 and 3,
high activation values and outliers are present. These high
values, which are also outliers, have a higher probability of
being selected in the max pooling operation that follows the
feature map layer. Therefore, it is reasonable to assume that
many of these points will be associated with objects that are
identifiable by the trained VGG. This type of distribution is
well represented by a distribution that has high kurtosis or
is leptokurtic. When this exists, we can create a selection
strategy for the feature maps guided by the kurtosis value of
the distribution.

B. KEY-POINT IDENTIFICATION
We augment the definition of a key-point of an object in an
image as a point that has some unique feature or attribute
in the image that produces a high activation in one or more
feature maps. For any given key-point in an image, one or
more feature maps may reflect this uniqueness in the form
of any high activation response which is an outlier relative
to the other responses in the feature map. Each feature map
kernel that produces a high response to key-points was trained
to extract features from the collection of training data that
correspond to these key-point locations. Moreover, as shown
in [28], features that qualify as key-points often have a
higher importance relative to other features. By applying the
reverse logic of Saliency Maps and LRP, features which have
high activation values and that are also highly differentiated
are more likely to propagate to the final convolution layer
prior to decoding as a classification prediction. There is high
variability in the feature map content, which is a function of
the underlying input image content, and the diversity of the

FIGURE 4. Top 4096 values from each feature map, vs feature map
kurtosis, from Figure 1(a).

feature map responses allows a wide range of different object
types to generate sparse high value responses. These two
properties of activation values and key-point identification
lead to the definition of a target density profile for the
histograms of each feature map.

In the opposite case, in areas of the image in which no
or very low activation response is observed, the density and
number of these low values can be very high. In many cases
they are tightly grouped near zero. A third case is one inwhich
there are large areas of relatively high response. This might
be an example of large areas of background such as sky or
low-frequency patches in an image that are not sparse. These
responses offer no practical information regarding the object
key-points.

C. SELECTION OF FEATURE POINTS
Without the assistance of Saliency mapping or LRP, we can
establish the key-point contribution potential based on
feature map values and statistical measurements. The goal
is to identify key-points and distinguish them from other,
potentially high activation value, feature map locations.
An initial approach may be to select the highest activation
values from each individual feature map. However, the
highest values in one feature map may be low compared
to other feature maps, or may correspond to low interest or
background areas of an image. For 64 224 × 224 feature
maps, there will be a total of approximately 3.2 million
points, and the number of key-points should be a small
fraction of these points. Rather than selecting the highest
value points from each feature map as potential key-points
in the layer, it is more useful to consider only the top N
points from a combination of feature maps to find the higher
values that will survive the max pooling function. In addition,
as Figures 2 and 3 demonstrate, there is a wide range of
maximum individual feature map values, and not all locally
high values are associated with objects; therefore for any spe-
cific image, some feature maps identify more key-points than
others.
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FIGURE 5. Top 4096 values from each feature map, vs feature map
kurtosis from Figure 1(b) showing larger concentration of high kurtosis
feature maps.

Let SN be a relatively small selection of N points
from a combination of feature maps. The effects of two
different strategies for selecting SN are demonstrated in
Figures 4 and 5. In Figure 4 all the top feature map values for
Figure 1(a) are plotted, vertically, and aligned horizontally
with the kurtosis value of the feature map. For clarity, only
the highest 4096 values from each feature map are displayed.
Horizontal lines show the global threshold value which will
select the N highest value points from all the feature map
values f k (p, q). For N=100, only six of the 64 feature maps
contribute to SN . As N is increased, more feature maps
contribute to SN , but at the largest value shown, N=4096,
there are still many feature maps that do not contribute
to SN .
A second selection strategy prioritizes high kurtosis by

selecting the N points with the highest values of κ(k)·f k (p, q),
the product of the feature map value and the feature map
kurtosis. The contour lines represent isolines to indicate the
thresholds of constant selection size with kurtosis weighting
for each feature map. When weighted by kurtosis, most of
the top 100 values come from two feature maps with kurtosis
values of 129 and 142 and the rest come from only a few
other feature maps with kurtosis values between 50 and 60.
Similar responses are observed with higher values of N.
With both threshold definitions, whenN=4096, contributions
come from the majority of the feature maps. In the weighted
kurtosis case, feature maps with very low kurtosis values less
than 35 do not contribute to any points. There is some overlap
in the sets of points selected by the two methods.

