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ABSTRACT This paper investigates a doubly-fed wind turbine generation system (DFIG) where the
rotor-side control parameters have a significant impact on the effectiveness of the DFIG due to the adoption
of its inner-loop current and outer-loop power control strategies. Under rated operation, the original DFIG
parameter adjustment reliesmainly onmanual adjustment. In this paper, mathematical models are established
through literature research and data search, and neural networks are found to have unique advantages
in dynamic automatic parameter tuning. First, a mathematical model of DFIG based on PI controller is
established in this paper, and then the improved recurrent neural network is applied to the parameter tuning
control of rotor-side PI controller, and an experimental model of DFIG simulation based on the improved
recurrent neural network is established in MATLAB/Simulink. By comparing the DFIG models before and
after the improvement, the simulation experiments verify that the DFIG system based on the improved
recurrent neural network (CLR-DRNN) has significant control advantages under the wind speed fluctuation.
The simulation experimental results show that the DFIG system based on the improved recurrent neural
network achieves significant improvement in wind energy utilization coefficient, active power, reactive
power, response time of rotor speed, overshoot and static error compared with the conventional PI-regulated
DFIG system.

INDEX TERMS PI controller, double-fed wind turbine (DFIG), diagonal recurrent neural network (DRNN),
wind power generation (WF).

I. INTRODUCTION
Wind energy is a renewable energy source that reduces
dependence on traditional fossil fuels, reduces greenhouse
gas emissions, and protects the environment. Wind turbines
are the primary means of harnessing wind energy, which is
based on the principle that the rotation of a wind turbine
drives a generator to generate electricity. Wind energy has
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become an important renewable energy sourceworldwide due
to its abundant resources, non-pollution, renewable nature
and cost effectiveness [1]. At present, wind energy is widely
used in the fields of power generation, heating, and hydrogen
production, and the future applications are promising.

Wind power systems can be divided into constant speed
constant frequency (CSCF) and variable speed constant fre-
quency (VSCF) systems, which depend on the operation of
the turbine [2]. In CSCF systems, the generator maintains
a constant rotor speed and operates at a constant frequency,
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while VSCF systems allow variable speed operation by con-
trolling the voltage frequency of the rotor. Compared to
CSCF systems, VSCF systems have a higher wind energy
utilization.

A notable representative of the VSCF system is the
doubly-fed induction generator (DFIG). Compared to other
types of generators, the DFIG exhibits higher efficiency,
flexibility and adaptability. Its rotor can be controlled to adapt
to different wind speeds and load variations. Moreover, since
only 25-30% of the rated power is converted and the rest is
transmitted directly to the grid, DFIGwind turbines minimize
costs, power losses, and converter size, making them more
affordable than other types of turbines [4].
The key component to operate and control a DFIG-based

wind power system is the dual pulse width modula-
tion (PWM) converter. The converter consists of a grid-side
converter (GSC) and a rotor-side controller (RSC). The GSC
stabilizes the bus voltage of the DC link and ensures operation
at unit power factor, while the RSC plays an important role in
achieving variable speed, constant frequency generation and
maximizing wind energy tracking.

To maintain optimal generator operation, it is critical to
develop an effective excitation control strategy for the DFIG’s
RSC. Decoupling simplifies the design and composition of
the controller and promotes a wide range of flexible reg-
ulation and control of the DFIG. Proportional-integral (PI)
control is commonly used in controllers due to its simplicity,
fast response time, and satisfactory performance in terms of
accuracy and stability.

In DFIG-based wind power systems, optimization of the PI
parameters of the RSC is critical to ensure that the rotor angu-
lar velocity closely tracks the optimal velocity corresponding
to the current wind speed, thereby increasing the wind energy
conversion rate and improving the control performance of the
RSC [5]. Although manual adjustment of control parameters
based on the DFIG linearization model can be performed
under specific operating conditions, it may lead to degrada-
tion of control performance when the operating conditions
change. There are two main problems with this approach [6].
First, the calculation of PI controller parameters is dependent
on the system settings, making the control susceptible to
errors due to factors such as temperature rise, equipment
damage, grid faults, or any other changes, which may lead to
dynamic response oscillations, instability, or negative effects
on system performance. Secondly, there is a lack of adaptive
capability to external disturbances [7].
To address these problems, scholars have proposed partial

solutions for the PI controller of DFIG wind power systems.
Some researchers sought reliable and effective methods to
tune the optimal PI control parameters based on various
operating conditions. Since finding the optimal PI controller
parameters involves an optimization problem, some scholars
have utilized mathematical optimization methods that rely
mainly on gradient information, such as Newton’s method
and interior point method [8]. However, these methods rely
on the accuracy and precision of the systemmodel and cannot

be dynamically updated in real time, which may prevent
the DFIG wind power system from obtaining the optimal
control parameters. Other researchers have proposed alterna-
tive solutions and used intelligent optimization algorithms to
dynamically seek the best PI parameter scheme in real time
for optimal control of DFIG.

Intelligent optimization algorithms provide a general
search strategy for optimization and are not limited to a
specific environment. They offer various optimization advan-
tages, including model-independent, expert experience-
independent, derivative-free mechanisms, and avoidance of
local optimization [9]. Therefore, intelligent optimization
algorithms can be applied to optimize the PI parameters of
RSCs. Well-known algorithms in this regard include genetic
algorithms (GA), ant colony optimization algorithms (WOA),
and particle swarm optimization algorithms (PSO) [10].
These algorithms simulate the natural behavior of animals,
such as movement and predation, in order to find the best
solution. However, traditional intelligent algorithms face
challenges in optimizing the control parameters of RSC due
to large search space, limited global and local search capabil-
ities, lack of diversity, and long optimization time.

