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ABSTRACT This paper introduces CompSkipDSGD, a new algorithm for distributed stochastic gradient
descent that aims to improve communication efficiency by compressing and selectively skipping
communication. In addition to compression, CompSkipDSGD allows both workers and the server to skip
communication in any iteration of the training process and reserve it for future iterations without significantly
decreasing testing accuracy. Our experimental results on the large-scale ImageNet dataset demonstrate that
CompSkipDSGD can save hundreds of gigabytes of communication while maintaining similar levels of
accuracy compared to state-of-the-art algorithms. The experimental results are supported by a theoretical
analysis that demonstrates the convergence of CompSkipDSGD under established assumptions. Overall,
CompSkipDSGD could be useful for reducing communication costs in distributed deep learning and enabling
the use of large-scale datasets and models in complex environments.

INDEX TERMS Compressed and skipped communication, distributed stochastic gradient descent, deep
learning.

I. INTRODUCTION
Distributed stochastic gradient descent (DSGD) is a funda-
mental algorithm in deep learning due to its ability to handle
large amounts of distributed data. This is a crucial factor in
achieving superior performance in deep learning. In DSGD,
multiple distributed workers compute locally on their datasets
and communicate with a central parameter server to update
the weight parameters of a deep neural network model.
It has been established that utilizing large amounts of training
data in conjunction with a large number of neural network
parameters can greatly enhance learning results.

The use of DSGD and its variants is prevalent in
deep learning. However, practical system-level consid-
erations must be taken into account. One such con-
sideration is the communication between a worker and
the parameter server, which can become a bottle-
neck [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].
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FIGURE 1. Distributed computation with unexpected skips, represented
by the × marks.

To address this issue, researchers have studied techniques
such as replication-based methods [13], [14], [15], [16], [17]
and asynchronous optimization [1], [2], [18], [19] to deal
with slow workers, also known as stragglers. It is crucial
to consider these techniques and their associated trade-offs
while employing DSGD in real-world applications.

The communication efficiency of DSGD has been a
topic of research in the literature, with many works
focusing on the compression of communication from work-
ers [7], [11], [20], [21], [22], [23], [24], [25]. There
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have been proposals to also compress communication from
the parameter server [4], [26], [27], [28], [29], leading
to algorithms with bidirectional compression of gradients.
While unified frameworks have been proposed in [30]
and [31], they do not consider momentum or server skip in the
analysis and experiments. It is worth noting that momentum
plays a significant role in the accurate experimentation of
large scale datasets like ImageNet. Furthermore, the absence
of server skip analysis is another limitation that requires
further investigation.

In this context, we propose to consider a system model
where, in addition to communication compression, any train-
ing worker or the central parameter server can temporarily
‘‘skip’’ any interaction as in Figure 1, or in other words,
both workers and the server can compress the communication
to the extreme. This aims at capturing unexpected events
in real-world systems that prevent the machines from
communicating with each other. In this setting, such iteration
skips allow a worker to decide whether to participate in the
training process based on its current connectivity, and also
allow the central parameter server to temporarily ignore slow
workers in any training iteration.

It is important to note that having such communication
skips to improve communication efficiency should not come
at the cost of poor learning performance. Therefore, it is
crucial to have a good learning performance in terms of
testing accuracies, backed up by rigorous theoretical analysis.

A. OUR CONTRIBUTION
We present and evaluate CompSkipDSGD as a derived
form of DSGD handling both communication skip and
communication efficiency. Details are as follows.

• Both the parameter server and the workers in Comp-
SkipDSGD can skip any step of the training process.
In addition, the workers and the server can compress
their communication. Concretely compared with the
state-of-the-art on the same level of ImageNet top-1
accuracy, CompSkipDSGD saves at least 328 gigabytes
of communication. These properties make Comp-
SkipDSGDadvantageous from the viewpoint of network
latency.

• The (top-1) accuracies on the large-scale ImageNet
dataset of CompSkipDSGD are at least 76%, and
hence comparable with baseline results, as shown by
various experiments in Section III. These experimental
results are theoretically backed up by a mathematical
proof of convergence for CompSkipDSGD presented in
Section II.

As seen in Table 1, the primary contribution of our
algorithm is its pioneering approach of incorporating skips
for both workers and servers, which represents a novel
aspect that has not been explored in prior literature. This
innovative feature sets our algorithm apart from existing
methods and introduces a new dimension to the field. The
experiments conducted on the ImageNet dataset demonstrate

TABLE 1. CompSkipDSGD and its predecessors.

the effectiveness of our algorithm in handling such large-scale
datasets.