A second example of feature map values and selection
strategy, based on the test image in Figure 1(b), is shown
in Figure 5. In this case, a larger number of feature maps
have a relatively high kurtosis, which results in a larger
number of different feature maps contributing their high
value points to SN . This is an indication that the image may
contain different object types. Compared to the image with
three similar objects where the same feature maps probably

respond strongly to all three objects, feature maps responding
strongly to the dog and feature maps responding strongly to
the surrounding structures are different, so more feature maps
will have high kurtosis values.

D. KEY-POINT SELECTION ACCURACY
The accuracy of a specific key-point selection will be
evaluated using VOC ground truth bounding boxes. This
establishes the key-point contribution potential for each
individual feature map. Feature map statistics are analyzed
by first evaluating the selections of each feature map in the
selected layer. Each point in the k th feature map is identified
as a ground truth positive if it is included in a ground truth
bounding box or a ground truth negative if it is not included.
Since we want to locate all significant objects in an image
we considered the union of all ground truth bounding boxes
in an image as the collective ground truth. A selection SkN ,
which includes the top N values of the k th feature map,
represents a set of points assumed to be key-points. This set
can be evaluated based on how many points are ground truth
positive, or true positive. Let the subset of points that lie
inside a ground truth bounding box be defined as SkNP , the true
positives, and the subset of points that lie outside all ground
truth bounding boxes be defined as SkNN , the false positives.
Then ||SkNP ||0 is the number of points inside the ground truth
bounding boxes and ||SkNN ||0 is the number of points outside
the ground truth bounding boxes.

The precision or positive predictive value of the SN points
from the k th feature map is

PPV k
N =

||SkNP ||0
N

(13)

where N = ||SkNP ||0 + ||SkNN ||0. A precision value near
1 indicates that almost all the selected points lie inside
the ground truth bounding boxes. Because it is presumed
that key-points will be used to form clusters, and bounding
boxes of clusters will define the proposed partitions, it is
not necessary that SN include all the points in the true
bounding boxes, and sensitivity is not a relevant measure of
performance. Higher values for precision or PPV indicate a
high probability that clusters will identify areas within the
known object bounding boxes.

For the four feature maps from Figure 2, Figure 6 shows
the precision of each as a function of N for 1 ≤ N ≤ 4096.
Similarly, Figure 7 shows the precision for the feature
maps from Figure 3. In general, the feature maps with
low maximum values or low kurtosis in rows 1 and 3
have lower precision compared to feature maps with high
maximum value or high kurtosis. In Figure 6 the precision
in rows 1 and 3 is less than 50% for N>200 but in
rows 2 and 4 the precision is greater than 50% for N<2000.
In Figure 7 precision values are lower compared to Figure 6
because the visually significant structures surrounding the
dog are not identified as objects by VOC. However, as in
Figure 6, rows 2 and 4 show significantly better performance
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FIGURE 6. Precision as a function of selection set size for Figure 2.

FIGURE 7. Precision as a function of selection set for Figure 3.

than rows 1 and 3. At N=2000, S2000P has 800 and 900 points
in rows 2 and 4, respectively, compared to 10 and 500 in
rows 1 and 3.

When selections of SN are made using these approaches,
the points contributed from each feature map are not
necessarily unique (p, q) points. It is possible and even
likely that the SN sets from multiple feature maps contain
selections for the same (p, q) location. We also note that
isolated key-points alone will not be sufficient to generate a
classification response. Local clustering of key-points from
one or more feature maps is a strong indication of the
presence of an object. This leads to the recognition that
certain features are more important than others, as described
in [28] and [43]. The feature ranking process suggests a
statistical distribution that correlates to a measure of the
sparseness of highly important features. When the number
of key-points that correspond to high ranking features of
distinguishable objects is a small fraction of the total number
of pixels, this is a reasonable assumption. Thus, the individual

feature maps should be combined such that the feature
ranking property is embodied in the resulting combination.

