
Received 9 August 2023, accepted 12 September 2023, date of publication 14 September 2023,
date of current version 26 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3315656

An IoT-Based Microservice Platform for
Virtual Puppetry Performance
HELIN LUO 1,2, (Member, IEEE), YI-BING LIN 1,3,4,5,6,7, (Fellow, IEEE),
CHEN-CHI LIAO3, AND YUNG-HUI HUANG3
1Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan
2Graduate Institute of Animation and Film Art, Tainan National University of the Arts, Tainan 720, Taiwan
3Department of Computer Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
4College of Humanities and Sciences, China Medical University, Taichung 406, Taiwan
5Miin Wu School of Computing, National Cheng Kung University, Tainan 701, Taiwan
6Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan
7College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan 711, Taiwan

Corresponding author: Yi-Bing Lin (liny@nctu.edu.tw)

This work was supported in part by the National Science and Technology Council (NSTC) under Grant 110-2622-8-A49-022, Grant
NSTC112-2221-E-A49-049, Grant 112-2420-H-A49-001, Grant 112-2221-E-369 -001, and Grant 111-2221-E-369-001; in part by the
Miin Wu School of Computing, National Cheng Kung University (NCKU), AiQ Smart Clothing Inc.; and in part by the Research Center
for Information Technology Innovation, Academia Sinica.

ABSTRACT This study proposes a web-based real-time remote-controlled virtual puppetry (avatar) per-
formance platform called AvatarTalk to combine traditional Taiwanese puppetry, the Internet of Things
(IoT), and 3D avatar models. AvatarTalk enables puppeteers to control avatar puppets on the web using
either motion capture gloves or camera-based image recognition. This transformative performance approach
not only facilitates remote performances and multi-screen presentations across various devices but also
introduces a fresh gesture interpretation technique for dance artists. AvatarTalk supports a mechanism that
can accommodate new control and puppet devices from other approaches through the IoT-basedmicroservice
concept.We develop a calibration procedure to enable the accurate capture of hand gestures to manipulate the
movements of virtual puppets, empowering them to perform fundamental traditional puppetry poses such as
nodding, bowing, and synchronized hand movements. We have conducted experiments to show the accuracy
of AvatarTalk calibration. Our study indicates that AvatarTalk can almost detect the right gestures (98.75%-
100% recall) and very seldom mistake the wrong gestures (90.8%-100% precision). Additionally, we also
provide the mechanism to measure the delays of controlling the puppets. An analytic model is proposed
to design the delay times of the messages between the control device of a puppeteer and the AvatarTalk
server. In the current AvatarTalk implementation, if the message delay does not exceed 0.1 seconds, four
puppeteers can synchronize their actions if the elapsed time between two actions of a puppeteer is longer
than 0.3 second.

INDEX TERMS Arts and humanities, avatar, interaction paradigms, interactive art performance, Internet of
Things (IoT), microservice, puppet.

I. INTRODUCTION
Puppetry is one of Taiwan’s cultures, commonly seen in tra-
ditional festivals or religious occasions. Puppeteers wear real
puppet dolls on their hands and interpret various storylines

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

through gestures, music, and dialogues. Therefore, it is also
known as ‘‘palm puppetry.’’ Puppetry has experienced a grad-
ual decline in recent years. To preserve this invaluable cultural
heritage, we propose AvatarTalk, an innovative approach that
merges information and communications technology with
traditional puppetry. Through this integration, we aim to cre-
ate a new and captivating form of performance while ensuring

103014
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9788-3863
https://orcid.org/0000-0001-6841-4718
https://orcid.org/0000-0002-3202-1127


H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

the longevity of this art form. Based on an Internet of Things
(IoT) application development platform [1], we make non-
trivial extension of our previous work PuppetTalk [2], and
propose AvatarTalk that utilizes cameras or smart gloves
for motion capture. It allows puppeteers to control virtual
or real puppets using gestures or body movements. This
enables puppeteers to perform using 3D virtual puppets on a
web page. This performance method can be used for remote
performances, multi-screen presentations across devices, and
can also be combined with dance performances, providing a
new interpretation of performance for dance artists.

AvatarTalk follows an IoT-based microservice approach to
create the puppetry applications. To achieve the microservice
goal, there are two requirements:

Microservice Requirement 1 (MS R1): The microser-
vices must be capable of independent deployment.

Microservice Requirement 2 (MS R2): An integration
mechanism exists to facilitate the arbitrary reuse of microser-
vices while maintaining loose coupling, enabling the creation
of applications.

With MS R1 and R2, the applications developed in the
platform are reusable, scalable and maintainable. AvatarTalk
uses the device model concept to accommodate the IoT-based
control mechanisms (smart gloves, MediaPipe [3] [4], etc.)
and the puppets (either virtual avatars or real robots), and
implement them as microservices, which satisfies MS R1.
AvatarTalk uses the device feature concept to arbitrarily link
multiple microservices to create an application, which satis-
fies MS R2. Details of device model and device feature will
be elaborated in Section III.
The paper is organized as follows: Section II provides

an overview of the literature, discussing the digitization of
traditional puppets and the relevant applications of avatar
models; Section III describes the AvatarTalk architecture;
Section IV elaborates on remote motion control including
smart gloves and MediaPipe; Section V designs the Avatar
device; Section VI showcases the Avatar graphical user
interface (GUI) and explain the operational flow for con-
trolling the virtual puppets; Section VII elaborates on the
microservice design issues, the calibration performance and
the synchronization problem that may occur in remote control
of puppets.

II. RELATED WORK
In addition to traditional temple performances, puppetry has
further extended to become an artistic form of television and
film, or performances that incorporate technological meth-
ods. One example of combining technology with puppetry
is the real-time remote mechanical puppet control platform
called PuppetTalk [2], developed using the IoT technology.
This study uses the smart glove to control the mechani-
cal puppets. When the mechanical puppets receive gesture
data through IoT, they will control the rotation angles of
the motors according to the corresponding finger positions.
In addition, the system also provides various input devices
such as mobile phones to trigger pre-set actions for additional

control of the mechanical puppets. Through the microservice
approach, we have seamlessly integrated PuppetTalk as part
of AvatarTalk.

The Leap Motion device is used in a study [5] to capture
users’ hand movements to control virtual puppetry created in
Unity game engine. Leap Motion is a hardware specifically
designed for hand tracking. It uses two infrared cameras to
track hand movements at a speed of over 200 frames per
second. In this study, the virtual puppet is divided into four
parts: body, head, and left and right arms. The palm is used to
control the body, the index finger controls the head, and the
thumb and little finger are used to control the two arms of the
puppet. No measurement data and analysis was provided in
this work.

Literature [6] and [7] explore the concept of a pup-
petry cloud theater called Virtual Reality Peripheral Network
(VRPN). VRPN supports multiple users to share the same
virtual space over the network from their personal comput-
ers and participate in controlling and performing puppetry
together. The Leap Motion device [8] is also used to cap-
ture hand movements, with finger controls corresponding
to the virtual puppet’s parts, similar to literature [5]. The
study combines VR technology to provide different perfor-
mance experiences and independent perspectives for each
user. No measurement data and analysis was provided in this
work.

There have also been related studies on virtual puppets in
other traditional puppetry forms. Literature [9] was inspired
by traditional wooden puppetry and developed a virtual pup-
pet system applicable to film animation. The system, built on
the Unity game engine, utilizes Leap Motion for hand recog-
nition to support hand control of virtual puppets. This system
provides options for controlling the expressions and body of
virtual puppets. In terms of expression control, users can use
their fingers to control the facial expressions of the virtual
puppet. The mapping between fingers and facial features
is determined through biological analysis and experimental
statistics. For example, the thumb can control the mouth
shape, the index finger controls the eyelids, the middle finger
and ring finger correspond to the eyebrows, and the little
finger is used to control the direction of the eyes. AvatarTalk
references the finger angle ranges proposed in this study.
On the other hand, message delay analyzed by Avatar is not
found in this study.

An Indonesian puppetry approach [10] discusses how
to track gestures using the Microsoft Kinect depth sensor
and applies the density-based spatial clustering of appli-
cations with noise method to cluster and classify hand
gestures, distinguishing between left and right hand move-
ments and recognizing three predefined gestures. The system
triggers animations of virtual puppets based on the ges-
tures, and the performance takes place on a stage with
backgrounds. The precision, accuracy and recall are in the
ranges of 94%-100%, 91%-100% and 94%-100%. As shown
in Table 5, AvatarTalk performs better in some of these
measures.

VOLUME 11, 2023 103015



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

There have also been many related studies on Chinese
shadow puppetry. An interactive animation generation frame-
work is proposed [11] to improve the reusability, scalability,
andmodularity of animation production. The framework gen-
erates animations based on themapping between input/output
modes, animation data, and gesture combinations. The ges-
tures describe information such as hand movement speed and
angle. In this study, the author uses the Leap Motion device
to demonstrate how the animation generation framework
assists in controlling virtual shadow puppets. When the sys-
tem recognizes predefined gestures, it triggers pre-recorded
animations of the virtual puppets based on the animation
generation framework.

The study in [12] explored various shadow puppetry char-
acter types and develops parametric blueprints for human,
bipedal, quadrupedal, and serpent-like creatures. These tem-
plates enable the system to generate 2D shadow puppets in
diverse shapes and styles to suit user preferences. Unlike
previous research relying on animation controls, this study
employs finger coordinates and bending angles to simulate
an upper-body puppet control lever.