The description of CompSkipDSGD is given in Algo-
rithm 1 with explanations in Section II. Technically, Comp-
SkipDSGD, while basing on [4], [32], [33], adds a boolean
flag called skip to the workers and the server to indicate
whether the participants skip a training iteration or not.
The flag can be determined by probabilistic events, and
in the experiments by random coin tosses. This flagmakes the
theoretical analyses for previous works such as in [4], [32],
and [33] not applicable to CompSkipDSGD anymore because
the compression rate of communication becomes 0when skip
is set to true. In addition, when a participant skips, the error-
feedback technique as previously used in [4], [32], and [33]
turns out to be potentially problematic, because full errors
from past training iterations can become dominated in the
current and future ones. We can resolve this issue by using a
little trick that involves utilizing a constant hyper-parameter
γ (which can be set to 0.9 by default). This hyper-parameter
is multiplied to the errors so that past errors can be properly
scaled down as the training process continues.

Our CompSkipDSGD not only grants the flexibility for
a worker or the server to skip tasks but also ensures
synchronization with other workers. This fundamental char-
acteristic distinguishes CompSkipDSGD from asynchronous
distributed algorithms. Studies such as [36], [37] have
shown that synchronous algorithms generally achieve higher
levels of accuracy when compared to their asynchronous
counterparts. In line with this body of research, we adopt a
synchronous approach in this paper.

Our CompSkipDSGD exhibits resemblances to dis-
tributed algorithms employed in time-varying graph scenar-
ios [38], [39]. Nevertheless, it is crucial to highlight that there
exist distinct differences and advantages associated with our
approach compared to traditional distributed algorithms on
time-varying graphs. One notable distinction is the inclusion
of a central server in our method, whereas distributed
algorithms on time-varying graphs typically operate without
a central server. The presence of a central server simplifies
the synchronization process during training, contributing to
the convenience and efficiency of our approach.

II. CompSkipDSGD AND ITS ANALYSIS
The description of CompSkipDSGD is in Algorithm 1 in
which there are M workers connected to a central parameter
server. In a worker, line 5 computes the stochastic gradient
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Algorithm 1 Distributed SGD With Compressed and Skipped Communication (CompSkipDSGD)

1: Parameters: ηt , ct , c′t , c̃t , βt,i, β̃t , µ, γ

2: Initialize: x0 ∈ Rd ; m−1,i = e0,i = 0 ∈ Rd ; ẽ0 = 0 ∈ Rd

3: for t from 0 to T − 1 do
4: • The i-th worker (1 ≤ i ≤ M ):
5: gt,i = ∇ℓ(xt , ξt,i) for data ξt,i
6: mt,i = µ · mt−1,i + gt,i
7: pt,i = µ · mt,i + gt,i + γ · et,i
8: ◦ if skipt,i is false: push 1t,i = signβt,i

(pt,i) ∈ Rd to server
9: ◦ if skipt,i is true: set 1t,i = 0 ∈ Rd , and send skip to server

10: receive 1̃t from server
11: xt+1 = xt − ηt · 1̃t
12: et+1,i = pt,i − ct · 1t,i
13: • Central parameter server:
14: obtain 1t,i that is transmitted by workers, namely i ∈ St = {i : skipt,i is false}
15: compute p̃t = γ · ẽt +

1
|St |

∑
i∈St c

′
t · 1t,i

16: ◦ if serverSkipt is false: push 1̃t = signβ̃t
(p̃t ) to workers

17: ◦ if serverSkipt is true: set 1̃t = 0 ∈ Rd and send skip to workers
18: ẽt+1 = p̃t − c̃t · 1̃t
19: end for

of a data batch. Line 6 adds stochastic momentum to the
gradient. Line 7 applies Nesterov momentum added with the
past error scaled by the hyper-parameter γ . The function of
the form signβ (p) at line 8 (and line 16) transforms p into
a vector of signs in which each component is kept the same
with probability β, and otherwise zero with probability 1−β.
Concretely, if p = (p1, . . . , pd ) ∈ Rd then signβ (p) =

(sp1, . . . , spd ) ∈ {−1, 0, 1}d in which

spi =

{
sign(pi) with probability β

0 with probability 1 − β

In lines 8 and 9, there is a boolean flag skipt,i of worker
i in iteration t: if skipt,i is false then the gradient signs
are sent to the server; and if skipt,i is true then essentially
nothing is sent to the server. Therefore, the flag skipt,i can
be used by worker i to control the communication with the
server at each iteration. Line 12 updates the local error at
each worker, with the error-learning rate ct . When skipt,i
is true, in line 12 we have et+1,i = pt,i which means that
the error fed to iteration t + 1 contains the full gradient
of iteration t , scaled by a factor γ controlling the effect
of such error, particularly in future iterations as discussed
above.

