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ABSTRACT Terahertz communication networks and Intelligent Reflecting Surfaces (IRS) exhibit signifi-
cant potential in advancing Sixth-Generation (6G) wireless networks, these technologies enable support of
ultra-data transmission and exploding network capacity. Motivated by the above facts, this paper considers
the flying IRS assisted Unmanned Aerial Vehicles (UAV) in THz communication network. To that aim,
we proposed algorithm named a (Fly-IRS) aided-THz communication network by jointly optimizing the
optimal user Grouping and the IRS phase shifting, optimal UAV’s location optimization are being explored
to achieve the system data rate maximization, enhancing the system capacity, and minimizing the Outage
Probability (OP) to provide a better satisfied user ratio. The formulated problem is decomposed into
two subproblems, an iterative algorithm based on modified K-means clustering algorithm is proposed
to solve the first sub-problem: the optimizing user Grouping, while Deep Deterministic Policy Gradient
(DDPG) optimizes the IRS phase shift and optimal UAV’s location optimization. Finally, simulation results
demonstrate that the proposed algorithm can maximize the system’s data rate by up to 95% and improves
the capacity of the system on average by 94% compared to benchmark algorithms.

INDEX TERMS Sixth-generation (6G) network, terahertz (THz) communication, unmanned aerial vehicles
(UAVs), intelligent reconfigurable surface (IRS), user grouping design, IRS phase shift and UAV location
design, deep deterministic policy gradient (DDPG).

I. INTRODUCTION
Because of the necessity for high-speed data links when-
ever and wherever they are required, wireless communi-
cation systems have evolved significantly over the last
many decades [1], [2], [3]. For the future sixth generation
(6G) systems scaled up beyond wide-band MIMO technol-
ogy. Ultra-large bandwidth transmission, where large-scale
antenna arrays are used to transmit high frequency signals
with ultra-large bandwidths and design of the hybrid trans-
mit precoder (TPC) scheme, called spatial-wideband effect
causes grave beam squint, [4], [5]. Furthermore, 6G applica-
tion like wireless data centers, holographic tracking systems,
and on-chip communications require networks to be able to
provide ubiquitous and diverse services while also satisfying
rising bandwidth requirements, researchers and technology
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developers began looking into the only available gap in the
frequency spectrum [6], [7], [8]. To satisfy the growing need
for greater rates of data and novel spectral bands, the Tera-
hertz (THz) (0.1–10 THz) communication band that supports
applications and THz links could ensure low-latency and
dependable exchange of data by leveraging its extremely high
rate of data with a high quality of service when properly
deployed. THz wireless is considered one of the most promis-
ing techniques for enabling ultra-high-speed communication,
which theoretically achieves up to some THz, resulting in
a possible capacity in the order of terabits per second [9].
Shorter distances are supported among the transmitter and
receiver at THz because of the significant path loss. But
this also correlates to THz’s reduced power requirements
and perhaps improved efficiency of energy, all of which
contribute to the THz communication features [10]. THz
network is also well suited to support emerging applica-
tions such as high- quality streaming of videos, augmented
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and virtual reality, and chip-based wireless networks. Addi-
tionally, owing to their ability to support non-line-of-sight
propagation, the THz signals have proven their suitability
for downlink communications [11], [12]. Effective wireless
network integration might be achieved, in particular, by uti-
lizing THz-capable flying platforms in the communication
network, like Unmanned Aerial Vehicles (UAVs), to provide
seamless coverage and high bandwidth to ground users. UAVs
have become in great demand on wireless networks in areas
with no or inadequate land infrastructure due to their flex-
ibility and mobility [13], [14]. For the important issues of
UAVs is the management and the obstacle recognition, some
studies have proposed various approaches such as the rapidly
expansion strategy of randomized trees and sample-based
approaches [15], [16]. In order to increase coverage and
improving the reliability and data rate of wireless networks,
UAVs essentially serve as aerial base stations [17], [18].More
specifically, THz communications are expected to contribute
to the 6G wireless systems massive bandwidth requirement
for high rates of data. However, THz communications perfor-
mance is significantly hampered by severe path attenuation,
transceiver antenna misalignment, and imperfect hardware.
However, the utilized of UAVs in ultra-data transmission
networks remains limited and still faces many challenges.
The most important challenge is that usually have limited
UAVs battery lifetime usually due to the aircraft weight and
size constraint. In particular, in the crowded environment the
coverage and connectivity difficulties remain the problem
for UAV communications. To overcome these challenges and
compensate for the abovementioned weakness of UAVs, they
utilized the Intelligent Reconfigurable Surface (IRS) for THz
communications systems. To overcome this challenge and
compensate for the above-mentionedweakness of UAVs, they
utilized the IRS for THz communications. In particular, the
UAV can be equipped with passive IRS, which is one of
the savviest, easiest, and most energy-efficient ways. Recent
developments in wireless communications have seen the
introduction and implementation of IRS’s new technologies
to improve the performance of communication [19], [20].
The IRS’s most important advantage is that it consumes far
less power compared to traditional processing of signals for a
BS. This is going to improve the communications between
UAV-based IRS systems energy effectiveness. To this end,
IRS phase shift designs have been proposed in [21] has
studied the reflection design and channel estimation prob-
lem for IRS aided mmWave communications to maximize
information rate in the presence of the beam-squint effect.
Reference [22] IRS can connect to an airborne UAV in
the setting of 6G wireless communication THz networks
to actualize an effective method for assisting heterogeneous
customers from the sky [23]. This interaction generates a
novel variety of the IRS class known as flying IRS, which
comprises an airborne vehicle serving as a transporter that
carries the IRS that functions as a reflector. Which allows
for flexible IRS deployment and 360◦ panoramic full-angle