Additionally, an interactive art piece influenced by Chi-
nese shadow puppetry is presented [13]. It utilizes Microsoft
Kinect to track the audience’s body skeleton, directing the
shadow puppets’ actions projected on a screen for engage-
ment. Unity game engine powers this single-user interactive
system, making it a potential new feature for AvatarTalk.

In a study [14] akin to Taiwanese traditional puppetry,
a gesture-based multi-user digital storytelling system was
created using VR and Leap Motion. It’s aimed at aiding
children in storytelling and performance. The authors used
Photon Cloud and Unity tech, enabling synchronous partic-
ipation and interaction among multiple players. The study
demonstrated this with fables, letting children control animal
models in the story through gestures and add narration guided
by a teacher.

In a distinct study on non-gesture control of virtual mod-
els [15], the idea is presented that humans can convey or
mimic emotions through these models. The primary use case
is in pediatric hospitals, serving as an adjunct tool for psy-
chologists to assess emotions and states by enabling young
patients to interact with virtual models using the pen.

In addition to using specialized hardware such as Leap
Motion or Microsoft Kinect for motion capture and recog-
nition, there are also studies that utilize MediaPipe for image
recognition and tracking. AvatarTalk uses MediaPipe instead
of Leap Motion for three reasons. Firstly, using Leap Motion
requires the purchase of additional hardware, whereas Medi-
aPipe can utilize ordinary cameras (such as smartphones) for
recognition, resulting in lower costs. Secondly, Leap Motion
can only recognize up to two hands, while MediaPipe can
recognize more than two hands. Lastly, Leap Motion has a
limited capture range, only spanning from 25 millimeters to
600 millimeters above the hardware’s top surface and within
a field of view of 150 degrees for successful recognition.
In contrast, MediaPipe can capture hand movements at a

distance of several meters, but this comes at the cost of lower
accuracy. Therefore, for hand image recognition, we choose
to use MediaPipe in AvatarTalk.

The study in [16] proposed Puppeteer, a Unity-based
system enabling players to control models through a combi-
nation of gestures and upper body motions. Dual cameras and
MediaPipe technology captured body keypoints, triggering
animations based on specific poses and gestures. The system
demonstrated its capabilities through three different game
scenarios. A similar experience in AvatarTalk employs smart
gloves to tackle this challenge.

In reference [17], real-time virtual model animation gen-
eration technology based on a single camera was discussed.
Regarding the control of virtual models, different modelsmay
have varying skeletal structures, which can lead to different
operations even when performing the same action. To address
this issue, the authors standardized the skeleton using the
coordinate system of the VRM model format [18] [19].
In terms of control methods, the authors used MediaPipe’s
Blazepose to detect body keypoints, converted the results into
angles, and mapped them to the model’s skeleton for control,
generating real-time virtual model animations. AvatarTalk
adapts a similar approach using the VRM model format.

The above previous studies ‘‘hardwire’’ puppetry control
and cannot transparently add new control/puppet compo-
nents. To resolve this issue, CATtalk [20] proposed a
low-code mechanism in the PuppetTalk architecture [2].
AvatarTalk nontrivially extends CATtalk’s low-code mech-
anism to satisfy the microservice requirements. AvatarTalk
is designed as an IoT-based microservice platform for con-
trolling virtual models, providing users with many control
modes, and illustrate two in this paper: smart gloves and
MediaPipe.

In contrast to the previous studies (including CATtalk), this
paper further describes the methods of gesture data calibra-
tion and control of virtual puppetry parts. In terms of spe-
cialized hardware for capturing, smart gloves were chosen to
overcome the limitations and inaccuracies caused by the dis-
tance restrictions and obstructions when using Leap Motion.
Smart gloves can accurately capture subtle hand movements
compared to Microsoft Kinect. Furthermore, unlike most of
the systems built using Unity [5] [9] [13] [14] [16] [19]
or Unreal [12] in the aforementioned studies, the control
platform in this research is web-based, eliminating the need
for users to download additional software for control.

The previous studies with remote control do not consider
the synchronization of puppets except for PuppetTalk and
CATtalk [20]. AvatarTalk extends the two-puppeteer commu-
nication delay analysis of PuppetTalk and CATtalk to derive
the conditions when the puppets/avatars can be synchronized
with more than two remote puppeteers.

III. AVATARTALK ARCHITECTURE
AvatarTalk enables message exchange between various IoT
devices, and use them to manipulate the virtual puppets.
Figure 1 illustrates an example to show how IoT devices

103016 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 1. The AvatarTalk configuration.

connected to the AvatarTtalk server (Figure 1 (1)). AvatarTalk
defines IoT-based microservices called Device Models (DM)
to describe real-world IoT devices. For example, the IoT
devices Smartphone (Figure 1 (2)) and Bulb (Figure 1 (3))
are represented as DMs in the AvatarTalk server.

Each DM includes one or more Device Features (DFs).
Based on their functionalities, the DFs are further catego-
rized into Input Device Features (IDF; sensors or controls)
with the names appended with ‘‘-I’’ and Output Device Fea-
tures (ODF; actuators) with the names appended with ‘‘-O’’.
For example, Smartphone has two IDFs: Acceleration-I and
Orientation-I (Figure 1 (3) and (5)), while Bulb has two
ODFs: Luminance-O and Color-O (Figure 1 (6) and (7)).
In AvatarTalk, the DMs are realized as individual IoT devices.
Since IoT devices are independent of each other, DMs satisfy
the microservice requirement 1 (MS R1).

The configuration in Figure 1 is established using
the web-based AvatarTalk Graphical User Interface (GUI;
Figure 1 (8)), illustrated in Figure 2. This GUI is a direct
extension of the GUI in [20]. It allows users to create custom
DMs and DFs, and configure DMs, DFs, their connections,
and corresponding functions through the AvatarTalk server.

By connecting an IDF to an ODF through the ‘‘join
links’’ in the GUI, The interaction between the IoT devices
is established with input and output capabilities. When the
Accleration-I IDF generates a new value, Smartphone notifies
the Network Applications NA1 in Figure 1 (corresponding to
the ‘‘Join 1’’ link in Figure 2) for processing and sends the
result to the Luminance-O ODF of Bulb. Then, shaking the
smartphone would make the light bulb brighter.

FIGURE 2. The AvatarTalk GUI.

Similarly, by connecting Orientation-I to Color-O, NA2
(‘‘Join 2’’ in Figure 2) processes the angles generated by
rotating the smartphone and sends the results to Bulb to
change its color. Since IDF and ODF are independent of each
other, predefined modules can be reused to create NAs for
different DMs with the same IDFs or ODFs. The network
applications are automatically generated by the AvatarTalk
server [1] [20]. We note that the above light control appli-
cation is used in the stage for the puppet show. Multiple

VOLUME 11, 2023 103017



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 3. AvatarTalk software architecture.

smartphones are allowed tomap to SmartphoneDM, allowing
the audience to control the stage lights (Figure 2 (18)) through
‘‘voting’’ [21].

In the current implementation, AvatarTalk supports AiQ
smart gloves (Figure 1 (9)) and MediaPipe (Figure 1 (10))
as input devices and utilizes the AvatarTalk platform for
real-time remote control of puppet robots (Figure 1 (11)) and
virtual avatar (Figure 1 (12)).
Fig. 3 illustrates the software architecture of AvatarTalk.

The AvatarTalk server (Figure 3 (1)) supports interaction
between the virtual Avatars (Figure 3 (2)) with the AiQ gloves
(Figure 3 (3)) and MediaPipe (Figure 3 (5)) through the
interface described below.

The AiqGlove SA (Figure 3 (9)) obtains the sensor data to
calculate finger coordinates and wrist angles. The MediaPipe
SA (Figure 3 (10)) is responsible for image recognition and
data computation. The Avatar SA (Figure 3 (11)) uses the
received coordinates to drive the avatar model under control.
The behavior of the avatar is shown in the browser of the user
who is a viewer (an audience member; Figure 3 (12)) or a
puppeteer (Figure 3 (13)).

If the user is a puppeteer, there is a feature to enable
MediaPipe recognition in the Avatar GUI (Figure 3 (3)) using
the camera (Figure 3 (14)). The recognition results will be
processed by MediaPipe SA and then sent to the AvatarTalk
Server via MediaPipe DA. Whether it is AiQ Smart Glove,
MediaPipe, or any other future bodymotion capture technolo-
gies that may be added, the data will be sent from their IDFs
in their DA to the ODFs of the Avatar DA.

In AvatarTalk, we only need to define the IDFs and the
ODFs of a device model, and the corresponding DA is
automatically generated by AvatarTalk. This design aims

to improve the convenience of subsequent code mainte-
nance and expansion. Details of automatic code generation
is described in Section VII-A.

IV. REMOTE MOTION CONTROL
Remote puppet control requires the use of hand motion cap-
ture technology to recognize the changes in hand gestures
when controlling the puppets. AvatarTalk supports two types
of gesture control of puppetry: smart gloves [2] (Figure 3 (4))
and camera-based image tracking [8] (Figure 3 (5)). Camera-
based image tracking techniques (e.g., Leap Motion or
MediaPipe) capture gestures using the machine learning
models. This approach only requires a single camera to
achieve hand tracking, pose tracking, and classification func-
tions. Compared to smart glove, this approach has lower costs
as it only requires a camera to capture images for recognition,
while also avoiding hygiene issues associated with wear-
ing motion capture gloves shared among multiple people.
Camera-based image tracking provides various recognition
solutions through the Hands, Pose, and Holistic recognition
functionalities.