To overcome these limitations, researchers have focused
on two mainstream intelligent algorithms for optimizing PI
control of DFIG wind power systems: fuzzy logic algorithms
and neural network algorithms [12].
Fuzzy logic control is a control technique that deals with

fuzzy or uncertain information through imprecise reason-
ing rather than precise computation [13]. It involves fuzzy
inference with variable values between 0 and 1 rather than
strict 0 or 1 [14]. Neural network control is a control system
inspired by the human nervous system [15]. It mimics the
structure and function of the human brain [16] and uses the
exchange of information between artificial neurons to deter-
mine the input signals. Neural network control is effective in
managing continuous, nonlinear and multivariable systems.

Fuzzy logic control is based on predetermined rules
and information processing, whereas neural network con-
trol relies on learning and training among neurons to make
decisions. However, fuzzy logic control also has some limi-
tations [17]. Adjusting system parameters and fuzzy rules can
be time-consuming, and these parameters and rules may vary
from case to case. Fuzzy logic control is limited by the fuzzy
language, and it is difficult to compare fuzzy quantities and
sets with other mathematical concepts. This limitation limits
the accuracy and scope of control [18], [19].

Compared to fuzzy logic control, neural network con-
trol exhibits greater learning and adaptation capabili-
ties [20], [21]. It can adapt to changes in the internal and
external environment of the system through learning and
training to achieve more accurate control. In contrast, fuzzy
logic control relies on predefined fuzzy rules and cannot learn
and adapt autonomously. Second, [22] neural network con-
trol can handle more complex processing tasks. It can solve
nonlinear, non-smooth and highly noisy control problems,
providing higher flexibility and applicability. On the other
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hand, fuzzy logic control is more suitable for simpler, linear
and low-noise control problems. Third, [23] neural networks
possess greater robustness, [24] and neural network control
can adapt and self-heal, automatically correcting problems
caused by noise and disturbances, thus improving resilience.
In contrast, fuzzy logic control is relatively less tolerant of
noise and disturbances. In conclusion, compared with fuzzy
logic control, neural network control shows stronger advan-
tages in terms of adaptability, flexibility and robustness.

Neural networks are mainly classified into two categories:
feedforward neural networks (FNN) and recurrent neural
networks (RNN) [25]. Feedforward neural networks are the
basic type of neural networks and consist of an input layer,
multiple hidden layers, and an output layer. The neurons
within each layer are fully interconnected [26]. In FNNs, data
can only flow towards the front, hence the name feedforward
neural network. On the other hand, RNNs incorporate a mem-
ory function and include recursive connections [27].
The advantages of FNNs are their relatively fast training

speed, their ability to handle inputs of different lengths [28],
and their good performance for simple classification prob-
lems. However, FNNs are not suitable for time-series data
or data with internal dependencies and struggle to handle
long-term dependencies [29]. Complex classification prob-
lems require more hidden layers and neurons, resulting in
larger models, which is a challenge for training.

In contrast, RNNNs outperform FNNNs [30] in handling
time-series data and data with internal dependencies. With
its memory function, RNNs can handle long-term dependen-
cies and perform well in sequential modeling tasks such as
speech recognition and natural language processing. How-
ever, RNNs also have some drawbacks [31], including a
slow training speed and the possibility of gradient dis-
appearance or explosion due to the presence of internal
recursive connections, whichmakes the training processmore
difficult.

In response to the above problems, some scholars have
proposed relevant solutions. In a study [32], a combination
of neural network and sliding mode control was designed
to improve the parameter adaptation and immunity to dis-
turbances of a pneumatic actuator controller. The neural
network was used to observe the uncertainty of the whole
system. Another study [33] used BP neural networks in
combination with PI control methods for speed control of a
permanent magnet synchronous motor in an elevator, result-
ing in improved speed and comfort. Another study [34]
proposed a decoupled control strategy for permanent magnet
synchronous motors, which combines classical proportional-
integral-derivative (PID) control with a single neuron. This
approach promotes the decoupled control of the motor with
fast response capability and good static performance. The
connection weight parameter plays a key role in tuning the
performance of PID neural networks (PIDNN) for complex
control systems. In another study [35], an MPIDNN method
based on adaptive population extremumoptimization, namely
PEO-MPIDNN, was proposed for optimizing the control

problem of multivariate nonlinear control systems. Simu-
lation results show that the proposed PEO-MPIDNN has
superior transient, steady-state, and robust control perfor-
mance compared with other methods.

In addition, a study [36] proposed an adaptive control
method based on artificial neural networks for a wind energy
conversion system (WECS) using doubly-fed asynchronous
generators (DFIG). Numerical simulations showed that the
power of the DFIG system was significantly improved by
the proposed control scheme compared to vector and sliding
mode control techniques. Another study [37] focused on the
analysis and design of a hybrid control (HC) system for a
doubly-fed asynchronous generator (DFIG) using a recurrent
neural network (RNN) and a proportional-integral (PI) con-
troller. The proposed hybrid controller exhibits fast dynamics
and good transient response to sudden changes in wind speed
and generator speed.

To improve the control performance of DFIG systems,
this paper explores the use of diagonal recurrent neural
networks (DRNN) in combination with PI control [38].The
dynamic properties of DRNN allow for effective control
of nonlinear time-varying systems. In this approach, the
DRNN adjusts the optimal parameters of the PI in real time
during the system operation, and an adaptive learning rate
method is designed to improve the learning ability and online
correction capability of the controller. Simulation experi-
ments confirm that the improved CLR-DRNN-PI control
method enhances the responsiveness and anti-disturbance
capability of the DFIG speed loop, thus improving the
static and dynamic performance of the whole DFIG sys-
tem. The following points highlight the contributions of this
study:

1. conventional PI control, BP neural network-based
PI control, and DRNN diagonal recurrent neural
network-based PI control are compared and analyzed.