reflection, which can improve the area coverage extension
in THz communication system, also, the cost of deploying
flying IRS in the system is lower than the cost of deploy-
ing more BSs [24], [25]. Despite the recent application and
deployment of IRS in THz communications, they are still in
their infancy [26], [27]. For example, to combat short-range
communications in terahertz networks, the researchers of [28]
investigated the various access scenarios of the multiple IRS
systems. The two goals to be accomplished by adjusting the
phase shift of the multiple IRS optimization are maximizing
the data received rate of a desired user while being interfer-
ence with by the second user andmaximizing the total rate for
both users. That is a non-convex challenge and more difficult
than usingDeepReinforcement Learning (DRL) to solve both
goals. Recently, the rather attractive machine learning-based
approach has been developed, which is based on Reinforce-
ment Learning (RL) and the use ofmultilayer neural networks
greatly improved the estimation accuracy. Such as the field of
adaptive control technology, including Robust Integral of the
Sign of the Error (RISE) control, and data compression and
damage evaluation method of underground pipeline is inves-
tigated in [29] and [30]. To further improve the coverage of
the links at THz for communication. The researchers in [31]
suggested a hybrid beamforming strategy for the cascaded
IRS-aided networks. To tackle the non-convex optimization
problem, they used the DRL algorithm. To combat the loss
of propagation in the THz downlink broadcast system, they
investigated the IRS beamforming matrix in the joint design
and the digital beamforming at the BS. Moreover, in [32],
the researchers investigated the performance of the maximum
sum rate achieved with individual rate constraints by jointly
optimizing the IRS location, the IRS phase shift, the distribu-
tion of THz band network, and power control for users. The
non-convex problem is suggested to be solved using the block
coordinate searching (BCS) algorithm. Deep Reinforcement
Learning (DRL) was implemented by the authors of [33] to
improve the communication effectiveness and trajectories of
THz-enabled UAVs when constraints are enforced by shifting
THz channel circumstances for Ground user connections.
By jointly maximizing the deployment of operational UAVs
and ground user’s association while also reducing the trans-
mitting power of UAVs. In [34], the authors have focused on
developing algorithms for maximizing maximize the system
sum rate utilities UAV equipped with IRS assistance D2D-
enabled in THz wireless network. A joint power allocation
design and RIS phase shift optimization problem is proposed
to maximize sum rate of the system under the individual QoS,
power and practical discrete phase shift constraints. After
that, a phase shifts optimization problem is formulated and
solved using local search method for the phase shifts.

A recent study [35] investigated the IRS in THz network.
In a THz-band IRS-aided integrated sensing and commu-
nications (ISAC) system with multiple users, the authors
studied joint transmit beamforming and phase shifting design
optimization. To maximize active and passive precoding, the
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researchers combined DRL with a primal-dual proximal pol-
icy. The efficacy of DRL in solving the high-dimensional
nonconvex issue to increase the sum rate of users’ communi-
cation is confirmed by the simulation findings. However, [35]
only takes narrowband scenarios into account withoutmaking
use of the key benefit of ultra-wide bandwidths in THz.