A drawback of the camera-based image tracking is the
inability to perceive objects that are obscured by fingers.
For instance, when one finger is positioned over another,
the device struggles to see through and accurately detect the
hidden finger. Additionally, the close proximity of adjacent
fingers creates difficulties for the cameras in recognizing
and distinguishing each finger as separate entities, possibly
leading to recognition issues.

When the puppeteer’s position may frequently change dur-
ing the performance (for example, a dancer is controlling
the puppets), smart gloves for motion capture ensure that
the results of moving gesture recognition are not affected
by the puppeteer’s position changes or object occlusion. The
smart gloves also allow gesture capture while the puppeteer
is wearing the puppets on the gloves. Additionally, com-
pared to camera-based image tracking, smart gloves can avoid
interference from changes in ambient lighting conditions and
expand the puppeteer’s range of movement. They can recog-
nize gestures without being limited by the camera’s field of
view.

A. AiQ SMART GLOVE: MOTION CAPTURE GLOVES
We use AiQ Gloves as a smart glove example (Figure 4 (a)).
AiQ gloves use Inertial Measurement Units (IMUs), includ-
ing accelerometers, gyroscopes, and magnetometers, to cap-
ture the puppeteer’s gestures. The gesture data is then
transmitted wirelessly via Wi-Fi to the AvatarTalk server
for processing. The PuppetTalk study [2] also considered
an inexpensive mechanical glove with one sensing point per
finger (Figure 4 (b)), and concluded that the glove is too
simple to capture the required gestures. As we will see in
Section IV.D, AvatarTalk can utilize this simple glove to yield
good performance as the AiQ glove.

The AiqGlove DA includes the compound Fingers-I
IDF (Figure 1 (13)) consisting of six IDFs in the format

103018 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 4. Smart gloves and the recognized 3D finger joint coordinates.

FCoord-I=(F1, F2, F3), where F= Thumb (T), Index (I),
Middle (M), Ring (R) or Pinky (P). For a finger F, the
sensors report the values for three joints: metacarpopha-
langeal joint (F1), proximal interphalangeal joint (F2),
and distal interphalangeal joint (F3). Therefore, Fingers-I
includes ThumbCoord-I = (aT1,aT2, aT3), IndexCoord-
I = (aI1,aI2, aI3), MiddleCoord-I = (aM1,aM2, aM3),
RingCoord-I = (aR1,aR2, aR3), PinkyCoord-I = (aP1,aP2,
aP3), and WristAngle-I. Note that aF is a vector representing
the 3-dimension coordinate of a finger joint F . For example,
aT1 = (aT1,x,aT2,y, aT3,z). These six IDFs contain 3D data
representing finger coordinates and wrist angles, as well as
information about the controlling hand (left or right) and
control mode.

The AiqGlove SA obtain 3D coordinates of the finger
joints from the motion sensors, represented by the red dots
in Figure 4. The AiqGlove SA performs two-sage glove
calibration. The first-stage calibration obtains accurate 3D
finger joint coordinates to ensure the correct recognition of
gestures. Before this calibration, inaccurate 3D finger joint
coordinates are observed (Figure 5 (a)). After calibration,
we obtain accurate mappings (Figure 5 (b)). The second-stage
calibration is performed in the avatar device (Figure 3 (2))
to establish the mapping between the gestures and the avatar
models (to be elaborated in Section VI-C).

B. MediaPipe: CAMERA-BASED IMAGE TRACKING
We use MediaPipe developed by Google as an example
of camera-based image tracking. MediaPipe Hands is a
machine learning-based hand tracking technique that can
determine 21 3D coordinates of the hands in each frame of
the camera-captured image or video [3]. The joint notation
of MediaPipe in Figure 6 is different from AiQ glove in
Figure 4 (a). Both of them are mapped to the AvatarTalk
finger notation F = (F1, F2, F3); see also the big red circles
in Figure 6 for the mapping.
In AvatarTalk, the video image is streamed through the

camera (Figure 8 (2)) to the MediaPipe SA (Figure 8 (1))
using the streaming() function.

FIGURE 5. First-stage glove calibration.

FIGURE 6. MediaPipe hand coordinates and the mappings to the
AvatarTalk finger notation.

After capturing the 3D coordinates of the hands, the Medi-
aPipe device (Figure 1 (10)) obtains the finger coordinates
and the calculated wrist angle and then extracts the finger
joint coordinates for avatar model control. However, since
MediaPipe uses a single camera for image recognition, the
z-axis data in the 3D coordinates is a predicted result of
the model. Therefore, compared to motion capture gloves,
the control effectiveness of MediaPipe Hands may be lower.

MediaPipe Pose is also a machine learning-based human
body tracking technique that can determine the 33 3D coor-
dinates of the body in each frame of the camera-captured
image or video [4]. We use the open-source library Kalidokit
to convert the recognized body coordinate data into joint
angles for model manipulation. Based on the 3D coordi-
nates obtained fromMediaPipe Pose, Kalidokit calculates the

VOLUME 11, 2023 103019



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 7. MediaPipe body coordinates.

FIGURE 8. The MediaPipe device.

rotation angles of body joints shown in Figure 7. Additionally,
we establish a reference coordinate system based on the hip
and leg coordinates of a person standing in the camera or
video frame. This reference system is used for the relative
positioning of the model, and the coordinates of the head, hip,
and legs are stored in the Avatar DB.

MediaPipe Holistic also uses machine learning to recog-
nize facial, body, and hand poses from each frame of the
camera-captured image or video. The body recognition data
from MediaPipe Holistic is the same as the output from
MediaPipe Pose, and we use kalidokit to convert the data
into body joint angles. As for facial recognition, through
kalidokit, we calculate the 478 3D coordinates obtained from
facial recognition and convert the data into expression con-
trol weights for the VRM format model to simulate facial
expressions.

When Hands recognition is selected, LMtoRotation() cal-
culates wrist angles and coordinates, and the finger data is
sent to the Finger DA (Figure 8 (3)).When Pose recognition is

selected, kalidokit.Pose.solve() converts the recognized body
coordinates into body joint angles and sends them to the Body
DA. For Holistic recognition, kalidokit.Pose.solve() and kali-
dokit.Face.solve() are used separately, and the corresponding
results are sent to the BodyDA and the Face DA, respectively.
MediaPipe DA utilizes Fingers-I alongwith Face-I and Body-
I, to transmit data to the AvatarTalk Server (Figure 8 (4)).

C. CONSISTENT COORDINATE WITH RESPECT
TO THE WRIST
In AvatarTalk, a puppeteer can be a dancer who not only
changes hand gestures but also perform dance movements
during the performance. In this scenario, the avatar model’s
actions should remain consistent when the puppeteer rotates
the wrist while keeping the same gesture. However, in prac-
tice, the finger joint coordinates change with the rotation of
the wrist, which affects the model’s movements. To ensure
that the coordinates and model remain unchanged when the
wrist is rotated with the same gesture, we use the inverse rota-
tion method to obtain the consistent finger joint coordinates
when the wrist rotates. Consider a finger joint of F , where
F is T , M , or I as shown in Figure 4. Assuming the wrist
of the right hand is facing the screen at the beginning of the
first calibration (see Section VI-C), where the wrist’s angle
θ with respect to the x, y, and z axes are (θx , θy, θz). After
the completion of the first calibration, the wrist’s angles with
respect to the axes are (θ0x , θ

0
y , θ

0
z ), respectively.We define the

angle differences after wrist rotation as
(
1θx , 1θy, 1θz

)
=(

θx − θ0x , θy − θ0y , θz − θ0z

)
.

When the wrist angle is (θ0x , θ
0
y , θ

0
z ), we need to rotate the

finger joint coordinates back to the position with respect to
the wrist angle (θx , θy, θz), we substitute these angle values
into the rotation Eq. (1).

Rx (1θx) =

 1 0 0
0 cos1θx − sin1θx
0 sin1θx cos1θx

 ,

Ry
(
1θy

)
=

 cos1θy 0 sin1θy
0 1 0

− sin1θy 0 cos1θy

 ,

Rz (θz) =

 cos1θz − sin1θz 0
sin1θz cos1θz 0

0 0 1

 (1)

From Eq. (1), define

R = Rz (1θz)Rx (1θx)Ry
(
1θy

)
(2)

Let a0F be the coordinate for finger joint F sent from the
smart glove to the avatar device. Eq. (2) is used to derive the
consistent coordinate aF as

aF = R−1 × a0F (3)

V. THE AVATAR DEVICE
In the Avatar DA, the compound Fingers-O (Figure 9 (1))
includes the ODFs that one-to-one correspond to the IDFs

103020 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 9. The avatar device.

in Fingers-I. These ODFs receive 3D coordinates or angle
data for controlling specific parts of the avatar model from
the AvatarTalk server (Figure 9 (5)). They also receive infor-
mation about the controlling hand (left or right) and control
mode (Glove or MediaPipe). In the Body DA (Figure 9 (2)),
the Body-O ODF receives data related to the 3D angles of
the human spine, upper arms of both hands, palms of both
hands, upper and lower legs of both legs, and hip. In the Face
DA (Figure 9 (3)), the Face-O ODF receives 3D angle data
for the head, 2D position data for the eyes, and weights for
blinking and mouth shapes.

In Figure 9 (4), Avatar SA initialization begins with ini-
tialize Then loadAvatars() is invoked to loading the resources
of the avatar model from the Avatar DB for the subsequent
rendering, switching, and manipulation of the model.