IV. GLOBAL FEATURE MAP CONSTRUCTION AND
PERFORMANCE
A unified Global Feature Map can be defined with ranking
property determined by a function of the K feature maps in
the a feature map layer, f : RP×Q×K

→ RP×Q. We compare
four approaches: feature map sum, GFMsum, feature map
max, GFMmax , kurtosis-weighted sum, GFMκ and kurtosis-
weightedmax,GFMκmax . TheGFMsum(p, q) is the sum of all
feature map values at point (p, q). This creates a high value
when multiple feature maps have a high response at the same
point. It is defined as

GFMsum(p, q) =

K∑
k=1

f k (p, q) (14)

The GFMmax(p, q) is the maximum value of all the feature
maps at point (p, q). Since this has only the highest value for
each (p, q), it does not benefit from reinforcement of high
values from other feature maps at the same location. It is
defined as

GFMmax(p, q) = maxk (f k (p, q)) (15)

Two other GFM maps are defined in a similar way
but with feature map values weighted by feature map
kurtosis to additionally emphasize feature maps with sparse
distributions. The GFMκ(p, q) is the kurtosis weighted sum
of f k (p, q) from all feature maps. This will increase the
contributions of outliers which will increase the likelihood
of selecting key-points. It will reduce the relative ranking
of (p, q) values that are not outliers and are more likely the
background in the image, as observed in Figures 6 and 7.
Higher-order weighting functions using κr would have the
effect of increasing the contribution of the highest kurtosis
feature maps and reducing the contribution of others, and for
very large r , only the feature map with the largest kurtosis
would be used for point selection. High values of r would
be undesirable because in an image with multiple objects
of different types, it is expected that different feature maps
would have a strong response for different types of objects.
GFMκ is defined as

GFMκ(p, q) =

K∑
k=1

κ(k) · f k (p, q) (16)

The GFMκmax(p, q) is a modified version of GFMmax .
Each value f k (p, q) in the feature map is multiplied by the
kurtosis value of the feature map before the maximum is
selected. The GFMκmax(p, q) is defined as

GFMκmax(p, q) = maxk (κ(k) · f k (p, q)) (17)

Figures 8 and 9 show the resulting four types of GFMs as
gray scale images for the test images in Figure 1(a) and (b).
The highest values from the GFMs are bright and show the
locations of potential key-points. Based on visual inspection
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FIGURE 8. Images of GFM types for Figure 1(a).

FIGURE 9. Images of GFM types for Figure 1(b).

of Figure 8, the GFMsum and GFMκ images show light
points of approximately equal value from the boat objects
that are much brighter than the rest of the image. The
two images of GFMs on the right that are based GFMmax
and GFMκmax have fewer very bright points although there
are moderately bright points along the edges of the boats.
The images in Figure 9 have similar properties although
there is less variability across the four GFMs. Bright areas
correspond to both the ‘‘dog’’ and the surrounding structure.
The kurtosis weighted GFMs in Figures 9(c) and 9(d) show
less response to the surrounding structure than the other two

FIGURE 10. Test image (a) top selections using GFMκ .

FIGURE 11. Test image (b) top selections using GFMκ .

GFMs. Figures 10 and 11 visually show the locations of the
highest GFM points in red for specific selection set sizes.
When the top 100 values of GFMκ are selected in Figure 10
they all fall within the bounding boxes of the boats. As the
selection size increases to 800 there is a denser distribution of
points in the boat object areas and a few points are found on
part of the landscape background. In Figure 11, for N=400,
selected points are clustered along the edges of the structure
and distributed around the dog. When N=1600 the cluster of
points around the dog is denser and a few points are clustered
along additional edges in the structure.

Although these visual examples demonstrate the potential
of selecting feature points from a GFM, a performance metric
is needed to compare the different GFMs and evaluate how
the value of N affects performance. The four GFM methods
were evaluated based on their precision measure as a function
of N, the number of selected points. Figure 12 shows a plot
of PPVN for the four GFM methods for the two test images
as a function of N, with test image (a) and on the left and
test image (b) on the right. For all four GFMs of the test
image in Figure 1(a), for low values of N, most of the highest
feature map values were part of one of the three boat objects
as visually evident in Figures 8 and 10. As N increased
the precision decreased slowly to ˜70% at N=2000 and ˜60%
at N=4096. All four GFMs show a similar performance
althoughGFMκ has a slightly higher precision than the other
GFMs.