Line 15 averages all 1t,i, and adds possible server error.
At lines 16 and 17, the boolean flag serverSkipt determines
whether the server sends back the accumulated and processed
gradient signs to all of the workers. If serverSkipt is true,
then ẽt+1 = p̃t which as above means that the full gradient is
reused for the next iteration. Line 18 updates the server error
using a hyper-parameter c̃t . Later, we take ct = c̃t = c for a
small constant c.

One approach to reducing communication between the
workers and the parameter server is to have them set the
boolean flags skipt,i and serverSkipt uniformly at random.
By doing so, they can independently determine whether or
not to communicate based on a random selection process.
This randomness helps distribute the communication load
more evenly among the workers and alleviates potential
bottlenecks.

In addition to random flag setting, another technique
to optimize communication is by considering local indi-
cators such as communication bandwidth. Each worker
and the parameter server can monitor their own com-
munication capabilities, such as available bandwidth or
network congestion, and use this information to make
informed decisions about participating in the training
process.

By taking into account local indicators, the workers
and the parameter server can dynamically adjust their
probability of participating in communication. For instance,
if a worker or the parameter server detects a high communica-
tion bandwidth and low congestion, they might increase their
probability of engaging in communication, as the network
conditions are favorable. Conversely, if they observe limited
bandwidth or high congestion, they could decrease their prob-
ability of participation to avoid exacerbating communication
issues.

This adaptive approach allows the workers and the
parameter server tomake efficient use of their resources while
balancing the training workload. By leveraging randomness
and considering local indicators, they can collectively
reduce unnecessary communication and improve the overall
efficiency of the training process.
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The algorithm CompSkipDSGD can encompass the fol-
lowing algorithms in [26] and [27] in the literature as special
cases:

• It covers signSGDwith majority vote in [26] as a special
case by setting µ = γ = 0, skipt,i = serverSkipt =

false for all t, i.
• It covers the dropSignSGD in [27] by setting γ = 1, and

skipt,i = serverSkipt = false for all t, i.
Having the boolean flags for skipping the communication as
in CompSkipDSGD adds more flexibility to the workers and
the server, while simultaneously reducing the communication
costs as shown in the experiments.

Let us proceed with the theoretical analysis of the
algorithm, ensuring that it converges mathematically. Let ∥·∥
be the Euclidean norm, and ⟨·, ·⟩ be the inner product. Given a
loss function ℓ : Rd

×4 → R+ which can be non-convex, set
f (x) = Eξ [ℓ(x, ξ )] where x ∈ Rd represents the parameters
of a neural network, and ξ is a data batch. We use below
assumptions [4], [5], [27], [33] for the theoretical analysis of
CompSkipDSGD.
Assumption 1: The value f ⋆

= infx∈Rd f (x) < ∞ exists.
The function f is differentiable, and for a positive number L:

∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rd , (1)

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ +
L
2

∥x − y∥2. (2)

Assumption 2: Et [gt,i] = ∇f (xt ) and ∃σ, Et [∥gt,i −

∇f (xt )∥2] ≤ σ 2 where Et is the expectation at step t .
Assumption 3: ∥∇f (xt )∥2 ≤ ω2 for a constant ω.
Assumption 4: {gt,i − ∇f (xt )}1≤i≤M are independently

random vectors.
The theoretical convergence of CompSkipDSGD is

ensured by the following result.
Theorem 1: GivenAssumptions 1-4, and ct = c̃t = c ∀t ≥

0 for some c > 0, there is a sequence {ηt } such that

min0≤t≤T−1E[∥∇f (xt )∥2] ≤ O
(

1
√
T

)
,

namely the gradient components of f approaches 0 when the
number of steps T becomes large.

Proof: Given xt , ẽt , ηt , et,i from Algorithm 1, let η−1 =

0 and for t ≥ 0 we define the the sequence {x̃t } as follows

x̃t = xt −
ηt−1

c

(
ẽt +

1
M

M∑
i=1

et,i

)
.

Then by Lemma 1 (see the appendix), we have

x̃t+1 = x̃t −
ηt

cM

M∑
i=1

gt,i.