PuppetTalk [2] controls the avatar using finger joint angles,
which converts the captured finger joint positions into angles
for each finger joint. This method is perfect for controlling
a robot puppet with limited motors. On the other hand, the
degrees of freedom for an avatar are larger than a hand.
Therefore, in the finger joint angle control method, the avatar
behavior is limited by the number of finger joints, resulting in
limited expressiveness of movements. Also, this method does
not work for simple gloves as illustrated in Figure 4 (b) since
it only has the finger joint data for a finger.

To address this issue, AvatarTalk proposes to control the
model using fingertip coordinates with Inverse Kinematics
(IK) [22]. We implemented the IK functionality using an
open-source library called CCDIKSolver, which is written in
JavaScript and based on Three.js [23]. The CCD algorithm
used in this library calculates and rotates the bones in the IK
chain based on the difference in angles. With this approach,
we only need to use the finger joint data and both gloves in
Figure 4 work well.
In AvatarTalk, IK is used to calculate the model’s

movements under finger control. In computer animation,

TABLE 1. The avatar model check list.

IK involves a mathematical process that calculates the
variable joint parameters required to position the end of a
kinematic chain (the avatar skeleton) at a specified position
and orientation relative to the chain’s starting point.

The loaded models must meet specific requirements in
order to correctly apply IK for motion control. Table 1 pro-
vides a checklist to verify if an avatar model meets the
requirements before the model is added to AvatarTalk. Firstly,
the model should include the bones listed in the first item of
the table. These bones are necessary joints in an IK chain
(Figure 10). The IK chain includes the purple dots as con-
nected bones, a green dot as the end bone called the IK end
effector. AvatarTalk will extend the end effector to an IK
target point (a pink dot) where the end effector is expected
to reach.

Secondly, the model’s default pose should be a stand-
ing T-pose with both hands stretched out to the sides. This
ensures that the model has the same initial pose. Lastly, in the
default pose, the coordinate axes of each bone in the model
skeleton should be consistent. When the model faces the
user, the x-axis points to the left, the y-axis points upward,
and the z-axis points towards the back of the model (towards
the screen). The consistency of coordinate axes ensures the
accuracy of angle calculations and control in IK.

A. AVATAR SETUP
In the Avatar SA, the loadAvatars() function loads VRM
format models. The VRM data, including the virtual model’s
skeleton, mesh, materials, and expressions, is extracted from
the loaded format using the three-vrm library. Specifically,
the skinnedMesh with a name containing ‘‘body’’ (e.g.,
Body.baked) is extracted from the model. This skinnedMesh

VOLUME 11, 2023 103021



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 10. The IK chains for an avatar.

is a model element that contains both the mesh and the skele-
ton. It will be used to control the model in the subsequent IK
calculations. The loadAvatars() function automatically adds
the IK target points (the pink dots in Table 1) to the loaded
model’s skeleton.

The function changeAvatar() is executed during the ini-
tialization phase to display the default avatar model on the
screen (Figure 9 (6)) and allows users to switch between
avatars later. During system initialization, loadAvatars() has
loaded a list of models from the Avatar DB. If the user
selects a new model through the Avatar Selection dropdown
menu (Figure 9 (7)), changeAvatar() displays the selected
model. Then CCDIKSolver for this avatar model is initialized
to update the skeleton information of the model in the IK
settings.

The initializeCCDIK() function initializes CCDIK-
Solver [23] required for finger control, which solves IK
Problem with Cyclic Coordinate Descent (CCD). CCDIK-
Solver helps calculate the poses that bring the model’s limbs
to the target positions, enabling more natural control and
interaction.When setting upCCDIKSolver, we need to define
an IK chain consisting of the model’s limb bones. CCDIK-
Solver utilizes the CCD algorithm to iteratively calculate and
improve the poses of the IK chain. The ODFs corresponding
to the IK chains in Fingers-O are mapped to the IK target
points using Eq. (4) to be elaborated in Section V-B. The
accuracy of the algorithm’s result improves with a higher
number of iterations. To ensure convergence, the calculations
stop once the specified iteration count is reached. It then
rotates the end effector by a certain angle to move it closer to

TABLE 2. Rotation limits of the joints.

the target point. This process continues until the end effector
reaches the target point or the maximum iteration count is
reached. The details are given in Section V-B.

CCDIKSolver avoids unexpected rotations andmovements
of IK chains. In virtual puppetry, due to the limited ways
of expressing hand gestures, we only need to establish five
IK chains, each controlled by a finger. The IK chain for the
head consists of the spine ((1) in Figure 10), chest (2), upper
chest (3), neck (4), head (5) and HeadIK ((6); the head IK
target point). The IK chain for the left hand includes the
left shoulder (7), left upper arm (8), left lower arm (9), left
hand (10), and LeftHandIK ((11); the left hand IK target
point). The IK chain for the right hand consists of the right
shoulder (12), right upper arm (13), right lower arm (14), right
hand (15), and RightHandIK ((16); the right hand IK target
point). The IK chain for the left leg includes the left upper
leg (17), left lower leg (18), left foot (19), and LeftFootIK
((20); the left foot IK target point). The IK chain for the
right leg consists of the right upper leg (21), right lower leg
(22), right foot (23), and RightFootIK ((24); the right foot IK
target point). In the avatar model, the lower bound and upper
bound angles of joint rotation have been adjusted based on
the data obtained from references [24] and [25]. They have
been modified according to the model’s coordinate system as
shown in Table 2. When CCDIKSolver moves the end point
to the target point, the rotation of the purple dot joints in an
IK chain is limited by these angles.

In loadAvatars(), we have automatically added the IK tar-
get points to the model. In this function, we incorporate these
target points into their respective IK chains. For each joint
in the avatar model, we have adjusted the maximum and
minimum rotation angles based on Table 2.

B. AVATAR MOVEMENT
When Fingers-O (Figure 9 (3)) receives the raw gesture data
a0F from theAvatarTalk server, updateHandData() uses Eq. (3)
in Section IV-C to reverse rotate the finger joint coordinates

103022 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

a0F to obtain the consistent coordinate aF, and stores aF in the
Avatar DB. Then fingerControl() processes aF to manipulate
the avatar model using fingers, similar to traditional puppetry.
For the IK target point of an avatar’s IK chain B, where B
can be H (HeadIK), R (RightHandIK) or L (LeftHandIK)
mapped from Fingers-O, we define the lower bound coordi-
nate plB =

(
plB,x , p

l
B,y, p

l
B,z

)
and the upper bound coordinate

puB =
(
puB,x , p

u
B,y, p

u
B,z

)
for the range of movement. These

bounds are automatically obtained from the skeleton data of
the model after loading, and the model’s reference pose is
set accordingly. There is no need for manual adjustments for
different avatar models. For finger F in the x-axis (which
is mapped to the target point of the avatar’s IK chain B),
fingerControl() produces the IK target point pB,x by mapping
aF,x from the range [alF,x , a

u
F,x] to the range [plB,x , p

u
B,x]:

pB,x =

(
aF,x − alF,x

auF,x − a
l
F,x

)
×

(
puB,x − p

l
B,x

)
+ plB,x (4)

The results produced by Eq. (4) are sent to update() to change
the positions of the IK target points in a manner that resem-
bles the motion of objects in reality.We do not directly update
the coordinates of the IK target points. Instead, we employ
Eq. (5), a linear damping function to gradually change the
coordinates of the IK target points along the x, y, and z
axes, dividing the distance between the previous IK target
point p∗B,x and the next point pB,x obtained from Eq. (4) into
K segments. Then we display K continuous frames in the
screen. At the k-th frame, we generate the IK target point
coordinate pB,x [k] using Eq. (5). For k = 1, . . . ,K ,

pB,x [k] = p∗B,x +
(
pB,x − p∗B,x

)
×

(
k
K

)
(5)

This damping function helps achieve a smooth transition
as the IK target points move from their current positions
to the target positions, following the mapped gesture data.
Once the update is complete, the Avatar device uses render()
from Three.js to render the scene, converting the 3D scene
into a 2D image displayed on the screen. When modifica-
tions are made to the avatar’s movements or expressions, the
user needs to wait for the next frame where update() and
render() are automatically executed before you can see the
changes reflected on the screen. The time interval between
frames primarily depends on the screen refresh rate and is
also influenced by factors such as hardware performance,
browser limitations, and the complexity of the graphics.
If you experience lag in the model’s movements, you can
observe the FPS indicator (Figure 11 (5)) to determine
whether it is necessary to switch to hardware with better
performance.

When the Body DA (Figure 9 (2)) receives data from the
AvatarTalk server, bodyControl() rotates the model’s body
based on the body joint angles and adjusts the position of
the model’s hips and feet, achieving the effect of controlling
the model’s body. When the Face DA (Figure 9 (3)) receives

FIGURE 11. The display setup section.

values from AvatarTalk, faceControl() sets the model’s blink-
ing, eye position, and mouth shape based on the facial
control data, enabling facial control of the model. Addition-
ally, users can activate webXR() by clicking the AR Button
(Figure 9 (8)) to experience webAR effects [26]. Finally,
the update() and render() functions are automatically exe-
cuted per frame to display the updated model actions on the
screen.

VI. GRAPHICAL USER INTERFACE OF AVATAR
This section describes the GUI components and features of
the Avatar device, and explains their respective operational
instructions. In AvatarTalk, a user is either a puppeteer or
a viewer. We divide the GUI into two sections: Display
Setup and Control Setup. Puppeteers can control the avatar
model’s movements for performances, and therefore can
access both sections. The viewers in the audience cannot con-
trol the model and can only access the Display Setup section
to watch the puppeteer’s show. Sections VI-A and VI-B
describe Avatar GUI operations. The readers may jump to
Section VI-C directly if they are not interested in the details
of GUI operation.