The four GFMs for the image in Figure 1(b) show
a different trajectory. The structures around the dog in
Figure 1(b) are visually significant. For small values of N
the precision is low because so many of the selected points
are clustered along the edges of the structure surrounding
the dog, and although the structure was not identified by
either VGG or R-CNN, it might have been identified by
different training data. For this reason, the precision in
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Figure 12 is much lower for the test image in Figure 1(b),
and it increases as N increases, up to N ≈ 2000, which in
this case proportionately adds more ‘‘dog’’ key-points than
‘‘structure’’ key-points. For N between 2000 and 4096 the
precision is approximately 30%. Using VGG on images
cropped based on clusters of the key-points, the classification
confidence would be used to accept clusters around the
‘‘dog’’ and reject most of the clusters associated with
the ‘‘structure’’. For this image GFMκmax has the highest
precision and GFMκ is similar but slightly lower. Note
that even though there is a large difference in precision
between the two images, the selection measurements still
find significant object key-points even with relatively low
precision, as is the case with the test image (b). However,
for any regions defined by clusters of only structure points,
the classification confidence for the cropped image would be
low.

As discussed in Section III layers other than than layer 5,
the last activation layer before the first pooling layer, could be
considered. Figures 13 and 14 show the values of ||SNP ||0 for
the four types of GFM and compare GFM methods for
layers 3, 5 and 10 for test images. Layer 3 is the first
activation layer, and layer 10 is the last activation layer
before the second pooling layer. In addition, for reference,
results for the simple magnitude of the gradient computed
from the two directional Sobel filters are shown with a
dashed green line. The lower dashed line indicates expected
results from a random selection of points, and the upper
dashed line indicates the perfect results if ||SNP ||0 = N .
In both test images, the selection of layer 5 produces higher
values of ||SNP ||0 and precision compared to either of the
other two layers. In Figure 13 the results for layer 3 are
similar to the simple Sobel gradient magnitude and the
results for layer 10 are worse than the Sobel results. The
layer 5 results show that all methods have approximately
the same performance for N less than 2000, and all GFM
methods are a substantial improvement over the Sobel filter
when N is larger than 2000. In Figure 14 all methods show
lower values of ||SNP ||0 compared to Figure 13 because
the visually significant background structures, which are
not identified as a ground truth object, also produce points
in SN . The Sobel reference results have the highest value
of ||SNN ||0 for this reason. The GFM methods outperform
the Sobel results for all cases and the layer 5 results for all
GFM methods outperform layer 3 and layer 10. Based on the
layer comparison results for the two images, the evaluation
of key-point prediction for the larger test sets will focus on
layer 5.

When precision is high and most of the selected points
belong to an object, points added to the selection set as
N increases which are not inside the object bounding boxes
are not necessarily problematic for a number of reasons. They
may be widely scattered and may not form clusters. They
may be close to an object bounding box and would slightly
augment the size. They may cluster around another object
that is not part of the class collection identified in the ground

FIGURE 12. PPVN of GFM methods for the images in Figure 1(a) , (b).

FIGURE 13. ||SNP
||0 of GFM methods for the images in Figure 1(a).

truth data. In all cases, clusters associated with objects or
spaces that are not part of the classification set will have low
classification confidence after cropping and processing and
will thus be rejected.

A. KEY-POINT PREDICTION RESULTS
The PPV analysis can be used to evaluate how well the
GFM methods perform over a large image test set. The
initial assessment of the feature map selection process was
performed using a subset of the VOC 2007 test images.While
the VGG model was trained using the ILSVRC, as noted
in the earlier transfer learning discussion, the pre-trained
feature extraction layers are suitable for other object types
such as those in the VOC test set. A variety of images were
included in the test set, covering object scale, number of
objects, and number of object types. In order to explore
any dependence of precision on image content we consider
ground truth bounding boxes from the VOC data set for
four subsets of classes: ‘‘boat’’, ‘‘cat’’, ‘‘car’’ and ‘‘dog’’.
The number of test images It is 200 for each of the four
selected classes. The results were measured against the VOC
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FIGURE 14. ||SNP
||0 of GFM methods for the images in Figure 1(b).