Using (2), we have,

Et [f (x̃t+1)] ≤ f (x̃t )

+ ⟨∇f (x̃t ),Et [x̃t+1 − x̃t ]⟩ +
L
2
Et [∥x̃t+1 − x̃t∥2]

= f (x̃t ) −
ηt

c

〈
∇f (x̃t ),Et

[
1
M

M∑
i=1

gt,i

]〉

+
Lη2t

2c2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 (3)

=f (x̃t ) −
ηt

c
⟨∇f (x̃t ), ∇f (xt )⟩

+
Lη2t

2c2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 , (4)

where (3) and (4) are by Lemma 1 and Assumption 2
respectively. Additionally, given the expectation on the
stochastic gradient Et [gt,i] = ∇f (xt ) by Assumption 2 which
yields Et [ 1

M

∑M
i=1 gt,i] − ∇f (xt ) = 0, we have

Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 = Et

[
∥∇f (xt )∥2

]

+ 2Et

〈
1
M

M∑
i=1

gt,i − ∇f (xt )︸ ︷︷ ︸
=0 after applying Et

, ∇f (xt )

〉

+ Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i − ∇f (xt )

∥∥∥∥∥
2 ,

= Et
[
∥∇f (xt )∥2

]
+ Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i − ∇f (xt )

∥∥∥∥∥
2 ,

combining with (4), we have

Et [f (x̃t+1)]≤ f (x̃t ) −
ηt

c
⟨∇f (x̃t ), ∇f (xt )⟩

+
Lη2t

2c2
∥∇f (xt )∥2

+
Lη2t

2c2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i − ∇f (xt )

∥∥∥∥∥
2 .

Using Assumption 4,

Et

∥∥∥∥∥
M∑
i=1

(gt,i−∇f (xt ))

∥∥∥∥∥
2 =

M∑
i=1

Et
[∥∥gt,i−∇f (xt )

∥∥2]
≤ Mσ 2.

Therefore

Et

∥∥∥∥∥ 1
M

M∑
i=1

(gt,i − ∇f (xt ))

∥∥∥∥∥
2 ≤

σ 2

M
. (5)

By (5), we obtain

Et [f (x̃t+1)] ≤ f (x̃t ) −
ηt

c
⟨∇f (x̃t ), ∇f (xt )⟩

+
Lη2t

2c2
∥∇f (xt )∥2 +

Lη2t σ
2

2c2M
. (6)
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In addition, we have

− ⟨∇f (x̃t ), ∇f (xt )⟩

= ⟨∇f (xt ) − ∇f (x̃t ), ∇f (xt )⟩ − ⟨∇f (xt ), ∇f (xt )⟩

= ⟨∇f (xt ) − ∇f (x̃t ), ∇f (xt )⟩ − ∥∇f (xt )∥2

≤
1
2
∥∇f (xt )∥2 +

1
2
∥∇f (xt ) − ∇f (x̃t )∥2 − ∥∇f (xt )∥2

= −
1
2
∥∇f (xt )∥2 +

1
2
∥∇f (xt ) − ∇f (x̃t )∥2

≤ −
1
2
∥∇f (xt )∥2 +

L2

2
∥xt − x̃t∥2, (7)

where the last inequality is by (1). By the setting of the
sequence {x̃t }, we obtain

∥xt − x̃t∥2 =
η2t−1

c2

∥∥∥∥∥ẽt +
1
M

M∑
i=1

et,i

∥∥∥∥∥
2

≤
η2t−1

c2
G2U , (8)

where the last inequality is by Lemma 2. Given (8), the
inequality (7) provides us with

− ⟨∇f (x̃t ), ∇f (xt )⟩ ≤ −
1
2
∥∇f (xt )∥2 +

η2t−1

c2
G2L2 U .

Therefore, by (6), we have

Et [f (x̃t+1)] ≤ f (x̃t ) −

(
ηt

2c
−
Lη2t

2c2

)
∥∇f (xt )∥2

+
Lη2t σ

2

2c2M
+

ηtη
2
t−1G

2L2U

c3

which yields the following(
ηt

2c
−
Lη2t

2c2

)
∥∇f (xt )∥2

≤ E[f (x̃t ) − f (x̃t+1)]

+
Lη2t σ

2

2c2M
+

ηtη
2
t−1G

2L2U

c3
.

Let ηt ≤
c
2L , and η∗

= min{ηt }t . Then

η∗

4c
∥∇f (xt )∥2 ≤

ηt

4c
∥∇f (xt )∥2

≤ E[f (x̃t ) − f (x̃t+1)]

+
Lη2t σ

2

2c2M
+

ηtη
2
t−1G

2L2U

c3
.

Therefore

∥∇f (xt )∥2 ≤
4c
η∗

E[f (x̃t ) − f (x̃t+1)]

+
2Lη2t σ

2

η∗cM
+

4ηtη2t−1G
2L2U

η∗c2
.