A. THE DISPLAY SETUP SECTION
The Display Setup section of the Avatar GUI (left side of
Figure 11) consists of a top navigation bar and a canvas,
which includes the following elements: Avatar displays the
name of the currently presented avatar model on the screen
(Figure 11 (1)); The Avatar Selection (Figure 11 (2)) is a
dropdown menu where users can choose the avatar model
they want to display on the screen. The switching of models
is not time-limited and can be changed at any time during
the performance without affecting the model’s actions. The
Background Color (Figure 11 (3)) is also a dropdown menu
that provides commonly used colors and a color picker. Users
can freely adjust the background color of the Three.js canvas
(Figure 11 (6)) using this feature.

VOLUME 11, 2023 103023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 12. Control setup for AiqGlove.

The Augmented Reality (AR) button (Figure 11 (3)) is a
toggle button that activates the AR feature. If the user’s device
meets the requirements of WebXR [26], including support
for ARCore and Depth API, clicking on the AR button will
overlay the entire device screen with the WebXR Canvas
(Figure 11 (7)), displaying the camera’s captured image and
AR effects.

The Frames Per Second (FPS) indicator (Figure 11 (5))
provides information about the number of frames that are
updated per second. It serves as a reference for users to gauge
the smoothness of the display. Higher FPS values indicate
smoother animation and display, while lower FPS values can
result in a lagging or stuttering visual experience.

Besides the navigation bar, the Three.js Canvas (Figure 11
(6)) is a 3D viewport rendered by Three.js [23]. It provides a
visual representation of the virtual model, allowing users to
see the movements and actions of their chosen avatar in real-
time. Both puppeteers and viewers can choose personalized
model styles background colors, and the AR feature to be
shown in the canvas. This not only provides a variety of
performance presentations but also enhances audience inter-
activity and engagement.

B. THE CONTROL SETUP SECTION
In the Control Setup section, puppeteers can configure the
control settings for the avatar model. Control setup includes
Control (Figure 12 (1)) and Status (Figure 12 (2)) subsections.
The Status subsection displays the connection status between
AvatarTalk and the control devices (gloves, MediaPipe, etc.),
as well as the gesture calibration results.

When controlling the avatar model using smart gloves
or MediaPipe Hands for hand recognition, the GUI will
sequentially display three different status information: upper
body, lower body, and calibration. For the upper body, the

status will be displayed in green font as ‘‘Upper body is con-
nected’’ when the model successfully receives data from the
glove connected through the AvatarTalk server. Otherwise,
the status will be displayed in red font as ‘‘Upper body isn’t
connected.’’ The lower body status follows the same display
content and meanings as the upper body. After successfully
connecting to the gloves, the GUI will check if the calibration
for the respective body part is completed. If so, it will be
displayed in green font as ‘‘Calibration is completed.’’ These
status displays provide feedback to puppeteers regarding the
connection and calibration status of the model’s upper and
lower body, ensuring proper control and interaction with the
avatar model.

The Control subsection currently provides two options:
smart gloves and MediaPipe. By default, the initial control
mode is set to smart gloves. In this scenario, the right hand
controls the upper body and the left hand controls the lower
body of the model. Since hand gestures alone cannot directly
control the movements of the avatar model accurately, cal-
ibration is required to map the gestures correctly onto the
avatar model. For this purpose, the GUI provides calibra-
tion buttons of upper body (Figure 12 (3)) and lower body
(Figure 12 (9)) for puppeteers to configure.

In the upper body calibration, there are three calibra-
tion sets (Figure 12 (3), (7), and (8)). Each set includes
a Demo button (Figure 12 (5)) and a Calibration button
(Figure 12 (6)). The Demo button contains an instruc-
tional video (Figure 12 (12)) that explains the hand gestures
the puppeteers need to make during the calibration pro-
cess, the calibration steps, and the reasons for calibration.
Clicking the first calibration button (Figure 12 (6)) records
the positions when the thumb, index finger, and middle finger
are extended (Gesture 1 in Table 3). This data is used to
calibrate the model’s head and hand movements. The sec-
ond calibration button (Figure 12 (7)) records the position
when the index finger is bent (Gesture 2 in Table 3). This
data is used to calibrate the model’s head movement. The
third calibration button (Figure 12 (8)) records the positions
when the thumb and middle finger are bent (Gesture 3 in
Table 3). This data is used to calibrate the model’s hand
movements. By performing these calibrations, the system can
accurately map the gestures performed by the smart gloves
to the corresponding movements of the avatar model’s upper
body, ensuring a more precise and synchronized performance
experience. Similarly, in the lower body calibration, there are
two calibration sets (Figure 12 (10) and (11)) corresponding
to Gestures 4 and 5 in Table 3.
When the control mode is switched to MediaPipe, the GUI

will display the control components of MediaPipe, as shown
in Figure 13.
The Source Picker (Figure 13 (1)) allows puppeteers to

choose between using a camera or a video as the image input
source forMediaPipe. If there are multiple available cameras,
MediaPipe will automatically select the first camera as the
input source. However, puppeteers can manually choose a
different available camera if desired.

103024 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

TABLE 3. The calibration buttons and the corresponding gestures.

FIGURE 13. The MediaPipe control mode (by Hands).

The MediaPipe solution (Figure 13 (2)) is a dropdown
menu that provides puppeteers with options to choose
between MediaPipe Hands, Pose, or Holistic recognition
solutions. MediaPipe Hands can recognize 3D hand coordi-
nates, allowing puppeteers to control the model using hand
gestures. MediaPipe Pose can recognize 3D body coordi-
nates, enabling puppeteers to control the model using body
movements. MediaPipe Holistic can recognize 3D body,
facial, and hand coordinates. However, in AvatarTalk, it is not
possible to use both hand gestures and body control simulta-
neously. Therefore, when choosing Holistic, only body and
facial data can be used to control the model, while hand data
will be ignored.

The MediaPipe Canvas (Figure 13 (3)) displays the cam-
era or video feed and overlays the recognized hand, body,
or facial information. This allows puppeteers to visually
observe and understand the recognition results in real-time,

FIGURE 14. The MediaPipe control mode (by Pose and Holistic).

providing an intuitive way to monitor the performance and
interaction with the avatar model.

When selecting ‘‘Hands’’ in the MediaPipe solution
(Figure 13 (2)), finger gestures are used to control the avatar
model, and the GUI provides calibration buttons for the
upper body and lower body (Figure 13 (3) and (5)), allowing
puppeteers to configure the settings. The calibration pro-
cess and buttons for finger control follow the same internal
structure and principles as those shown in Figure 12. When
puppeteers select Pose or Holistic in the MediaPipe solu-
tion (Figure 14 (1)), the interface will display as shown in
Figure 14 (2).

Since body parts can be directly mapped to the model,
there is no need for additional calibration or setup steps.
In these modes, the body movements captured by MediaPipe
are directly translated into the corresponding movements of
the avatar model, eliminating the need for separate calibration
or adjustment processes. Puppeteers can start controlling the
model using their bodymovements once the connection to the
AvatarTalk server is established.

C. THE CALIBRATION PROCEDURE
Before controlling the avatar model, users need to per-
form manual calibration to establish the coordinate mapping
between the fingers and the avatar model through calibration.
When pressing the calibration buttons in the Avatar GUI
(Figure 12 (3)-(11)), the corresponding gestures that need to
be performed are listed in Table 3. In traditional puppetry,
the upper body of the puppet is usually controlled with right
hand.

Typically, the lower body of the puppet is controlled with
the left hand, and in AvatarTalk, we use the index finger and
middle finger for control. When the index finger and middle

VOLUME 11, 2023 103025



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

finger are pointing upwards (Table 3 (3)), the puppet’s legs
will be extended straight. When the index finger and middle
finger are bent downwards (Table 3 (5)), the puppet’s legs will
be lifted up.

The gesture calibration is performed by the function cal-
ibrate() in the avatar SA (Figure 9 (3)) to identify the
coordinate range [alF, a

u
F] of movement for a finger F.

When Gesture 1 in Table 3 is made and the calibration
button (Figure 12 (6)) is pressed, the glove sends the raw
coordinate a0F for finger F to the avatar device. The avatar
SA uses Eq. (3) to generate the consistent coordinate aF
(elaborated in Section IV-C). The consistent coordinate aF
serves as the lower bound for the movement of finger F.
That is, alF←aF for F = T , I ,M . The coordinates alF are
saved in the Avatar DB. When Gesture 2 in Table 3 (2) is
made and the button in Figure 12 (7) is pressed, the upper
bound coordinate auI for the movement of the index finger is
created and stored. Similarly, whenGestures 4 and 5 aremade
and the corresponding buttons are pressed, the upper bound
coordinates auT and auM are stored. These coordinate bounds
are used for calibration in Section V-B.

VII. THE IoT-BASED MICROSERVICE ISSUES
In the IoT-based microservice concept [27], an IoT device
(represented by a DM in AvatarTalk) is treated as a microser-
vice. Through this concept, AvatarTalk can easily create
arbitrary interaction among the control devices and the puppet
devices. For example, to control the robot puppet (Figure 1
(11)) by the AiqGlove (Figure 1 (9)) and to control the virtual
avatar (Figure 1 (12)) by MediaPipe (Figure 1 (10)), we only
need to drag a ‘‘join’’ link between each of the device pairs
((13)-(join3)-(14) and (15)-(join4)-(16) in Figure 2, respec-
tively), then AvatarTalk automatically generates NA3 and
NA4 in Figure 1 to create these two applications.
In the above IoT-based microservice design, the IoT

devices (especially the physical ones) are typically indepen-
dent of each other, and therefore the microservice require-
ment 1 (MS R1) can be easily satisfied. However, in a
heterogeneous IoT system, it is not trivial to satisfy MS R2
because the communication protocols and the data formats
for various IoT deceives may be different. For example, the
puppet in [2] cannot directly talk to the puppet in [12].