2. the learning rate of the DRNN algorithm is optimized.
3. Combined PI controller and DRNN for doubly-fed

wind turbine to achieve faster convergence speed.
4. A mathematical model and simulation model of the

DFIG system were developed, and Simulink simula-
tions were performed using a 2MWDFIGwind turbine
to verify the effectiveness of the proposed control
method.

5. Finally, the evaluation was carried out based on the
power convergence, wind energy utilization factor and
rotor speed.

In this paper, we propose an improved diagonal recur-
rent neural network to overcome the problems of too large
search space, weak global search ability and weak local
search ability of traditional intelligent algorithms in opti-
mizing the PI parameters of RSC. The parameters of the PI
controller are tuned by building an improved diagonal recur-
rent neural network (DRNN). the DRNN approach provides
better response time, minimizes overshoot, and maintains
adequate tracking of the reference under wind speed variation
conditions.
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II. DFIG MODELING AND VECTOR CONTROL
The grid-connected DFIG model is shown in Figure 1.
It contains a wind turbine, a doubly-fed induction genera-
tor (DFIG), an inverter commonly referred to as a back-to-
back power electronic converter (also called an inverter-side
converter), and a control system. Both inverters are connected
to a DC-link capacitor. the stator side of the DFIG is con-
nected to the grid via a coupling transformer. Where RSC is
the rotor-side converter and GSC is the stator-side converter.

FIGURE 1. Grid-connected DFIG-WT model.

A. WORKING PRINCIPLE OF WIND POWER MAXIMUM
POWER POINT TRACKING (MPPT) AND DFIG
WIND TURBINE
The grid-connected DFIG model is shown in Figure 1.
It contains a wind turbine, a doubly-fed induction genera-
tor (DFIG), an inverter commonly referred to as a back-to-
back power electronic converter (also called an inverter-side
converter), and a control system. Both inverters are connected
to a DC-link capacitor. the stator side of the DFIG is con-
nected to the grid via a coupling transformer. Where RSC is
the rotor-side converter and GSC is the stator-side converter.

According to the aerodynamic characteristics of the wind
turbine, the input power of the wind turbine is:

Pv =
1
2
(ρSwv) v2 =

1
2
ρSwv3 (1)

where ρ is the air density, under standard conditions,
ρ = 1.293kg/m3, Sw is the windward sweeping area of the
wind blade, v is the wind speed.

Since the wind energy absorbed by the wind turbine is only
a fraction of the wind energy flowing through the wind tur-
bine, the wind energy utilization factor Cp is usually defined
to represent the efficiency of wind energy captured by the
wind turbine, Cp is:

Cp =
Po
Pv

(2)

Then the output power Po of the wind turbine in equation (2)
can be expressed as:

Po = CpPv =
1
2
ρSwv3Cp =

π

2
ρR2wv

3Cp (3)

where Rw is the radius of the airfoil.

The leaf tip speed ratio λ is an important concept in the
wind turbine modeling process, which is the ratio of the linear
speed of the wind blade tip to the ratio of wind speed:

λ =
Rwωw
v

=
πRwnw
30v

(4)

where ωw is the angular velocity of wind blade rotation, nw is
the wind blade speed, and when nw =

30ωw
π

, the output
torque T of the wind turbine can be expressed as:

To =
Po
ωw

=
πρR3wv

2Cp
2λ

(5)

According to the Baez theory, the wind energy utilization
coefficient Cp is a composite function of the variables of
the blade tip speed ratio λ and the pitch angle β, which is
expressed as:

Cp(λ , β) = 0.5176
(
116
λi

− 0.4β − 5
)
e
−

21
λi + 0.0068λ

1
λi

=
1

λ + 0.08β
−

0.035
β3 + 1

(6)

where: λi can be represented by λ and β.
The expression for the optimal power curve is:

Popt =
π

2
ρR2wv

3Cpmax

Popt =
π

2
ρR2w

(
Rw
λopt

)3

Cpmaxω
3
w = kω3

w (7)

where: k =
π
2 ρR

2
w

(
Rw
λopt

)3
Cpmax

Then, as the wind speed changes, adjusting the wind tur-
bine speed to keep it at the optimal speed position will enable
the wind turbine to work continuously on the optimal power
curve and achieve the maximum wind energy tracking.

Let the number of pole pairs of the motor be P, the fre-
quency of the stator output current be fs, which is also equal
to the grid frequency, the rotor excitation current - the fre-
quency of the three-phase AC current flowing into the rotor
windings be fr , the rotational speed of the motor rotor be n,
the rotational speed of the stator rotating magnetic field be ns,
and the rotor rotating magnetic field relative to the rotor be nr.
Then:

ns =
60fs
p
, nr =

60fr
p

(8)

The transfer rates are:

s =
(ns − n)

ns
(9)

n+ nr = ns (10)

From the derivation of equations (8), (9) and (10), the follow-
ing relationship can be obtained:

fr =
pnr
60

=
(ns − n)

ns

pns
60

= sfs (11)

According to equation (11), as the wind speed changes, the
speed n of the doubly-fed wind turbine will also change.
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In order to keep the frequency fs constant at the grid fre-
quency, a three-phase AC current of frequency fr = sfs needs
to be fed to the rotor winding. Therefore, only when the rotor
excitation current has a frequency fr = sfs, the doubly-fed
wind turbine can be operated at a constant frequency. The
expression for the electromagnetic torque a of a doubly-fed
wind turbine is:

Te =
3
2
pLm

(
isd irq − isqird

)
(12)

where p is the number of motor pole pairs.
Equation of motion:

Te − Tl =
J
p
dωr
dt

+
D
p
ωr +

K
p
θr (13)

where Tl is the driving torque of the motor; J is the rotational
inertia of the motor; ωr is the electrical angular velocity
of the rotor winding as the rotor rotates; D is the torque
damping coefficient of the motor; and K is the torsional
elastic torque coefficient of the motor. Equations (12) to (16)
form the mathematical model of the doubly-fed wind turbine
in a three-phase stationary coordinate system.