FIGURE 2. Effect of changing hyper-parameters ct and c̃t , with fixed skip
probabilities of 0.3 (for all workers) and 0.1 (for server).

Using the following

T−1∑
t=0

4c
η∗

E[f (x̃t ) − f (x̃t+1)] =
4c
η∗

(f (x̃0) − f (x̃T ))

≤
4c
η∗

(
f (x̃0) − f ⋆

)
,

we obtain
T−1∑
t=0

E[∥∇f (xt )∥2] ≤
4c
η∗

(
f (x̃0) − f ⋆

)
+

T−1∑
t=0

2Lη2t σ
2

η∗cM

+

T−1∑
t=0

4ηtη2t−1G
2L2U

η∗c2
.

If η0 = 1/
√
T and ηt = η0γ

−t , we have
∑T−1

t=0 ηt =

η0(1− γ −T )/(1− γ −1) and
∑T−1

t=0 η2t = η20(1− γ −2T )/(1−

γ −2). Therefore, 1
T

∑T−1
t=0 ηt = O(1/

√
T ) and 1

T

∑T−1
t=0 η2t =

O(1/T ) provided that γ ≲ 1 such as γ = 1 −
1

T+1 .
In addition, 1/(Tη∗) = 1/(Tη0) = 1/

√
T and ηt/η

∗
≈ 1 by

such choice of γ . These conditions give us

1
T

T−1∑
t=0

E[∥∇f (xt )∥2]

≤ O
(
4c (f (x̃0) − f ⋆)

√
T

+
2Lσ 2

cM
√
T

+
4G2L2U
c2T

)
.

The number of clients M , those skipped at an iteration, and
the compression parameters (βt,i, β̃t ) only affect the higher
term 1/T in the inequality. Therefore, the convergence rate is
determined by the lower terms of O

(
1

√
T

)
, as claimed in the

theorem statement.

III. EXPERIMENTS
We conduct experiments with the ImageNet dataset [40]
using ResNet-50 [41] which has the number of parameters
d = 25, 557, 032. The PyTorch codes associated with [26]
and [42] are modified with necessary changes for Comp-
SkipDSGD. As in previous works, we select the number
of distributed workers M = 7, the batch size 128, and
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FIGURE 3. Effects of hyper-parameters, and communication skips (of the server and workers) on learning accuracies. (a) Effect of various
server skip probabilities, given a fixed worker skip probability of 0.3. (b) Effect of various worker skip probabilities, given a fixed server
probability of 0.1.

momentum µ = 0.9. We set γ = 0.9, βt,i = 0.3, and
β̃t = 0.5 in the experiments if not otherwise stated.

A. THE EFFECT OF HYPER-PARAMETERS CT AND C̃T
In the experiments, we choose ct = c̃t = c, in which c ∈

{10−2, 2 · 10−2, 4 · 10−2
}, and fixed skip probabilities of 0.3

(for all workers) and 0.1 (for server). As seen in Figure 2, the
choice of c = 10−2 gives a better graph, with final accuracy
of 76.40% instead of 76.12% (when c = 2·10−2) and 74.03%
(when c = 4 · 10−2). Therefore, for other experiments,
we simply stick with this choice of c = 10−2.

B. THE EFFECT OF SERVER SKIP
In Figure 3(a), we vary the probabilities that the server skips,
while maintaining a constant probability that a worker skips,
to examine the effect of server skip on the testing accuracy.
Specifically, the probability that the server skips is set to 0.1,
0.2, 0.3, 0.4, and 0.5; while a worker skips with a probability
of 0.3. As expected, the testing accuracy decreases as the
server skip probability increases as shown in Figure 3(a).
The gained accuracies are 76.40%, 76.35%, 76.30%, 76.21%,
and 75.84% respectively. Therefore, if the server skips with
probability ≤ 0.4, the final accuracy can still be at least 76%.

C. THE EFFECT OF WORKER SKIP
In Figure 3(b), we vary the probabilities that the workers
skip while maintaining a constant probability that the server
skips, to examine the effect of worker skip on the testing
accuracy. Specifically, the probability that the server skips
is set to 0.1; while a worker skips with probability set
in {0.15, 0.30, 0.45, 0.60}. Because we consider 7 workers,
this setting means that in each iteration, there are 7 ×

{0.15, 0.30, 0.45, 0.60} = {1.05, 2.10, 3.15, 4.20} workers
who do skip on the average. In other words, there are
expectedly more than {1, 2, 3, 4} skip workers in each iter-
ation. Figure 3(b) depicts the accuracy graphs corresponding
to these settings, showing that the accuracy decreases (as
expected) if more workers skip. Nonetheless, the accuracy

TABLE 2. Saved communication compared to the algorithm in [27] on
approximately identical level of testing accuracy.

decline is not quite aggressive, as in the worst case of 60%
skip workers in each iteration, the final accuracy is still
75.85%, compared with 76.76% of the baseline with no skips
at all. In addition, in other cases, the final accuracies are at
least 76%.