To fulfill MS R2 for AvatarTalk, we need to provide two
mechanisms. The first mechanism is an application program-
ming interface (API) that allows new IoT devices (espe-
cially new artworks) to exchange data with the AvatarTalk
server. The second mechanism is the data format translation.
In AvatarTalk, format translation includes angle transfor-
mation (Sections IV-C and V-B) and coordinate mapping
(calibration in Section VI-C). Then through the AvatarTalk
GUI in Figure 2, we can conveniently chain the microser-
vices through the ‘‘join’’ links to create the applications.
For example, through the IDF and the ODF connections
((13)-(join3)-(14) and (15)-(join4)-(16) in Figure 2, we chain
the microservices (9)→(11) and (10)→(12). Figure 15
shows the following microservice chains configured in

FIGURE 15. Creating AvatarTalk applications though chaining the
microservices.

Figure 2: (9∗)→(10)→(12), (9)→(11) and (2)→(3). We can
reconnect the join links to re-chain the microservices as
(9)→(11)→(10)→(12). Also, if the Avatar device features
Color-I for controlling the color of other devices and Color-O
for having its background color controlled, then we can create
another microservice chain as (2)→(12)→(3). These exam-
ples show that AvatarTalk satisfies MS R2.

In Section VII-A, we first describe how the first
MS R2 mechanism is implemented to accommodate new
microservices. In Section VII-B, we evaluate the mapping
(calibration) performance for the second mechanism. In
Section VII-C, we show how the message delays (the data
delivery times) affect the synchronization in AvatarTalk when
the microservices are chained to create an application.

A. THE COMMUNICATION API FOR THE IoT DEVICES
AvatarTalk implements a DA library as the API (based on
HTTPS and MQTT) for the first mechanism that satisfies
MS R2. In our design, the DA library is generic and can be
reused by all IoT devices. Use AiqGlove as an example. Parts
of DA library python-like code are shown in Figures 16-19.
Figure 16 declares the device’s metadata profile, which is
derived from the AiqGlove or the MediaPipe devices. Line 1
imports the HTTP protocol library requests in Python. Line 5
defines Fingers-I (Figure 1 (13)).
In Figure 17, the register() function registers the AiqGlove

device to the AvatarTalk server. The AvatarTalk server uses
the RESTful API to perform Avatar operations with the same
URL. Line 1 specifies the URL of the AvatarTtalk server
and the device address (typically a MAC address) to identify,
e.g., AiqGlove. Lines 4-7 use the HTTP POST method to
perform the registration procedure in the AvatarTalk server
with the metadata profile. Lines 8 and 9 raise an error if it
fails, otherwise Line 10 returns the registered device name.

103026 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 16. The push function for the avatar device to send data to the
AvatarTtalk server.

FIGURE 17. The profile of the AiqGlove.

FIGURE 18. Registration.

The push() function defines in Figure 18 allows AiqGlove
to send data of a specific IDF in Fingers-I IDF (Figure 1 (13))
to the AvatarTtalk server. In the RESTful API style, the HTTP
PUT method is used to update the information. Lines 2-4
pack the data in JSON format and send the IDF data to the
AvatarTtalk server. Line 8 returns True if the push operation
is executed successfully.

The pull() function in Figure 19 is used by the Avatar
device to obtain the data of a specified ODF in Fingers-
O (Figure 9 (1)) from the AvarTalk server. Lines 2-4
invoke an HTTP GET request with the feature_name (e.g.,
ThumbCoord-O) to query the corresponding data from the
AvatarTalk server. Line 7 returns the data.

Figures 16-18 are used to create the DA for an IoT device,
and the code can be automatically generated by AvatarTalk.
In this section, the DA communicates with the AvatarTalk
server through HTTPS/RESTful. We have also developed
the MQTT version and the details are omitted. The SA of
a microservice can be automatically implemented through
another mechanism called deviceTalk, which uses the yellow

FIGURE 19. The pull function for the avatar device to receive data from
the AvatarTtalk server.

FIGURE 20. The joint angle of a finger.

marks in Figures 16-19 to automatically generate the interface
code between the SA and the DA. In this way, the microser-
vice requirement 2 (MS R2) is easily satisfied. Details of
deviceTalk can be found in [30].

The relationship between communication and microser-
vices is illustrated in Figure 2. In this figure, the microser-
vices are represented as (2), (3), (9), (10), (11), and (12),
while the communication protocol is utilized in Joins 1-6.

B. PERFORMANCE OF CALIBRATION
Tomake sure the gestures of a puppeteer with a smart glove or
MediaPipe correctly drive the avatar, the puppeteer should go
through the calibration procedure described in Section VI-C.
AvatarTalk movement provides a mechanism to assist cali-
bration procedure. In Section IV-A, the behavior of a finger
F is defined by three joints. For example, when F = I (index
finger), the angle and the coordinate of the proximal interpha-
langeal joint are θI2 (Figure 20) and aI2 = (aI2,x ,aI2,y,aI2,z),
respectively. In the calibration, the angle θI2 is recorded from
the puppeteer’s gesture and then translated into the coordinate
aI2.
In AvatarTalk, we have stored the standard angles of

gestures in the Avatar DB. When a puppeteer (with
glove/MediaPipe) makes gestures, the angles of his/her ges-
tures are checked with the pre-stored angles to determine how
to drive the avatar. However, we found that it is not trivial to
produce the ‘‘standard’’ angles for two reasons. First, when
we repeat the same standard gesture, the angle θI2 may vary.

VOLUME 11, 2023 103027



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 21. Histograms of method 1: joint angles of the thumb (Gestures
1 and 3).

TABLE 4. The percentages of overlay for the angles and the angle sums.

Therefore, we must record a range of standard θI2 angles of
the gesture. Second, different gestures may have the same
θI2 angle value. Therefore, we also need to consider the
relationship between the three joint angles θI1, θI2 and θI3
to distinguish different gestures.

We have conducted 2400 experiments. For each finger,
there are 480 experiments, where 320 of them are used for
trainning and 160 of them are used for testing. Use the thumb
as an example to show how our calibration method works.
Figure 21 shows the histograms of the measured angles for
θT1, θT2 and θT3 (called method 1), where the blue area rep-
resents the angles when the thumb is not bending (Gesture 1
in Table 3) and the orange area represents the angles when it
is bending (Gesture 3 in Table 3). For three joints, there are
overlay areas in the figure that we cannot tell where the thumb
bends or not.

On the other hand, when considering the sums of the joints
(called method 2), the overlay of the two histograms reduces
as illustrated in Figure 22.

Based on the above two histogram figures, Table 4 lists
the percentages of overlay for various sums of joint angles of
the thumb. In this table, ‘‘overlaid measure’’ means the per-
centage of the gesture samples that can not be distinguished.
The table indicates that in both ‘‘overlaid measures’’ and
‘‘overlaid angles’’ output indicators, method 2 is better than
method 1.

The range of the standard angles is stored in the Avatar DB
and is then used to determine the types of gestures. Table 5
shows accuracy, precision, and recall using the original joint

TABLE 5. The performance of the calibration.

angles (method 1), and the results using the angle sums
(method 2).

Our experiments indicate that method 2 can achieve accu-
rate calibration where AvatarTalk can almost detect the right
gestures (98.75%-100% recall) and very seldom mistake the
wrong gestures (90.8%-100% precision).

C. DELAY TIME PERFORMANCE
The IoT-based microservice approach allows AvatarTalk
to arbitrary combine heterogeneous control and puppet
microservices to create an application. Since the remote data
delivery delays may not be the same for different microser-
vice combinations, we need to address the synchronization
problem. Consider a cyber-physical puppet performance sce-
nario where the robot puppet (Figure 1 (11)) and the avatar
(Figure 1 (12)) are acting a scene together. Puppeteer A con-
trols the robot puppet through (13)-(join3)-(14) in Figure 2
and Puppeteer B controls the avatar through (15)-(join4)-
(16). Consider the timing diagram in Figure 23. Suppose that
Puppeteer Amakes a gesture at time T 0

A and the robot receives
the data and performs at time TA. Similarly, Puppeteer B
makes a gesture at time T 0

B (assuming T 0
B ≥ T 0

A ) and the
avatar performs at time TB. Both puppeteers will wait to see
how the robot and the avatar respond and then take the next
actions after max(TA,TB). In Figure 23, after Puppeteer B
takes action at T 0

B , he/she should wait for a period t∗ ≥
max (0,τA − t). Unfortunately, Puppeteer B does not know
the time point TA. Our previous work [20] imposes a strong
restriction to ensure first-come-first-serve data delivery for
two puppeteers. In this way, the synchronization is partially
resolved. In this subsection, we predict the time point TA for
Puppeteer B so that she/he can estimate when to take next
action.

103028 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

FIGURE 22. Histograms of method 2: the sums of the joint angles of the
thumb (Gestures 1 and 3).

FIGURE 23. The timing diagram.