Novelty and Contributions. In this work, we aim to study
quantitatively the applicability of THz communications net-
work in blockage-rich mobile environments and utilized the
Flying IRS assists-THz communication network based Deep
Reinforcement Learning method. Consequently, we con-
sidered the downlink transmission model in THz network
system operating in outdoor environment where the direct
link among the Base Station (BS) and Ground Users (GUs) is
blocked by surrounding obstructions. Therefore, we proposed
algorithm named a (Fly-IRS) aided-THz communication sys-
tem by jointly optimize the optimal user Grouping and IRS
phase shifting with the optimal UAV’s location, to maximize
the system data rate, enhance the capacity of system. On the
other hand, the proposed algorithm is minimizing the Outage
Probability (OP) tends to provide superior performance in the
satisfied user ratio to improve the performance of the system.

• Considering flying IRS aided-THz communication sys-
tems, we proposed a cost-effective algorithm named a
(Fly-IRS) algorithm aided-THz wireless communica-
tions network, the joint optimal user Grouping and IRS
phase shifts with optimal UAV’s location optimization
algorithm is proposed, to maximize the system data rate,
and enhance the system capacity.

• We decomposed the optimization problem into two
sub-problems: the user Grouping sub-problem and
IRS phase shifts, optimal UAV’s location optimization
sub-problem.

• Two optimization problem phases are considered to
maximize the total data rate of THz communications
system, and it is formulated as a non-convex non-linear
mixed integer problem.

• The first sub-problem is the optimal user Grouping, was
solved using iterative algorithm by modified K-means
clustering algorithm. TheDDPG algorithm is introduced
into DRL framework to optimize the phase shifting of
IRS and the optimal location of the UAV simultaneously,
to resolve the second sub-problem.

• Simulation results are provided to demonstrate the
superior performance of the proposed algorithm other
compared schemes from the literature in [33], [34],
and [35] on the system data rate, improves the capacity
of the system and minimizing the Outage Probability to
provide a better satisfied user ratio.

The rest of this paper is structured as follows: Section II.
presents the system model, while Section III. describes how
to formulate problems. Section IV. FRAMEWORK OF The
Proposed Algorithm Ans Policy, while Section V exploits the
results of the simulation, Challenges and Future Directions
are provided in Section VI, Finally, Section VII. presents the
conclusion.

II. SYSTEM MODEL
For a THz-enabled multi-IRS-assisted UAV wireless com-
munication network, the system model of downlink data
transmission is introduced in this section. The detailed archi-
tecture of the system model is shown in Figure (1), which
consist of one BS operating at the THz frequency band,
equipped with multiple antennas. Assuming that the direct
links among the BS and the downlink GUs are blocked by
buildings or other environmental impediments, we employ
Fly-IRS proposed system downlink data transmission ser-
vice for all users. The BS is located at the midpoint of an
urban area denoted by A and serve GUs users are randomly
distributed in that area denoted by M, which are partitioned
into different groups to enhance the system’s performance.
The communications between the BS and the GUs have been
assisted by a Flying IRSs that is considered to be a Uniform
Planar Array (UPA). The overall number of reflective ele-
ments is N = NxNy, where Nx and Ny are the number of IRS
reflecting elements along the X-axis and Y-axis respectively.
The IRS learns the optimal method to reflect incident signals
by adjusting the phase shift, which helps improve the THz
network’s performance. To ease future analysis, a relative
coordinate Fly-IRS is denoted by q (x, y) . Suppose that the
UAV flies at a constant altitude over an area where the dura-
tion of flight and the energy consumption of the UAV are
neglected in our work.

Without loss of generality, considered the location (3D
coordinates) of BS can be defined as qB=(xBS = 0, yBS = 0,
hBS ) and the coordinates of the user location is qM=(xGU ,
yGU , hGU ) Let UAV is coordinates qI=(xIRS , yIRS , hIRS )
respectively.

FIGURE 1. System model of Fly-IRS aided-THz communications.