Although the algorithm converges to a local minimum,
there is a decline in testing accuracy, suggesting that the
resulting model exhibits poorer generalization capabilities.
This decline in testing accuracy can be attributed to the
reduced amount of data utilized during training due to the
skipping mechanisms.

D. COMPARISON ON COMMUNICATION COSTS
Besides communication skips (which are not allowed by
previous works such as original DSGD and [4], [7], [20],
[26], [27]), CompSkipDSGD is relatively communication-
efficient. We set the skip probability of workers to 0.3,
and the skip probability of the server to 0.1 respectively.
Therefore, the probabilities of non-skip communication in
each iteration become 0.7 (for workers), and 0.9 (for the
server, respectively). Combinedwith the fact that eachworker
only sends 0.3d bits of gradients in our setting, the number of
bits each worker needs to transmit is 0.7 × 0.3d = 0.21d on
average. Similar computations hold for the server, yielding at
most 0.27Md bits, in whichM is the number of workers.

Let us compute a concrete amount of communication
saved by CompSkipDSGD. Admitting a negligible decline
(0.09%) of accuracy from 76.09% in [27] to 76.00% in
CompSkipDSGD, the server saves 0.3Md − 0.27Md =
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0.03Md bits in each iteration. With the number of workers
M = 7 and the number of epochs of 90 to reach such
accuracies on the ImageNet dataset, the number of iterations
becomes 90 (epochs) ×1359 = 122, 310 iterations because
the number of iterations in one epoch is 1359. Therefore, the
number of bits saved is 122, 310 × 0.03Md = 3669.3Md =

3669.3 × 7 × 25, 557, 032 = 6.5643 × 1011 (bits), which
is converted into 82 gigabytes approximately. Similarly,
the communication amount saved by CompSkipDSGD for
M workers is of the form 122, 310 × (0.3 − 0.21)d ×

M = 1.9693 × 1012 (bits), which is converted into
246 gigabytes approximately. Some more numbers on the
saved communication cost are given in Table 2. Summing
up, our CompSkipDSGD saves hundreds of gigabytes when
compared with the algorithm in [27] on almost the same level
of accuracy.

IV. CONCLUSION
We propose a new algorithm, called CompSkipDSGD, which
enables both workers and the server to temporarily skip
communication while maintaining comparable accuracy on
a large-scale benchmark dataset, resulting in better commu-
nication efficiency. We demonstrate that CompSkipDSGD
mathematically converges. Our approach of incorporating
communication skips with an internal state to improve
accuracy could potentially impact the development of other
algorithms in the future.

In addition, it is important to acknowledge that real-life
optimization problems encountered in practical environments
often demand amulti-faceted approach. Such challenges typi-
cally necessitate the utilization of various existing algorithms,
and CompSkipDSGD can be regarded as a valuable addition
to the repertoire of available techniques.

APPENDIX HELPING LEMMAS
Below are helping lemmas for the proof of Theorem 1.
Lemma 1: Let ct = c̃t = c > 0, ηt = γ −1ηt−1, c′t/|St | =

c/M , and x̃t = xt −
ηt−1
c

(
ẽt +

1
M

∑M
i=1 et,i

)
. Then

x̃t+1 = x̃t −
ηt

cM

M∑
i=1

gt,i.

Proof: By definition

x̃t+1 = xt+1 −
ηt

c

(
ẽt+1 +

1
M

M∑
i=1

et+1,i

)
= xt −

ηt

c
(
c
M

∑
i∈St

signβt,i
(pt,i) + γ · ẽt )

−
ηt

cM

M∑
i=1

et+1,i

= xt −
ηt

cM

∑
i∈St

(c · signβt,i
(pt,i) + et+1,i)

−
γ · ηt

c
ẽt −

ηt

cM

∑
i̸∈St

et+1,i

= xt −
ηt

cM

∑
i∈St

pt,i −
γ · ηt

c
ẽt −

ηt

cM

∑
i̸∈St

pt,i

= xt −
γ · ηt

c
ẽt −

ηt

cM

M∑
i=1

(gt,i + γ et,i)