B. PARK CONVERTER CONTROL
The rotor-side converter mainly realizes decoupling control
of the output active and reactive power. The three-phase
coordinate system is transferred to the rotating reference
coordinate system (dq-reference coordinate system) by the
Park transform.

Thus, the stator and rotor voltage equations are expressed
as follows: 

Usd = −Rsisd +
dψsd

dt
− ω1ψsq

Usq = −Rsisq +
dψsq

dt
+ ω1ψsd

(14)


Urd = Rrird +

dψrd

dt
− ωsψrq

Urq = Rrirq +
dψrq

dt
+ ωsψrd

(15)

Generator stator and rotor winding magnetic chain equation:{
ψsd = Lsisd − Lmird
ψsq = Lsisq − Lmirq

(16){
ψrd = Lrird − Lmisd
ψrq = Lrirq − Lmisq

(17)

The electromagnetic torque is shown below:

Te =
3
2
pLm(isd irq − isqird ) (18)

The stator active and reactive power is written as follows:
Ps =

3
2
(Usd isd + Usqisq)

Qs =
3
2
(Usqisd − Usd isq)

(19)

C. RSC CONVERTER CONTROL
Indirect vector control is used to individually regulate the
power of the generator and solve the coupling problem of
the system. The power is controlled in the open loop, while
the closed loop is used to control the rotor current. The stator
flux is assumed to be constant and oriented in the d-axis. Due
to the elimination of the stator winding resistance, the rotor
voltage can be expressed as:

urd = Rr ird + σ
dird
dt

− ωsσ irq

urq = Rr irq + σ
dirω
dt

+ ωsσ ird + ωs
Lm
Ls
ψs

(20)

In order to simplify the control system and improve the
control accuracy, the decoupling term of the rotor voltage
and the feed-forward compensation term can be decomposed,
where the feed-forward decoupling terms u′

rd and u′
rq of the

rotor voltage are:
u′
rd = Rr ird + σ

dird
dt

u′
rq = Rr irq + σ

dirq
dt

(21)

The rotor d-axis voltage decoupling term u′
rd is only affected

by the rotor d-axis current ird , and the rotor q-axis voltage
decoupling term u′

rq is only affected by the rotor d-axis
current irq, which is equivalent to the completion of the
decoupling of rotor d- and q-axis currents. In addition, the
feedforward compensation terms1urd and1urq for the rotor
voltage are: 1urd = −ωsσ irq

1urq = ωsσ ird + ωs
Lm
Ls
ψs

(22)

We have the expressions for the stator active and reactive
power expressed by the rotor d and q axis currents as follows:

Ps =
3
2
us
Lm
Ls
irq

Qs =
3
2
us

(
Lm
Ls
ird −

1
Ls
ψs

) (23)

When the grid is stable and the stator magnetic chain is
oriented, it can be considered that ψs is a constant value, and
according to equation (23), the stator active power Ps and
reactive power Qs are determined by the rotor d and q axis
currents irq and ird , respectively, which is equivalent to having
achieved power decoupling.

The expression for the electromagnetic torque Te of the
doubly-fed wind turbine is then as follows:

Te = −
3
2
p
Lm
Ls
ψsirq (24)

Since ψs can be considered as a constant value, accord-
ing to equation (24), the electromagnetic torque Te of the
doubly-fed wind turbine can also be controlled by the rotor d
and q axis current irq. According to the relationship between
electromagnetic torque and rotational speed, the rotational
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speed of the doubly-fed wind turbine can also be controlled
by the rotor d and q axis currents irq.
The pole compensation method is used to calculate the

PI coefficient (Kpr ,KIr ). The time constants of the sys-
tem are:

Ks =

(
Lr −

L2
m

Ls

)
/R (25)

Therefore, the expression for the PI coefficient is calculated
as follows: 

Kpr =
1
Kr

(
Lr −

L2
m

Ls

)
KIr =

KprRr(
Lr −

L2m
Lsta

) (26)

Among them: Kr =
Ks
100 .

III. DRNN CONTROL BASED DIFG WIND POWER SYSTEM
A. PROBLEM DESCRIPTION
Conventional DFIG systems are usually controlled using con-
ventional PI controllers with simple characteristics. However,
there are some difficulties in this control method, such as the
dependence on system parameters and the lack of adaptive
capability to the outside world. To improve the dynamic
performance of DFIG, this paper proposes a modified recur-
rent neural network (CLR-DRNN) method for automatically
adjusting the gain of the PI regulator while ensuring the
independence of the generator settings.

PI regulators usually contain two gains: proportional
gain (KP) and integral gain (KI ). These gains are used to
weight the accumulated values of current and past errors and
input the results into the control system. The control concept
of a standard PI regulator is shown below:

u(t) = KPr · e(t) + KIr · ∫
t
0 e(t) · dt (27)

However, in this study, a modified recurrent neural network
method (CLR-DRNN) is proposed in order to improve the
control performance of DFIG. This method is able to auto-
matically adjust the gain of the PI regulator and ensure the
independence of the generator settings. By weighting and
calculating the accumulation and sum of error values, we can
achieve optimization of the PI regulator. This improved con-
trol method aims to improve the dynamic performance of the
DFIG system with better adaptive capabilities.