A. CHANNEL MODELING
Spreading and molecule absorption losses determine signal
propagation in the THz band [36]. As a result, the channel
transfer function is as follows:

H (f , d) =
c

4π fd
e−0.5 k(f )d (1)

101618 VOLUME 11, 2023



S. S. Omar et al.: Capacity Enhancement of Flying-IRS Assisted 6G THz Network Using DRL

where f is the carrier frequency, c is the speed of light, the
term e−0.5k(f )d represents the channel path-loss due to the
molecular absorption and the concentration of water vapor
molecules in the air.

Detailed equation (2): The K (f ) denotes the absorption
loss coefficient which, based on the transmission frequency
represents as:

K (f ) =
P
Pstp

Tstp
T

∑
Qi,gσ i,g(f ) (2)

where in pSTP is represents the standard pressure, TSTP is the
standard temperature, p is the pressure, and T represents the
temperature. Then, Qi,g is indicated as the transmission envi-
ronment, and σ i,g(f ) represents the total number of molecules
per unit volume at the frequency f [37].

Also, d = d1 + d2 represents the Euclidean distance from
BS to the Fly-IRS and the distance from the (Fly-IRS to
the GUs, where d1 is the distance among the BS and the
first reflector of IRS, and d2 is the distance among the first
reflector of IRS and the users, which can be calculated by:

d1 =

√(
xBS − xIRS

)
+
(
yBS − yIRS

)
+
(
hBS − hIRS

)
d2 =

√(
xIRS − xUE

)
+
(
yIRS − yUE

)
+
(
hIRS − hUE

)
B. TRANSMISSION STRATEGY
Suppose that direct links between BS and GUs are blocked
owing to severe blockage or a significant distance, requiring
the importance of aerial platforms like flying IRSs, which
assist the THz communication system and create a reliable
wireless connection for data dissemination. Consider that
there is an IRS deployed at a UAV parallel to the ground
(Fly-IRS), with coordinates (x-axis, y-axis). Let Nx and Ny
be the number of IRS reflecting elements, the total number
of reflecting elements is = (NxNy).
The channel gain of BS- (Fly-IRS)-GUs [38]:

G (t) = g (t)8ebei (3)

where 8 beamforming matrix related to IRS, defined as:

8 = diag[wnNejφ1, ejφ2, . . . ..ejφM ] (4)

Since each element of the IRS main diagonal represents both
wn∈ [0, 1] amplitude reflection coefficient of the reflective
element of the Fly-IRS, and j is a complex number’s imag-
inary unit. Assumed the amplitude is set as wn= 1, similar
to [39], and the phase shift of the (NxNy)-th element of the
IRS where the value of φ ∈ [0, 2π ].

The cascaded channel gain of the BS- (Fly-IRS) -GUs link
is g (t) at time t [39]:

g (t) =
c

8
√
π3fru (t) ro (t)

e−j25f
(rt (t)+ro(t))

C

e−(−0.5k(f )(rt (t)+ro(t))) (5)

As a result, ro (t) is the transmission vector from BS to the
first component of the Fly-IRS. The relative phase difference

among the received signal BS and the first IRS element can
be represented by:

θNxNy(t) =
25fro (t)1rNxNy(t)

|ro (t)|
(6)

where1rNxNy(t) is indicated as the difference vector from the
IRS elements.

Mathematically, the reflected signal is multiplied by the
complex reflection coefficient to produce the reflected signal
of IRS. The received array vector from BS to the IRS at time
t can be expressed by:

eb =

[
e−jθ1 , e−jθ2 , . . . ..e−jθM

]
(7)

The relative phase difference among the elements of the IRSs
reflected beams towards the GUs.

Thus, the transmit array vector from Fly-IRS to the k-th
GU can be represented as:

ei =

[
e−jβ1 , e−jβ2 , . . . ..e−jβM

]
(8)

Utilize the same frequency band for multi-IRS-UAVs at the
same time. The network is experiencing interference from
another UAV and GUs. As a result, the signal-to-interference
plus noise ratio (SINR) from every UAV to GUs during every
time t could be represented as follows:

SNIR=

(
1 +

Pt ∗ G (t)

ψ + Bi
(
de−0.5 k(f )d

)
σ 2

)
(9)

where ψ the network experiences interference, G(t) is the
channel gain, Pt is the transmit power from the UAV to their
GUs, Bi is the total THz-bandwidth, and σ 2 is the additive
white Gaussian noise (AWGN).