TABLE 3. Statistics of ground truth bounding boxes.

ground truth bounding boxes with the selection range of N
between 100 and 4096. The lowest median relative object
size from the VOC test data set is 2% or approximately
32 × 32 pixels which corresponds to an upper limit of about
50 object bounding boxes with no overlap. The mean size
of bounding boxes ranges from 11% to 46%, corresponding
to a maximum of 9 and 2 non-overlapping object bounding
boxes. Table 3 shows the statistics for the bounding boxes in
the test image collection. The mean number of ground truth
bounding boxes ranges from 1.6 to 3.8 while the maximum
ranges from 6 to 21. Bounding box sizes are shown as a
percentage of the input image size and range from 0.02% to
99.6%, with the mean ranging from 10.3% to 41.8% and the
median ranging from 1.9% to 36.1%. Note that there is a large
difference between the mean and median bounding box size
for the ‘‘boat’’ and ‘‘car’’ classes compared to the ‘‘cat’’ and
‘‘dog’’ classes.

The performance of each class was reported as a vector
of the sorted precision values obtained over the number of
test images in the test set. The precision value for each image
i ∈ It as a function of N is given as

PPV i
N =

||S iNP ||0
N

(18)

and average precision, AP, for all of the test images in a set is
defined as

APN =
1
It

It∑
i=1

PPV i
N (19)

FIGURE 15. Key-Point PPVN using GFMmax from test images.

FIGURE 16. Key-Point PPVN using GFMκ from test images.

for each of the four test classes and for all four GFM
methods.

Figures 15 and 16 show the sortedPPVN results for the four
classes over the selection range using GFMmax and GFMκ .
The GFMκ results in Figure 16 are very similar to the results
for GFMsum and GFMκmax , whoch are not shown in plots,
and these three GFMs show better performance thatGFMmax
in Figure 15. ForGFMmax the precision is substantially lower
for large N compared to GFMκ and reflects the results in
Figures 8 and 9.
In all cases there is little dependence of precision on N

over the range of 100 to 1600. When N is increased to 4096,
the precision values are somewhat lower as discussed earlier
for individual feature maps. The four sub-classes of images
based on content also show similar behavior with the largest
variation shown in the ‘‘boat’’ set usingGFMmax in Figure 15.
For all four image classes half of the images have a PPVN
greater than 0.5. Visual examination of the images with the
lowest PPVN shows that most have objects with very small
bounding boxes.
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TABLE 4. AP for four image classes.

TABLE 5. AP for single object detection.

A clearer distinction between GFM methods is apparent
when the APN results for the four GFM methods are
summarized in Table 4. The average precision, for selected
values of N, is shown for all four GFM types and for all four
image test sets. Although some of the differences are small,
the GFMκ method has a higher AP for almost all values of
N and for all object classes and the GFMmax method has the
lowest. The exception is the ‘‘car’’ set of test images, in which
the results usingGFMκmax are 0.1 to 0.8% greater than those
using GFMκ for N=200, 400, 800, and 1600. Table 4 shows
that the key-point average precision has little variation with
respect to the value of N between N=400 to N=1600.

The effect of multiple objects can be explored by
comparing the results in Table 4 to results for subsets of
each class in which images contain only one object. Table 5
shows the performance of key-point selection in test images
in which there is only a single ground truth object, using
GFMκ . The AP range for images with single objects using
GFMκ is 53.4 to 71.3, compared to 59.3 to 77.0 for all
images in a set, as shown in Table 4. While the AP for
‘‘boat’’, ‘‘cat’’ and ‘‘dog’’ classes are lower in the single
object results, the ‘‘car’’ results are higher. This is due in
part to the difference in median bounding box size which

is 2.5% for multiple object images compared to 26.2% for
single object images. In addition, from Table 5, the mean
for single object bounding boxes is considerably higher than
the mean for single or multiple object bounding boxes. For
multiple object images, there is a large difference between
the mean and median bounding box sizes for ‘‘boat’’ and
‘‘car’’ classes compared to the ‘‘cat’’ and ‘‘dog’’ classes, but
for single object bounding boxes, the differences between the
mean and median are smaller.

B. KEY-POINT PARTITION IOU MEASURES
When clusters are generated from key-points, using well
established clustering methods such as K-Means [44], [45],
they form the basis for generating partitions that define
an estimated bounding box for cropping and subsequent
classification by the whole network. Although the AP results
from layer 5 in the previous section show that the GFMs find
points that with good probability will be included in an object
bounding box over a wide range of N, it is also necessary that
the selected points be distributed within the bounding boxes
so that clusters of them will cover or nearly cover the full area
of the objects’ bounding boxes.