To derive a quick and primary estimation for t∗, we conduct
the mean value analysis [28], where both TA−T 0

A and TB−T 0
B

have the means 1/λA and 1/λB, and the Exponential density
functions

fA (t) = λAe−λAt and fB (t) = λBe−λBt (6)

In Figure 23, tA = TA − T 0
B is the residual life of TA − T 0

A .
From the mean value analysis, T 0

B is the random observer of
TA−T 0

A , and from the residual life theorem of the Exponential
distribution, tA has the same density function as TA − T 0

A .
We consider a more general scenario where Puppeteer A

is replaced by I ≥ 1 puppeteers, and Puppeteer B needs to
wait for the other I puppeteers’ actions before taking the next
action. Suppose that the i-th puppeteer issues the action at
time T 0

i and the i-th puppet/avatar performs at Ti. Puppeteer B
will not make out-of-order action if she/hemakes next gesture
at time TB+ t∗ after Ti. The period t∗ is called the think time
of Puppeteer B.

Let Ti−T 0
i be i.i.d. random variables with the Exponential

density function fA(ti) and the cumulative distribution func-
tion FA (τi). Then ti = TA−T 0

B also has the same distribution.
Consider the order statistics t(i) of ti, where t(1) ≤ . . . ≤ t (i) ≤

. . . ≤ t(I ) (1 ≤ i ≤ I ). From the order statistics [29], the
density function fi (τi) of τi = t (i) is

fi (τi) =
I ! [FA (τi)]i−1 [1− FA (τi)]I−i fA (τi)

(i− 1)! (I − i)!
(7)

For i = I and from Eq. (6), Eq. (7) is rewritten as

fI (τI ) = I [FA (τI )]I−1 fA (τI ) = I
(
1− e−λAτI

)I−1
λAe−λAτI

=

I∑
i=1

(−1)i−1IλA

(
I − 1
i− 1

)
e−iλAτI (8)

Suppose that t∗ has a general density function g(t∗), then
from Eq. (8) we have

Pr
[
t∗ ≥ max(0, τ I − t)

]
= Pr

[
τI < t + t∗

]
=

∫
∞

t=0
fB(t)

∫
∞

t∗=0
g(t∗)

∫ t+t∗

τI=0
fI (τI ) dτIdt∗dt

=

I∑
i=1

[
(−1)i−1I

i

](
I − 1
i− 1

)

×

[
1−

∫
∞

t=0
fB(t)

∫
∞

t∗=0
g(t∗)e−iλA(t+t

∗)dt∗dt
]

=

I∑
i=1

(−1)j−1
(
I
i

)

×

[
1−

(
λB

iλA + λB

)∫
∞

t∗=0
g(t∗)e−iλAt

∗

dt∗
]

(9)

Let the Laplace transform of g(t∗) be

g∗ (s) =
∫
∞

t∗=0
f
(
t∗
)
e−st

∗

dt∗

Then Eq. (9) is rewritten as

Pr
[
τI < t + t∗

]
=

I∑
i=1

(−1)i−1
(
I
i

)
×

{
1−

(
λB

iλA + λB

)
g∗ (s)

∣∣
s=iλA

}
(10)

If g (t∗) is a Gamma density function with the shape param-
eter α and the scale parameter β (a generalization of the
Exponential density), then its mean value is µ =α

β
and the

variance is V= γµ2
=

µ
β
, where γ is the variance normalized

by µ2. Therefore, we have α = 1
γ
and β = 1

γµ
, and the

Laplace transform is

g∗ (s) =
βα

(s+ β)α
=

(
1

γµs+ 1

) 1
γ

(11)

From Eq. (11), Eq. (10) is rewritten as

Pr
[
τI < t + t∗

]
=

I∑
i=1

(−1)i−1
(
I
i

)

×

{
1−

(
λB

iλA + λB

)(
1

iλAγµ+ 1

) 1
γ

}
(12)

VOLUME 11, 2023 103029



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

For I= 1, Eq. (12) is rewritten as

Pr
[
τI < t + t∗|I = 1

]
= 1−

(
λB

λA + λB

)(
1

λAγµ+ 1

) 1
γ

(13)

For I= 2, Eq. (12) is rewritten as

Pr
[
τI < t + t∗|I = 2

]
= 1−

(
2λB

λA + λB

)(
1

λAγµ+ 1

) 1
γ

+

(
λB

2λA + λB

)(
1

2λAγµ+ 1

) 1
γ

(14)

For I= 3, Eq. (12) is rewritten as

Pr
[
τI < t + t∗|I = 3

]
= 1−

(
3λB

λA + λB

)(
1

λAγµ+ 1

) 1
γ

+

(
3λB

2λA + λB

)(
1

2λAγµ+ 1

) 1
γ

−

(
λB

3λA + λB

)(
1

3λAγµ+ 1

) 1
γ

(15)

The analytic equations are validated against the simulation
similar to the one in [20]. The errors are within 1%. We have
also conducted 1000 measurements to measure the delays
tA for (13)-(join3)-(14) in Figure 2 and the delays for tB
(15)-(join4)-(16), and obtain λA = 32.87203 (E [tA] =
0.030421 seconds), and λB = 9.241973 (E [tB] = 0.
108202 seconds). Figure 23 plot Pr

[
τI < t + t∗

]
against

µ, γ (= V
µ2 ) and I using Eqs. (13)-(15). Figure 24 (a)

indicates that if the variance V is smaller than 0.1µ2,
then the puppets can be better synchronized. For the
think time of a professional puppeteer, V ≤ 0.01µ2 is
observed.

We also observed that if the think time E
[
t∗
]
= µ ≤

0.3 seconds then AvatarTalk can well synchronize four pup-
peteers (I = 3) with probability higher than 99.99%.

Figure 24 (b) reverses the roles of puppeteers A and B (i.e.,
λA = 9.241973 and λB = 32.87203). The figure shows that if
the think time E

[
t∗
]
= µ ≤ 0.3 seconds then AvatarTalk can

well synchronize four puppeteers (I = 3) with probability
higher than 95.02%. If the think time E

[
t∗
]
≤ 0.5 seconds

then AvatarTalk can well synchronize four puppeteers with
probability higher than 99.66%.

VIII. CONCLUSION
This paper proposed AvatarTalk that empowers pup-
peteers to manipulate avatar puppets online, utilizing either
motion capture gloves or camera-based image recognition.
AvatarTalk not only enables seamless remote performances
and multi-screen presentations on diverse devices but also

FIGURE 24. Pr [τI <t + t∗] against µ, γ =V /µ2 and I .

offers a novel gesture interpretation technique for dance
artists. To ensure flexibility, AvatarTalk supports the integra-
tion of new control and puppet devices from other approaches
through an IoT-based microservice concept.

A meticulous calibration procedure has been developed
to precisely capture hand gestures and translate them into
corresponding movements for virtual puppets. The study’s
experiments demonstrate high accuracy of AvatarTalk’s
gesture recognition, with the platform consistently detect-
ing the correct gestures (recall rates between 98.75% and
100%) and rarely misinterpreting erroneous ones (preci-
sion rates between 90.8% and 100%). Both the smart
gloves and MediaPipe allow the puppeteer to freely gen-
erate gestures with distinct angles. However, for com-
plicated gestures, we strongly suggest that the puppeteer
follows calibration steps similar to what we described in
Section VI-B.
Additionally, we have presented a mechanism for evaluat-

ing the delays in puppet control. An analytic model has been
proposed to determine the delay times ofmessages exchanged
between a puppeteer’s control device and the AvatarTalk
server. For example, in the current AvatarTalk implementa-
tion, if the message delay does not exceed 0.1 seconds, four
puppeteers can synchronize their actions if the elapsed time
between two actions of a puppeteer is longer than 0.3 second.
This feature enhances the overall performance experience by
minimizing latency issues.

In summary, AvatarTalk seamlessly combines tradition
with cutting-edge technology. Its web-based nature and inte-
gration of IoT principles provide a powerful and versatile
platform for remote performances and open up new possibil-
ities for gesture interpretation in the realm of dance artistry.

In the future, we will use the proposed microservice mech-
anism to integrate other Puppetry solutions to extend Avatar

103030 VOLUME 11, 2023



H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

applications. For example, features described in [14] and [15]
can be accommodated in AvatarTalk as new applications.
Also, we will introduce the AI mechanism that interprets the
puppet script to fine-tune the IK chain movements to enhance
the avatar gestures in the performance.

REFERENCES

[1] Y.-B. Lin, Y.-W. Lin, C.-M. Huang, C.-Y. Chih, and P. Lin, ‘‘IoTtalk: A
management platform for reconfigurable sensor devices,’’ IEEE Internet
Things J., vol. 4, no. 5, pp. 1552–1562, Oct. 2017.

[2] Y.-B. Lin, H. Luo, C.-C. Liao, andY.-F. Huang, ‘‘PuppetTalk: Conversation
between glove puppetry and Internet of Things,’’ IEEE Access, vol. 9,
pp. 6786–6797, 2021.

[3] Google. MediaPipe Hands. Accessed: Apr. 15, 2023. [Online].
Available: https://github.com/google/mediapipe/blob/master/docs/
solutions/hands.md

[4] Google. MediaPipe Pose. Accessed: Mar. 1, 2023. [Online].
Available: https://github.com/google/mediapipe/blob/master/docs/
solutions/pose.md

[5] C.-Y. Lin, Z.-H.Yang, H.-W. Zhou, T.-N.Yang, H.-N. Chen, and T. K. Shih,
‘‘Combining leap motion with unity for virtual glove puppets,’’ in Proc.
IEEE Int. Conf. Artif. Intell. Virtual Reality (AIVR), Taiwan, Dec. 2018,
pp. 251–255.

[6] D.-L. Way, W.-K. Lau, and T. Y. Huang, ‘‘Glove puppetry cloud theater
through a virtual reality network,’’ in Proc. ACM SIGGRAPH Posters.
New York, NY, USA: Association for Computing Machinery, Jul. 2019,
pp. 1–2.