B. PRINCIPLE AND STRUCTURE OF BP NEURAL
NETWORK AND DRNN NEURAL NETWORK
DRNN is similar to BP neural network, which consists of
input, hidden and output layers, and the number of neu-
rons in its hidden layer is determined by an empirical
formula. The structure of DRNN neural network is shown
in Fig. 2 and Fig. 3.

In DRNN, the input layer unit receives the input signal,
and the implied layer receives the input from the input layer

and the self-feedback signal, which is passed to the output
layer after the excitation function to complete the forward
propagation. Then, according to the error between the output
result of the output layer and the desired value, backward
propagation is performed and the network connectionweights
are dynamically adjusted so that the result of the output layer
gradually approaches the desired value. In this way, DRNN
can continuously optimize itself to achieve more accurate
output.

FIGURE 2. Schematic diagram of BP neural network.

FIGURE 3. Schematic diagram of DRNN neural network.

Incremental PI control algorithm output expression:

u(k) = u(k − 1) + Kp[e(k) − e(k − 1)] + KIe(k) (28)

where e(k) and e(k − 1) are the system errors collected by
the controller for the last two times, respectively; u(k) is the
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controller output at k moments; Kp and KI are the controller
gain parameters. e(k), e(k)−e(k−1) and u(k−1) are selected
as the k-time input signal X (k) of DRNN; the input Z (2)

h and
output A(2)h of each neuron in the hidden layer are:

Z (2)
h (k) =

3∑
i=1

ω
(1)
ih X

(1)
i (k) + ω

(1)
hh A

(2)
h (k − 1)

A(2)h (k) = σ
[
Z (2)
h (k)

] (29)

whereωih is theweight between each neuron in the input layer
connected to the hidden layer; ωhh is the weight of the neuron
connected by self-feedback in the hidden layer σ (x) is the
excitation function of the hidden layer, where the hyperbolic
tangent function is chosen and its expression is as follows:

σ (x) =
ex − e−x

ex + e−x (30)

The input Z (3)
o and output A(3)0 of each neuron in the output

layer are: 
Z (3)
o (k) =

5∑
h=1

ω
(2)
ho A

(2)
h (k)

A(3)0 (k) = g
[
Z (3)
0 (k)

] (31)

where ωho is the weight between each neuron in the output
layer of the implicit layer connection; the output layer output
is the controller gain parametersKp andK1, corresponding to:{

Kp = A(3)1 (k)

K1 = A(3)2 (k)
(32)

Since the gain parameters are non-negative, the output layer
excitation function is selected as a non-negative Sigmoid
function with the following expressions:

g(x) =
ex

ex + e−x (33)

The gain parameters required by the controller can be
obtained by the forward propagation process described above.
Subsequently, the output of the controller is calculated using
equation (33) to influence the PI controller so that the DFIG
produces an appropriate response. The learning process of the
DRNN is based on a back-propagation algorithm that prop-
agates the error signal back along the forward propagation
path. This adjustment of the weight values between neurons
leads to a continuous reduction of the system error. The
performance exponential function of the system is defined as
follows:

J (k) =
1
2
[r(k) − y(k)]2 (34)

where r(k) is the desired value of the system, and y(k) is
the actual value. For the DFIG control system in this paper,
r(k) is the desired value of the speed or torque loop change
controller, and y(k) is the actual DFIG speed or torque.

The gradient descent method is used to adjust the network
weight values, and the adjustment formula is as follows:

1ω(k) = −η
∂J (k)
∂ω(k)

+ α1ω(k − 1) (35)

where η is the learning rate; α is the inertia factor that
makes the search converge quickly. According to the above
equation, the weight adjustment formula between each neu-
ron in the output layer to the hidden layer can be obtained as
follows:

1ω
(2)
ho (k) = −ηe(k)

∂y(k)
∂1u(k)

∂1u(k)

∂A(3)o (k)
.

× g′[Z (3)
o (k)]A(2)h (k) + α1ω

(2)
ho (k − 1) (36)

where ∂y(k)
∂1u(k) is not known, here we adopt an approximate

calculation method, using the symbolic function sgn(.) to
approximate its replacement, and the resulting calculation
inaccuracy can be compensated by adjusting the learning rate.
Then the term can be expressed as follows:

sgn
(
∂y(k)
∂1u(k)

)
=


1

∂y(k)
∂1u(k)

≥ 0

−1
∂y(k)
∂1u(k)

< 0
(37)

Similarly, the adjustment formula for the weight ω(1)
ih among

the neurons in the hidden layer to the output layer and the
adjustment formula for the weight ω(1)

hh among the neurons in
the self-feedback loop in the hidden layer can be obtained as
follows, respectively:

1ω
(1)
ih (k) = −ηe(k)sgn

(
∂y(k)
∂1u(k)

)
.

× σ ′[Z (2)
h (k)]X (1)

i (k)δ(k) + α1ω
(1)
ih (k − 1)

(38)

1ω
(1)
hh (k) = −ηe(k)sgn

(
∂y(k)
∂1u(k)

)
.