An estimated bounding box from the collection of SNP
points can be used to compute the Intersection over Union,
IOU, relative to the associated ground truth bounding box.
For the ith ground truth bounding box, Bi, the coverage by SNP
will be estimated based on the subset SNPi of points in SNP that
are located in Bi. Let the estimate B̂i be the bounding box for
SNPi . Then IOUi will be the ratio of the area of B̂i to the area of
Bi. This provides a reasonable measure of the potential of the
selected key-points in SN to cover each ground truth bounding
box. In operation there will be some variability depending on
the selected clustering approach. Some points in SNN might
also be included with clusters from SNP and bounding boxes
for identified clusters might be increased by some margin
before cropping.

Figure 17 shows the sorted IOU performance of each of the
four image test sets using the GFMκ method, along with the
IOU performance of the R-CNN model with the same image
test set. The plots for R-CNN are shown for two conditions:
for R-CNN IOU the true IOU is shown, and for R-CNN
ground truth overlap, only the overlap ratio for the ground
truth bounding boxes is shown. The latter conditionmakes the
comparison to the GFMmethods equal in terms of measuring
only the ground truth bounding box overlap for both R-CNN
and GFM methods. For each bounding box Bi in the test set
of 200 images, IOUi is computed, and then these values are
sorted to make the plot in Figure 17. The average number of
bounding boxes per image varies from 1.6 for the ‘‘cat’’ class
to 3.8 for the ‘‘car’’ class so the total number of bounding
boxes per image set is between 320 and 760.

The R-CNN performance is generally better compared to
SNP for a small N in the range of 100 to 200. However,
IOU performance for GFM methods is non-decreasing as
N increases, and whenN is in the range of 400 to 4096 the SNP
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FIGURE 17. Sorted IOU performance compared to R-CNN IOU.

set is better than the R-CNN result. In addition, both R-CNN
and GFM approaches have bounding box misses where
IOU=0; the number of misses varies for different classes.
The content-dependent variability for R-CNN is evident in
Figure 17 in which the IOU values for ‘‘cat’’ and ‘‘dog’’
are considerably higher than the IOU values for ‘‘boat’’ and
‘‘car’’. While some ground truth bounding boxes are missed,
the points in SNN may indicate the identification of potential
object locations that are not part of the baseline test image
data set.

One of the main methods for evaluating IOU ratios for
bounding boxes in the VOC test environment is IOU@0.5,
as described in [16]. IOU@0.5 assigns a value of 1 for a
bounding box if the IOU ≥ 0.5, and 0 otherwise. The
average for the IOU@0.5 computed from Figure 17 as the
percent of IOUs with values larger than 0.5 is summarized
in Table 6. The average IOU@0.5 of the estimated bounding
boxes is shown for a range of values of N. In addition
the average IOU@0.5 was provided for the R-CNN model
evaluated with the same test images and with the same
IOU@0.5 threshold, for two R-CNN conditions as described
above. In all class cases, the IOU@0.5 is low for N=100 and
increases to a maximum for N=4096 since ||SNP ||0 increases
as N increases. At N=4096 the average IOU@0.5 ranges
from 81.7 to 96.2, indicating that over 80% of the IOU
measurements had an IOU score of 0.5 or better, for all
classes. For N=100 and 200, the average IOU@0.5 for
all classes is less than the results using R-CNN, which is
consistent with the IOU comparison in Figure 17. However,
for N greater than 800, the average IOU@0.5 for all classes
using GFM methods is higher than the results using R-CNN.
In general, R-CNN values fall between the results for N=200
and N=800.

Based on the results in Figure 17 and Table 6, clustering of
selected points to form partitions for cropping should work
well whenN is above 400. The AP results in Table 4 show that
although increasing N reduces AP, for GFMsum and GFMκ

TABLE 6. Summary of IOU@0.5 performance.

the values are above 60% for N=1600 and only drop to a
minimum of 58% for N=4096. Over the wide range of values
of N between 400 and 4096 key-points are found which have
a high probability of being inside an object based on AP and
also cover a large area of the object bounding box. These
partitions and cropped images would enable the VGG model
to identify multiple objects in an image. Each cropped and
rescaled image that encloses the isolated object would have
a higher probability of being classified correctly by VGG
than the original image because the probability of the cropped
image including a more dominant object would be reduced.
In addition the bounding box would provide a better estimate
of the object location in the original image.