[7] D.-L. Way and Y.-H. Wei, ‘‘Use of cloud-based virtual reality in Chinese
glove puppetry to preserve intangible cultural heritage,’’ Appl. Sci., vol. 13,
no. 9, p. 5699, May 2023.

[8] E. Theodoridou, L. Cinque, F. Mignosi, G. Placidi, M. Polsinelli,
J. M. R. S. Tavares, and M. Spezialetti, ‘‘Hand tracking and gesture
recognition by multiple contactless sensors: A survey,’’ IEEE Trans.
Human-Mach. Syst., vol. 53, no. 1, pp. 35–43, Feb. 2023.

[9] L. LEite andV. Orvalho, ‘‘Mani-pull-action: Hand-based digital puppetry,’’
in Proc. ACM Hum.-Comput. Interact., 2017, pp. 1–16.

[10] E. Yohannes, T. K. Shih, and F. Utaminingrum, ‘‘Virtual reality in puppet
game using depth sensor of gesture recognition and tracking,’’ J. Comput.,
vol. 31, no. 5, pp. 89–98, 2020.

[11] H. Liang, S. Deng, J. Chang, J. J. Zhang, C. Chen, and R. Tong, ‘‘Seman-
tic framework for interactive animation generation and its application
in virtual shadow play performance,’’ Virtual Reality, vol. 22, no. 2,
pp. 149–165, Jun. 2018.

[12] T. Li and W. Cao, ‘‘Research on a method of creating digital shadow pup-
pets based on parameterized templates,’’ Multimedia Tools Appl., vol. 80,
no. 13, pp. 20403–20422, May 2021.

[13] W. Jiang and C. Cao, ‘‘Reconstruction: A motion driven interactive
artwork inspired by Chinese shadow puppet,’’ in Proc. 29th
ACM Int. Conf. Multimedia, New York, NY, USA, Oct. 2021,
pp. 1441–1442.

[14] H. Liang, J. Chang, S. Deng, C. Chen, R. Tong, and J. J. Zhang,
‘‘Exploitation of multiplayer interaction and development of
virtual puppetry storytelling using gesture control and stereoscopic
devices,’’ Comput. Animation Virtual Worlds, vol. 28, no. 5, 2017,
Art. no. e1727.

[15] J. Vanderdonckt and R.-D. Vatavu, ‘‘A pen user interface for controlling
a virtual puppet,’’ in Proc. Companion 12th ACM SIGCHI Symp. Eng.
Interact. Comput. Syst. New York, NY, USA: Association for Computing
Machinery, Jun. 2020, pp. 1–6.

[16] C.-W. Hung, R.-C. Chang, H.-S. Chen, C. H. Liang, L. Chan, and
B.-Y. Chen, ‘‘Puppeteer: Exploring intuitive hand gestures and upper-body
postures for manipulating human avatar actions,’’ in Proc. 28th ACM
Symp. Virtual Reality Softw. Technol. New York, NY, USA: Association
for Computing Machinery, Nov. 2022, pp. 1–11.

[17] W. Song, X. Wang, Y. Gao, A. Hao, and X. Hou, ‘‘Real-time expressive
avatar animation generation based on monocular videos,’’ in Proc. IEEE
Int. Symp.Mixed Augmented Reality Adjunct (ISMAR-Adjunct), Singapore,
Oct. 2022, pp. 429–434.

[18] VRM. VRM Documentation. Accessed: 2023. [Online]. Available:
https://vrm.dev/en/

[19] C.-M. Wang and S.-M. Tseng, ‘‘Design and assessment of an interactive
role-play system for learning and sustaining traditional glove puppetry
by digital technology,’’ Appl. Sci., vol. 13, no. 8, p. 5206, 2023, doi:
10.3390/app13085206.

[20] Y.-B. Lin, H. Luo, and C.-C. Liao, ‘‘CATtalk: An IoT-based interactive art
development platform,’’ IEEE Access, vol. 10, pp. 127754–127769, 2022,
doi: 10.1109/ACCESS.2022.3227093.

[21] Y.-B. Lin, Y.-W. Lin, and K. Hui, ‘‘ParadeTalk: Innovative interactions
between parade and audiences using IoT,’’ IEEE Internet Things Mag.,
vol. 3, no. 2, pp. 2–6, Jun. 2020.

[22] F. C. Park and K. M. Lynch, Modern Robotics. Cambridge, U.K.:
Cambridge Univ. Press, 2017.

[23] Three.js—JavaScript 3D Library. Accessed: 2023. [Online]. Available:
https://threejs.org/

[24] V. Maik, D. T. Paik, J. Lim, K. Park, and J. Paik, ‘‘Hierarchical pose
classification based on human physiology for behaviour analysis,’’ IET
Comput. Vis., vol. 4, no. 1, pp. 12–24, Mar. 2010.

[25] Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, and
T. Asfour, ‘‘Master motor map (MMM)—Framework and toolkit for cap-
turing, representing, and reproducing human motion on humanoid robots,’’
inProc. IEEE-RAS Int. Conf. Humanoid Robots,Madrid, Spain, Nov. 2014,
pp. 894–901.

[26] WebXR. Accessed: 2023. [Online]. Available: https://immersiveweb.dev/
[27] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, ‘‘Microser-

vices,’’ IEEE Softw., vol. 35, no. 3, pp. 96–100, May/Jun. 2018, doi:
10.1109/MS.2018.2141030.

[28] Y.-B. Lin, C.-Y. Liu, W.-L. Chen, C.-H. Chang, F.-L. Ng, K. Yang, and
J. Hsung, ‘‘IoT-based strawberry disease detection with wall-mounted
monitoring cameras,’’ IEEE Internet Things J., early access, Jun. 22, 2023,
doi: 10.1109/JIOT.2023.3288603.

[29] Y.-B. Lin and Y.-W. Lin, ‘‘SensorTalk: Extending the life for redundant
electrical conductivity sensor,’’ IEEE Internet Things J., vol. 9, no. 17,
pp. 16619–16630, Sep. 2022, doi: 10.1109/JIOT.2022.3151854.

[30] W.-E. Chen, Y.-B. Lin, T.-H. Yen, S.-R. Peng, and Y.-W. Lin, ‘‘DeviceTalk:
A no-code low-code IoT device code generation,’’ Sensors, vol. 22, no. 13,
p. 4942, Jun. 2022.

HELIN LUO (Member, IEEE) received the mas-
ter’s degree from the Graduate School of Arts
and Technology, Taipei National University of the
Arts, and the Ph.D. degree from the Graduate
Institute of Networking and Multimedia, National
TaiwanUniversity. He specializes in creating inter-
disciplinary works using art and technology. For
his creations, he draws from his personal experi-
ence of being extremely addicted to online games
during middle and upper school to explore ‘‘the

power of virtual worlds,’’ ‘‘the thrill of speed,’’ and other variations during
this era of technology. Furthermore, his works are centered around the
concept of ‘‘immigrant illness’’ amidst this generation of digital immigrants.
His works have been recognized at many electronic and contemporary art
festivals both domestically and internationally. These include the Digital Arts
Award Taipei (2008, 2010, 2011, and 2015), FILE—Electronic Language
International Festival (2009, 2010, and 2013), and other competitions. He is
the first Taiwanese artist to create works using a four-axis drone. His works
have won first prize for the performance award at Digital Art Festival Taipei.
He was also specially invited to Ars Electronica Festival to present his
inter-disciplinary works made through drones.

VOLUME 11, 2023 103031

http://dx.doi.org/10.3390/app13085206
http://dx.doi.org/10.1109/ACCESS.2022.3227093
http://dx.doi.org/10.1109/MS.2018.2141030
http://dx.doi.org/10.1109/JIOT.2023.3288603
http://dx.doi.org/10.1109/JIOT.2022.3151854


H. Luo et al.: IoT-Based Microservice Platform for Virtual Puppetry Performance

YI-BING LIN (Fellow, IEEE) received the Ph.D.
degree in computer science from the University of
Washington, Seattle, USA, in 1990. He is currently
a Winbond Chair Professor with National Yang
Ming Chiao Tung University (NYCU), a Chair
Professor with National Cheng Kung University
and China Medical University, and an Adjunt
Research Fellow of the Research Center for Infor-
mation Technology Innovation, Academia Sinica.
From 1990 to 1995, he was a Research Scientist

with Bellcore. Then, he joined National Chiao Tung University (NCTU),
where he became the Senior Vice President, in 2011. From 2014 to 2016,
he was the Deputy Minister of the Ministry of Science and Technology,
Taiwan. He is the coauthor of the books Wireless and Mobile Network
Architecture (Wiley, 2001), Wireless and Mobile All-IP Networks (John
Wiley, 2005), and Charging for Mobile All-IP Telecommunications (Wiley,
2008). He is a fellow of AAAS, ACM, and IET.

CHEN-CHI LIAO received the B.S. and M.S.
degrees in computer science and information
engineering from National Ilan University, Ilan,
Taiwan, in 2016 and 2018, respectively. He is
currently pursuing the Ph.D. degree in computer
science and engineering with National Yang Ming
Chiao Tung University, Hsinchu, Taiwan.

YUNG-HUI HUANG received the B.S. degree
in computer science and information engineering
from National Cheng Kung University, Tainan,
Taiwan, in 2021. She is currently pursuing the
M.S. degree in computer science and engineering
with National Yang Ming Chiao Tung University,
Hsinchu, Taiwan.

103032 VOLUME 11, 2023