× σ [Z (2)
h (k)]A(2)h (k − 1)δ(k) + α1ω

(2)
hh (k − 1)

(39)

where: δ(k) =

3∑
o=1

(
∂1u(k)
∂A(3)o (k)

g′[Z (3)
o (k)]

)
ωho(2)(k)

C. LEARNING RATE ADAPTIVE OPTIMIZATION
The effectiveness and convergence speed of the DRNN learn-
ing algorithm are directly influenced by the learning rate η.
A larger learning rate can accelerate the convergence speed
of the neural network, but it may lead to weight oscillation
and affect the controller performance, which is not conducive
to the stable operation of the DFIG system. Although a
smaller learning rate can avoid this situation, it will also
reduce the convergence speed of DRNN and fail to adjust
the controller parameters in time when dealing with complex
environments. Therefore, an adaptive learning rate method
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is proposed to balance the stability and fast response capa-
bility of the system. The adjustment equation is shown as
follows:

η(k) =

 η(k − 1) + |e(k)|/β
(
yk × yk−1

)
> 0

η(k − 1) × γ
(
yk × yk−1

)
< 0

(40)

In the above equation, yk denotes sgn
(
∂y(k)
∂1u(k)

)
and yk

represents the directional information of the system output
to the control input change at moment k . If the direction of
change from moment k to moment k − 1 is the same, the
learning rate increases |e(k)|/β, where β is the scaling factor;
conversely, it decreases γ times, and γ is a positive number
less than 1, which should not be too small to avoid gradient
disappearance. However, adopting the adaptive learning rate
adjustment formula may result in the learning rate eventually
becoming smaller and the weights cannot be adjusted in
time when dealing with sudden changes in speed. Therefore,
the following equation is adopted to correct the learning
rate:

η(k) = η0e(k) − e(k − 1) > 1ω (41)

where η0 is the corrected learning rate, and equation (49) is
activated to correct the learning rate when the error value at
time k minus the error value at time k − 1 is greater than the
threshold value 1ω.

IV. SIMULATION AND VALIDATION OF DRNN
ALGORITHM BASED ON IMPROVED
LEARNING RATE
A. IMPLEMENTATION OF DFIG ROTOR-SIDE PI CONTROL
BASED ON BP AND IMPROVED DRNN NEURAL
NETWORK ALGORITHM
BP neural networks and DRNN neural networks are widely
used in pattern recognition and classification problems, and
are also effective means of application in PI controllers.
Specifically, neural networks can adjust the parameters of PI
controllers by monitoring the error of the feedback signal
and the desired output signal to improve the performance
and response speed of the controller. The training process of
neural networks usually consists of two stages: forward prop-
agation and backward propagation. In forward propagation,
the network passes the input signal to the output layer for
error calculation, while in backward propagation, the error is
fed back to the input layer and a gradient descent algorithm
is used to adjust the weights and bias values of each neuron
to minimize the error.

For the DFIG system as the controlled object, the KP
and KI parameters of the PI controller can be determined by
inputting the actual output value y(t), the target signal rin(t)
and the error e(t) into the BP and DRNN neural networks.
Finally, these parameters are passed to the PI controller to
enable it to control the controlled object more accurately and
thus improve the control effect. The following figures show
the whole process (Figure 4 and Figure 5).

FIGURE 4. Schematic diagram of PI control structure based on BP neural
network.

FIGURE 5. Schematic diagram of DRNN-based neural network PI control
structure.

B. NEURAL NETWORK FLOW CHART
The algorithm flow is as follows:

(1) Determine the DRNN neural network structure, initial-
ize the weight values, select the appropriate learning
rate and momentum factor, so that k = 1;

(2) Sample the input r(k) and output y(k) at time k , and
calculate the deviation e(k);

(3) Input e(k), e(k)− e(k−1) and u(k−1) into the DRNN
and calculate the output quantities Kp and K1;

(4) Calculate the control output u(k) at that moment
according to equation (3);

(5) calculate the learning rate at the current moment, and
adjust the network weight coefficients according to the
back propagation formula to achieve adaptive control;

(6) Let k = k + 1 and return to step (2).

The neural network algorithm flow is shown in Figure 6.

C. COMPARISON OF ORIGINAL PI CONTROL,
BP CONTROL, DRNN CONTROL, AND IMPROVED
DRNN CONTROL
To verify the effect of the improved DRNN algorithm on
the PI controller, we built a MATLAB/Simulink simulation
model and conducted simulation experiments to compare and
verify the improved DRNN algorithm to improve the effect
of the PI controller. Figure 7 shows the controlled object y(t),
assuming that y(t) is a continuous signal from 0 to 10 seconds
with a step at 1 second, from y(t) equal to 0 to 1, and remains
constant for the following 9 seconds. By using the original PI
controller to track the controlled quantity, the output signal
of the original PI controller reaches the output value of the
controlled object at 1.6 seconds, but oscillation occurs after-
wards, with a maximum oscillation amplitude of about 1.4 at
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FIGURE 6. Neural network flow chart.

2 seconds and an overshoot of about 40%, and it takes about
7.6 seconds to track the controlled object. It can be seen that
the original PI controller control effect is not ideal.

As seen in Figure 7, the control effect of the PI controller
has been significantly improved by the improved DRNN
neural network.

The output of the PI controller based on BP neural network
tracked the control amount in about 2.2 seconds, while the
output of the PI controller based on DRNN neural network
and the improved DRNN neural network tracked the control
amount in about 1.2 seconds. Also, the output overshoot of
the PI controller based on the neural network algorithm is
almost zero. Figure 8 shows the KP,KI parameters of the
BP controller optimized based on BP neural network, DRNN
neural network and the modified DRNN neural network.
As can be seen fromFigure 8, the oscillation amplitudes of the
KP andKI parameters of the BP neural network-based PI con-
troller are 0.1754 and 0.22209, respectively, with a response
time of about 0.2 seconds; the oscillation amplitudes of the
KP and KI parameters of the DRNN neural network-based

FIGURE 7. Neural network tracking step function effect graph.

FIGURE 8. PI parameter change diagram.