V. CONCLUSION
The objective of this work was to define and analyze a
method that could identify sets of key-points in an image
using a simple CNN architecture which had been trained for
single object classification. The method developed did not
rely on classification outputs, relevance back-propagation or
training. It was based on the observation that early hidden
layers have filters trained to respond to significant features
across the full set of training data, and thus feature maps for
a trained CNN model contain information that can be used to
predict object key-points.

A good set of key-points would provide the input for
well understood clustering methods, and bounding boxes
based on clusters could provide partition definitions that
would be used to crop the input image. The cropped images
would be individually resized and classified by the CNN.
Classifications with high confidence would be accepted, and
the bounding box used for cropping would provide location
information. This approach allows the identification of
multiple objects in an image using a simple CNN architecture
with a large number of classes. It does not require any
specific retraining to predict object locations and does not
require extensive iterative computation to establish the initial
partitions.

Early feature maps were evaluated with emphasis on the
feature maps prior to the first pooling layer in a CNN. In order
to be effective, the sets of key-points should have a high
probability of belonging to the bounding box of an object
and should span enough of the space occupied by the object
to provide reasonable initial bounding boxes. There is no
need to identify all the points in the object. The selection
strategy reflects the fact that the operation of max pooling

VOLUME 11, 2023 102329



A. Rush, S. Wood: Feature Map Activation Analysis for Object Key-Point Detection

layers select the locally largest output before down-sampling
and propagating to higher layers. The feature map before the
first max pooling layer was analyzed in detail. Results using
only this layer were better than using only the previous feature
map layer or using only the feature map before the second
pooling layer. Individual feature maps have a wide variation
in output distributions depending on input image content, but
for any specific image, it was demonstrated that in feature
maps with high maximum values and high kurtosis values,
the highest value outputs were more likely to be found within
visually significant objects.

A Global FeatureMap defined by combining the collection
of feature maps in the selected layer using maximum or
average values with and without kurtosis weighting provided
the basis for selecting potential key-points to be the N highest
values of the GFM. The GFMbased on the average value over
all feature maps was shown to outperform the GFM based
on maximum value of all feature maps. The GFM based on
kurtosis weighting gives priority to feature maps with distinct
outliers, and it outperforms unweighted methods.

Evaluation of results used VOC, and training of the VGG
model was done with ILSVRC trained for 1000 classes.
Global Feature Maps were evaluated for a range of key-point
set sizes from 100 to 4096. This range was shown to have
good precision for up to 4096 selected points. A selection
range of N greater than 4096 tended to select a higher per-
centage of points that were not key-points, which lowered the
PPV, and did not significantly improve the IOU performance.
To explore any variability due to types of objects in images,
four classes from the VOC collection were selected as subsets
for testing and analysis: ‘‘boat’’,‘‘cat’’, ‘‘car’’, and ‘‘dog’’.

IOU@50% was used to determine the percentage of
area of each ground truth bounding box covered by the
bounding box of selected points that were inside the bounding
box. With a key-point set size between 800 and 4096,
our approach compares favorably to the more complex and
computationally costly R-CNN in the context of bounding
box accuracy. In addition, our method often finds key-points
for objects that are missed by R-CNN, and VGG may be
able to identify these missed objects using larger class size.
The bounding boxes used for cropping provide some location
information which would not otherwise be available using
VGG.

This key-point detectionmethod has the potential to greatly
improve the classification capability of simple CNNs by
making it possible to identify multiple objects in a complex
input image, with a modest computation cost, and also
provide some localization information. This method was
demonstrated with VGG, but since no unique characteristics
of VGG were used in the development and analysis of the
key-point detection method, it should be easily adapted for
use on similar architectures which use max pooling. Different
data sets were used for training the network and analyzing
the key-point detection method, so it is expected that the
method will be effective on a wide variety of data sources.
In addition, since the method uses features in early layers it

should extendwithout modification to identify objects for any
object classification set developed with transfer learning.
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