The sum data rate of users could be obtained based on the
SINR as follows:

Rm = Bi/mlog2

(
1 +

Pt ∗ G(t)

ψ + Bi
(
de−0.5 k(f )d

)
σ 2

)
(10)

III. PROBLEM FORMULATION
This section formulates the system problem to maximize the
data rate of the system, subject to the constraint of the user
data rate requirement. Hence, the formulated optimization
problem could be decomposed into two sub-problems. The
first sub-problem can be solved using iterative algorithm
by modified K-means clustering algorithm, to determine
the optimal user Grouping. For Second sub-problem, IRS
phase shift and optimal UAV’s location optimization,
a Deep Deterministic Policy Gradient (DDPG) algorithm
was proposed to resolve this problem to near optimal
solutions.

Therefore, the data rate maximization problem could be
expressed as:

P1 : max
{θn,q,p,wn}

∑M

m=1
Rm (11)

s.t: Rm ≥ Rmin,∀t ∈ K (11a)
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∑M

m=1
Pk ≤ Pmax (11b)

wn = 1,∀n ∈ N (11c)

0 ≤ θn ≤ 2πn = 1, . . . .N (11d)

q(x, y) ∈ (11e)

Constraint (11a) minimum achievable rate for all the users
while guaranteeing that the quality of service (QoS) for every
user is satisfied. (11b) ensures that the overall transmitted
power doesn’t exceed the BSmaximumpower. The constraint
(11c) implies that the IRS reflection unit is total reflection,
with the amplitude of the reflection coefficient in all the IRS
elements being 1.

Whereas the constraints of (11d) indicate the character-
istics of the IRS reflecting matrices, every one of them is
a type of IRS-reflecting phase shift matrix that reflects all
transmitted signals without any loss of power. The constraint
of (11e) limits the UAV’s ability to fly only within a certain
feasible area.

The optimization problem in (11) is a non-convex problem
that is difficult and cannot be solved directly. Thus, in the
following sections, we decompose the original problem into
two subproblems and find the optimal user Grouping and
optimal location of UAVswith an orientation of the IRS phase
shift.

IV. FRAMEWORK OF THE PROPOSED ALGORITHM AND
POLICY
The original problem was divided into two subproblems in
this section. The first sub-problem focuses on optimal user
Grouping, while the second sub-problem optimizes the joint
IRS phase shift with optimal UAV location to maximize the
system’s average data rate. To resolve the first sub-problem,
an iterative algorithm is used. For the second sub-problem,
a DDPG algorithm for the DRL model is employed until the
algorithm converges and search for the optimal solutions.

The following subsections provide details of the proposed
algorithms.

A. PHASE ONE OPTIMAL USER GROUPING
In this section, an enhanced scheme based on the optimal user
Grouping scheme is proposed.

The principle of the Grouping scheme is the task of parti-
tioning users into groups that are classified based on shortest
distance criteria to allocate elements to groups and apply
data rate constraints according to predefined requirements.
It is exceedingly challenging to solve the user Grouping
problem optimally in large-scale THz systems. Since an
exhaustively searching for the best user Grouping solution
would have excessive computing complexity, a modified k-
means algorithm is proposed for user Grouping based on
some vital modifications to the k-means algorithm such that
it can incorporate shortest distance criteria and data rate
assigned constraints for each group separately.

The K-means cluster algorithm is an iterative method that
attempts to make partitions in an unsupervised dataset. It has

the advantages of low complexity, easy implementation, and
fast convergence. Algorithm 1 describes a proposed enhanced
technique that may accomplish faster convergence based on
the ideal user Grouping taking into account the initial group-
ing settings. The election of groups in this paper is realized
by these specific procedures:

Algorithm 1 Proposed User Grouping Scheme
Input: Number of users, Distance threshold, Data rate
threshold
Initialization:Randomly initialize generate location for each
user and Initial assign random data rate values for each user
The scheme iteration step (update each group)
1: for every user m= 1, � � �,M do
2: Calculate Euclidean distance between the user and

neighboring users.
3: Assign random data rate for each user using random

distribution techniques.
4: The user belongs to the group with the closest distance

and maximum data rate for every group.
5: Repeat step 2 to 4 for all users until convergence.
6: end for
UntilGroup is formed with minimum distance between users
and achieves maximum data rate for each group. Output:
Optimal User Groups

In the first step, at the beginning of each iteration, it can
calculate the minimum Euclidean distance between each user
and the neighboring users. If the Euclidean distance among
them is the nearest distance, the user belongs to the group
acted served by the m-th Fly-IRS.