= xt −
γ · ηt

c

(
ẽt +

1
M

M∑
i=1

et,i

)
−

ηt

cM

M∑
i=1

gt,i

= xt −
ηt−1

c

(
ẽt +

1
M

M∑
i=1

et,i

)
−

ηt

cM

M∑
i=1

gt,i

= x̃t −
ηt

cM

M∑
i=1

gt,i

which finishes the proof.
For the purpose of simplifying the theoretical analysis of

the algorithm, we specifically set the momentum parameter
to 0 in the proof. This enables us to focus on the
core principles and mathematical reasoning underlying the
algorithm, without the added complexity introduced by non-
zero momentum values. It is important to note that while
we choose a specific value in the proof for theoretical
convenience, the experimentation phase allows for a broader
exploration of different momentum parameter settings.
Lemma 2: Let G2

= σ 2
+ ω2 for constants σ and ω given

in Assumptions 2 and 3. Additionally, assume the momentum
parameter µ = 0. There is a bound U such that∥∥∥∥∥ẽt +

1
M

M∑
i=1

et,i

∥∥∥∥∥
2

≤ G2 U .

Proof: We have∥∥∥∥∥ẽt+1 +
1
M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤ 2∥ẽt+1∥
2
+

2
M

M∑
i=1

∥et+1,i∥
2.

(9)

Additionally,

1
M

M∑
i=1

∥et+1,i∥
2
=

1
M

∑
i∈St

∥ctsignβt,i
(pt,i)−pt,i∥2

+
1
M

∑
i̸∈St

∥pt,i∥2 (10)

≤
1
M

∑
i∈St

(1 − δβt,i )∥pt,i∥
2
+

1
M

∑
i̸∈St

∥pt,i∥2

(11)

≤
(1 − δ)
M

∑
i∈St

∥pt,i∥2 +
1
M

∑
i̸∈St

∥pt,i∥2. (12)

where equality (10) is by the setting of et+1,i and pt,i in
Algorithm 1; (11) and 0 < δβt,i < 1 are owing to Lemma 1
of [27]; and (12) is by setting δ ≤ min{δβt,i}. Continuing with
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the above inequality,

(12)≤
(1 − δ)
M

∑
i∈St

∥gt,i + γ · et,i∥2

+
1
M

∑
i̸∈St

∥gt,i + γ · et,i∥2 (13)

≤
(1 − δ)(1 + λ)γ 2

M

∑
i∈St

∥et,i∥2

+
(1 − δ)(1 + 1/λ)

M

∑
i∈St

∥gt,i∥2

+
(1 + λ)γ 2

M

∑
i̸∈St

∥et,i∥2

+
(1 + 1/λ)

M

∑
i̸∈St

∥gt,i∥2 (14)

for all λ ≥ 0, where (14) is by Young inequality with λ > 0.
In addition,

(14)≤
(1 − δ)(1 + λ)

M

∑
i∈St

∥et,i∥2

+
(1 − δ)(1 + 1/λ)

M

∑
i∈St

∥gt,i∥2

+
(1 − δγ )(1 + λ)

M

∑
i̸∈St

∥et,i∥2

+
(1 + 1/λ)

M

∑
i̸∈St

∥gt,i∥2 (15)

≤(1 − δ)(1 + λ)

(
1
M

M∑
i=1

∥et,i∥2
)

+ (1 + 1/λ)G2, (16)

where (15) is by γ ≤ 1 and δγ = 1 − γ 2; and (16) is by
1 − δ ≤ 1 and by setting δ ≤ δγ . Note that inequality (16) is
of the form

at+1 ≤ αat + β, (17)

where at+1 =
1
M

∑M
i=1∥et+1,i∥

2, and

α = (1 − δ)(1 + λ), β = (1 + 1/λ)G2. (18)

Applying Lemma 1 of [32], we obtain

at+1 ≤ β

t∑
j=0

αj, (19)

By choosing λ =
δ

2(1−δ) , we get

β =
(2 − δ)G2

δ
, α = 1 −

δ

2
. (20)

Because 0 < α < 1, we obtain
∑t

j=0 αj ≤
∑

j≥0 αj =
1

1−α
.