PI controller are 0.1654 and 0.1609, respectively, with a
response time of about 0.15 seconds; the response time based
on the improved The oscillation amplitudes of KP and KI
parameters of the PI controller based on the modified DRNN
neural network are 0.1550 and 0.1409, respectively, with a
response time of about 0.15 seconds.

The experiments effectively verify the effectiveness of
the optimized PI controller based on the neural network
algorithm. Compared with the original PI controller, the
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neural network based optimized PI controller has significant
improvement in response time, control effect and overshoot
amount.

V. SIMULATION AND RESULTS
A. APPLICATION OF IMPROVED DRNN NEURAL
NETWORK TO DFIG WIND POWER SYSTEM
Figure 9 shows the design of the control process based on
the improved DRNN neural network optimization for the
DFIG rotor-side PI controller. In the DFIG-based wind power
system, the voltage stability is related to the reactive power
deviation

∣∣Qs − Q∗
s

∣∣ and the frequency stability is related to
the rotor angular speed error

∣∣ωr − ω∗
r

∣∣. Different control
parameters will have an impact on the control effect of the
system. The traditional PI controller parameters are based
on the global optimal solution, which usually requires a
combination of several aspects and therefore cannot represent
the best control effect at a certain moment. In this paper,
we propose a method to improve the PI controller using a
modified recurrent neural network (CLR-DRNN).

First, the optimal rotor speed, real-time speed, optimal
reactive power and real-time reactive power are input into
the neural network intelligent algorithm module to determine
the optimal parameters KP and KI for the power loop by the
neural network intelligent optimization algorithm. then, the
optimal current value and the actual current value are input
into the neural network intelligent optimization algorithm
module to determine the optimal parameters KP and KI for
the current loop.

In this design, we adopted some strategies to improve the
stability and regulation speed of the system. For the power
loop regulation, we chose the traditional PI regulationmethod
to ensure the stability of the system. As for the current loop
regulation, we used an intelligent optimization algorithm to
adjust it dynamically to improve the accuracy of regulation.
For this purpose, we designed a neural network model with a
3-5-2 structure for implementing the current loop regulation.
With these measures, we expect the system to perform power
and current regulation more stably and efficiently.

B. SYSTEM PARAMETER SETTING
According to the operation and control principle of
doubly-fed wind power generation system, MATLAB2022a
software is used to build the overall simulation model of
doubly-fed wind power generation system.

The main parameters of the DFIG system model are
shown in Table 1. The simulated DFIG works at a fixed
pitch, the pitch angle is β = 0◦, the rated wind speed
is 11.2m/s, the cut-in wind speed is 3/s, the cut-out wind
speed is 25m/s, the optimal blade tip speed ratio b is λopt ,
and the maximum wind energy utilization coefficient Cpmax
is 0.4412.

In MATLAB/Simulink platform to build a combined
wind speed model as shown in Figure 10, now set the
simulation parameters of the wind speed model as follows:

FIGURE 9. RSC parameter optimization structure of DFIG-based wind
power system under intelligent algorithm.

TABLE 1. Parameters of wind power plant system components.

the simulation time is 10s, at the moment of 0 the basic wind
speed is 4m/s, the duration is 2 seconds; at the moment of
2 seconds, the wind speed changes abruptly, at this time
the basic wind speed becomes 8m/s, the duration is 4 sec-
onds; at the moment of 6 seconds, the basic wind speed
at 6 seconds, the basic wind speed becomes 10m/s and the
duration is 4 seconds. The step wind speed is obtained by
simulation.

C. SIMULATION EXPERIMENT RESULTS
To demonstrate the superiority of control using the neural
network algorithm, four parameters reflecting the quality of
RSC control performance were selected for comparison in
this study, including wind energy conversion efficiency Cp,
active power P, reactive power Q, and rotor angular
velocity ω.

As shown in Figure 11, the graph reflects the fluctuation
of the maximum wind energy utilization factor. Based on
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FIGURE 10. PI parameter change diagram.

the DFIG system parameters in Table 1 and the relevant
calculation equations, we know that the wind energy utiliza-
tion coefficient of the DFIG turbine simulated in this time
is about 0.4412. It can be observed from Figure 11 that a
step in wind speed occurs at 2 s. Based on the four control
methods, PI, BP, DRNN and CLR-DRNN, the overshoot of
DFIG wind energy utilization coefficient is 0.1192, 0.0662,
0.0552 and 0.0162, respectively, and the overshoot percent-
ages are about 27.01%, 15.00%, 12.51% and 3.67%, and the
convergence times are 2.56, 1.35, 0.25, and 0.16 seconds.
At 6 seconds when the wind speed steps again, the over-
shoot of DFIG wind energy utilization coefficient is 0.1562,
0.0902, 0.0652 and 0.0252 based on four control methods, PI,
BP, DRNN and CLR-DRNN, with overshoot percentages of
about 35.40%, 20.44%, 14.78% and 5.71%,with convergence
times of 2.55, 1.50, 0.30, and 0.18 seconds, respectively.

FIGURE 11. Maximum wind energy utilization factor Cp.

As shown in Figure 12, this figure demonstrates the active
power fluctuation of the DFIG. It can be observed that
the wind speed changes abruptly at 2 seconds, and the
convergence times of the active power curves are 2.55 sec-
onds, 2.20 seconds, 1.80 seconds and 1.78 seconds for the
DFIG with four different control methods. At 6 seconds, the
wind speed changed abruptly again, while the convergence
times of the corresponding DFIG active power curves were
2.65 seconds, 2.25 seconds, 1.85 seconds and 1.80 seconds,
respectively. From the DFIG active power curves, it can
be seen that the DFIG systems based on the DRNN and
CLR-DRNN control methods are significantly better than

the DFIG systems based on the PI and BP control methods.
In addition, the active power curve of the DFIG based on the
CLR-DRNN control method always lies above the curve of
the DFIG based on the DRNN control method.

FIGURE 12. Active power fluctuation.

As shown in Figure 13, the graph illustrates the fluctuation
of reactive power of DFIG. The wind speed changes abruptly
at 2 seconds, and the overshoot of the DFIG wind energy
utilization factor is 14.5 KW, 7.2 KW, 4.5 KW and 3.0 KW
with convergence times of 0.65, 0.40, 0.25 and 0.15 seconds,
respectively, using the four control methods PI, BP, DRNN
and CLR-DRNN. At 6 seconds, the wind speed changed
abruptly again, and the same four control methods were used
at this time. The corresponding overshoot of the DFIG wind
energy utilization factor was 24.5 KW, 17.2 KW, 8.5 KW
and 6.0 KW, and the convergence times were 0.90 s, 0.60 s,
0.35 s and 0.20 s, respectively.

FIGURE 13. Reactive power fluctuation.

As shown in Figure 12, the graph demonstrates the rotor
speed fluctuation of DFIG. The wind speed changes abruptly
at 2s and the convergence times of the rotor speed fluctuation
curves ofDFIG are 2.65s, 2.25s, 2.10s and 2.05s, respectively.
At 6 seconds, the wind speed changed abruptly again, and
the same four control methods were used at this time, while
the corresponding convergence times of the DFIG rotor speed
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fluctuation curves were 2.85, 2.35, 2.20 and 2.15 seconds,
respectively. From the DFIG rotor speed fluctuation curves,
it can be seen that the DFIG system based on the DRNN
and CLR-DRNN control methods is significantly better than
the DFIG system based on the PI and BP control methods.
In addition, the rotor speed fluctuation curve of the DFIG
based on the CLR-DRNN control method always lies above
the curve of the DFIG based on the DRNN control method.

FIGURE 14. Rotor speed.

D. ROTOR CURRENT AND STATOR CURRENT
By learning a large amount of data and samples, the
CLR-DRNN control module can establish complex nonlinear
mapping relationships. This allows it to better capture the cor-
relation between currents and control strategies and provide
more accurate control results. In addition, the CLR-DRNN
control module has the ability to handle input data noise and
disturbances, thus enhancing the robustness of the control
system.

Figure 15 illustrates the DFIG rotor current fluctuation
based on CLR-DRNN control. the CLR-DRNN control mod-
ule is able to receive the rotor current input and learn the
characteristics and patterns of the current to better understand
the dynamic changes of the current and to predict and control
it. Changes in rotor current are critical input signals for the
CLR-DRNN control module and require real-time response
for appropriate control strategy adjustment. With the cyclic
structure, the CLR-DRNN control module is able to capture
the time dependence of the current and respond quickly.

Figure 15 shows that the CLR-DRNN control module
achieves a smooth and rapid control effect on the rotor current
at the 2 and 6 second moments when the step in wind speed
occurs. This is due to its ability to automatically learn the
current characteristics and adapt them to the actual situation.
the CLR-DRNNcontrol module has the capability of adaptive
learning and optimization, and by continuously iterating and
adjusting the network parameters, it can improve the control
performance and achieve a more optimized DFIG control.

FIGURE 15. Rotor current.

Figure 16 presents the fluctuation of DFIG stator current
based on CLR-DRNN control. the CLR-DRNN control mod-
ule has the ability of adaptive learning and optimization to
improve the control performance by continuously adjusting
the network parameters and iterative optimization. It is able
to learn the characteristics of the current autonomously and
make adaptive adjustments according to the actual situation
to achieve a more optimized DFIG control effect.

FIGURE 16. Stator current.

According to Figure 16, it can be observed that the
CLR-DRNN control module successfully achieves smooth
and rapid control of the stator current at the 2-second and
6-second moments when the step in wind speed occurs. This
is due to the CLR-DRNN control module’s feature of auto-
matically learning the current characteristics and adaptively
adjusting to the actual situation, allowing it to respond to
current changes in a timely manner and achieve high preci-
sion control. These advantages make the CLR-DRNN-based
DFIG control promising in practical applications, providing
stable and efficient operation for wind power systems.
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VI. CONCLUSION
In this paper, we present an in-depth analysis of the prob-
lems of DFIG wind power system control. By reviewing
the literature and conducting research, we find that neural
network algorithms have significant advantages in regulat-
ing control parameters. First, we establish a mathematical
model and simulation model of DFIG and propose a method
to improve DFIG control using diagonal recurrent neural
networks (DRNN). Given that the learning rate of DRNN
algorithm affects the control effect, accuracy, response time
and overshoot, we improve the learning rate of DRNN
algorithm and propose a diagonal recurrent neural network
with improved learning rate (CLR-DRNN) for dynamic
parameter tuning of DFIG wind power system.

In terms of tracking step function, we compare the tradi-
tional PI control method and the PI control method based
on BP, DRNN, and CLR-DRNN, and verify the effective-
ness of the proposed method by simulation experimental
results, including the overshoot amount and response time.
Finally, we apply several control methods to the DFIG con-
trol system and find that the DFIG system based on the
CLR-DRNN control method shows better performance in
terms of wind energy utilization factor, active power, reactive
power and rotor speed. Comparedwith other controlmethods,
the CLR-DRNN control method has lower overshoot, shorter
convergence time and more stable curve performance.

In summary, the CLR-DRNN-based DFIG control has
great potential to improve system performance and can pro-
vide strong support for stable and efficient operation of wind
power generation systems. This study provides a useful refer-
ence for the improvement and optimization of DFIG control
algorithm and provides a basis for future related research and
practice.
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