Therefore (19) becomes

1
M

M∑
i=1

∥et+1,i∥
2

≤
β

1 − α
=

2(2 − δ)G2

δ2
. (21)

Let us now consider the term ∥ẽt+1∥
2 of (9). WithMt = |St |,

we have the following

∥ẽt+1∥
2

= ∥c̃tsignβ̃t
(p̃t ) − p̃t∥2

≤ (1 − δβ̃t
)∥p̃t∥2

= (1 − δβ̃t
)

∥∥∥∥∥∥ 1
Mt

∑
i∈St

c′tsignβt,i
(pt,i) + γ ẽt
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2
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)γ 2(1 + λ)∥ẽt∥2
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2

≤ (1 − δ̃)(1 + λ)∥ẽt∥2

+ (1 − δ̃)(1 + 1/λ)

∥∥∥∥∥∥ 1
Mt

∑
i∈St

c′tsignβt,i
(pt,i)
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2

where the second inequality is by Young inequality for any
λ > 0, and the last inequality is by γ ≤ 1 and δ̃ = min{δβ̃t

}.
We additionally have∥∥∥∥∥∥ 1

Mt

∑
i∈St

c′tsignβt,i
(pt,i)

∥∥∥∥∥∥
2

≤
1
Mt

∑
i∈St

∥c′tsignβt,i
(pt,i)∥2

≤
1
Mt

∑
i∈St

(
2∥c′tsignβt,i

(pt,i) − pt,i∥2 + 2∥pt,i∥2
)

≤
1
Mt
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(
2(1 − δβt,i )∥pt,i∥

2
+ 2∥pt,i∥2

)
(22)

=
1
Mt

∑
i∈St

2(2 − δβt,i )∥pt,i∥
2

≤ 2(2 − δ)
1
Mt

∑
i∈St

∥pt,i∥2, (23)

where (22) is by Lemma 1 of [27], and (23) is by δ ≤

min{δβt,i}. Therefore

∥ẽt+1∥
2

≤ (1 − δ̃)(1 + λ)∥ẽt∥2

+ 2(2 − δ)(1 − δ̃)(1 + 1/λ)
1
Mt

∑
i∈St

∥pt,i∥2

= (1 − δ̃)(1 + λ)∥ẽt∥2
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M
Mt

1
M

∑
i∈St

∥pt,i∥2.

Since (21) holds for all t , we get 1
M

∑M
i=1∥et,i∥

2
≤

β
1−α

.
Moreover, recall that (1 − δ)(1 + λ) = α from (18) and
β =

(2−δ)G2

δ
from (20). Therefore the upper bound for (16) is
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as follows

(16) ≤ α ·
β

1 − α
+ β =

β

1 − α
=

2(2 − δ)G2

δ2
.

This inequality and (12) yield

(1 − δ)
M

∑
i∈St

∥pt,i∥2 +
1
M

∑
i̸∈St

∥pt,i∥2 ≤
2(2 − δ)G2

δ2

which implies

1
M

∑
i∈St
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δ2(1 − δ)
.

Therefore
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2

≤ (1 − δ̃)(1 + λ)∥ẽt∥2
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Hereafter, choosing λ =
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, we obtain

(1 − δ̃)(1 + λ) = 1 −
δ̃

2
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.

Therefore

∥ẽt+1∥
2
≤

(
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δ̃

2

)
∥ẽt∥2

+
4(1 − δ̃)(2 − δ̃)(2 − δ)2G2M

δ̃(1 − δ)δ2Mt
. (24)

Note that inequality (24) is of the form

at+1 ≤ αat + β, (25)

where

at+1 = ∥ẽt+1∥
2

α = 1 −
δ̃

2

β =
4(1 − δ̃)(2 − δ̃)(2 − δ)2G2M

δ̃(1 − δ)δ2Mt
.

Applying Lemma 1 of [32], we obtain

∥ẽt+1∥
2

≤ β

t∑
j=0

αj

≤
8(1 − δ̃)(2 − δ̃)(2 − δ)2G2M

(δ̃)2(1 − δ)δ2Mt
(26)

where (26) is by the fact that

t∑
j=0

αj ≤

∑
j≥0

αj =
1

1 − α
=

2

δ̃
.

Substituting (21) and (26) into (9) gives us∥∥∥∥∥ẽt+1 +
1
M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤
4(2 − δ)G2

δ2
+

16(2 − δ̃)(1− δ̃)(2 − δ)(2 − δ)G2M
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=
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δ2

(
1 +

4(2 − δ̃)(1 − δ̃)(2 − δ)M

(δ̃)2(1 − δ)Mt

)
Let

Ut =
4(2 − δ)

δ2

(
1 +

4(2 − δ̃)(1 − δ̃)(2 − δ)M

(δ̃)2(1 − δ)Mt

)
and U = max{U0, . . . ,UT−1}, we obtain∥∥∥∥∥ẽt+1 +

1
M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤ G2U

and the claim follows.
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