In the second step, assigned random data rate for each user.
For improving the grouping of completed forms according
to the total data rate assigned to the groups, there are some
conditions to adjust the group coverage. The probability that
a randomly chosen user’s required data rate is higher than a
specific data rate threshold is used to determine the group
coverage probability. This KPI, in particular, tests if the form-
ing group created as required is completed with the users
belonging to this group. At the end of each iteration, and then
after resetting the locations of the users, repeat the above steps
until the group does not change.

According to the use of Fly-IRS proposed in THz bands,
the higher the height of the UAV, the larger the commu-
nication coverage area. So, the optimal coverage radius r
of the design area based on the altitude of the Fly-IRS
and beam angles in the THz network can be calculated as
follows:

radius r = hi ∗ tan(θ ) (12)

where θ is the half beam angle in the THz band, with a
narrower antenna beamwidth of <10◦ [40], [41], and hi is
the height of the UAV, respectively.

The optimal maximum coverage area of an (IRS-UAV) is
shown in Figure (2).
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FIGURE 2. Coverage area of Fly-IRS with beam width angle θ and UAV
altitude hi in THz network.

B. PHASE TWO: JOINT OPTIMIZATION PHASE SHIFT OF
IRSS AND OPTIMAL UAV LOCATION
The proposedDRL-DDPG algorithm and optimization policy
framework are introduced in this subsection. Depending on
the above systemmodel, we design the joint phase shift matri-
ces and the optimal UAV location in THz communication
network. By discovering the best solutions in a dynamic envi-
ronment is an efficient dynamic programming technique for
solving sequential decision-making problems. In that case,
with the dynamic environment, the Fly-IRS then assumes
the role of the agent. The difficulty with this reinforcement
learning framework arises from the fact that action and state
possess continuous values. So, we proposed DRL framework
based DDPG approach to select the IRS phase shift while
considering the consumed beamforming training time. DDPG
algorithm deal with continuous actions effectively according
to parametric strategy (such as IRS passive phase shifts).
Furthermore, it has neural network and Actor-Critic struc-
ture for selection continuous action [42], [43]. We try to
make the DDPG choose the best IRS board using distributed
training action selection policy and solving problems with
continuous action at the cost of a slight performance loss,
to adapt dynamic communication environment without any
prior channel state information, that reduce power consume
and reduce overhead training [44], [45].
The DDPG algorithm is described briefly at first, followed

by specific actions, states, and rewards.
Lastly, consider how the DDPG framework may be used

to resolve the formulated problem of finding the optimal
location of the UAV and phase shift of IRS.

1) DDPG ALGORITHM WORKING PROCEDURE
In DDPG, the training stage begins once the experience
replay buffer is filled. For the training of the four neural
networks, the batch-size NB transitions (st , at , rt , st+1, at+1)
are chosen as mini-batch [46], [47]. The DDPG algorithm
aims to identify the optimal action that will maximize the
Q-value. The Q-value function can be utilized to examine a
state action pair’s quality as a value function that maximizes
the expected cumulative reward under an optimal policy π .

It enables evaluation of the agent’s actions and transitions
between states. Given the state st , action at and reward rt .
The DDPG algorithm also adds randomly generated noise

N to help the agent achieve better exploration, where N is
the Gaussian noise, whose dimension same that of the output
action.

Also, we define the two identical networks as target
Q-value Q(θ train|st , at ) and training Q-value Q(θ target|st , at )
and the loss function is used to define the differences between
them. Suppose that the training and the target Q-value net-
works are in synchronization.

The actor network may be modified in accordance with
the policy gradient at each step for a single sample. The
mini-batch has NB transition samples, and the policy gradient
may be computed as [48]:

∇J =
1
NB

∑
∇θcriticQ(st , at |θ

critic)∇θactorπ (st|θ
actor ) (13)

where θactor, θcritic represents the parameters of the function
of loss, which can be described as the squared error among
the target and the training.

The gradient of the target critic network is represented as
∇θcriticQ(st , at |θ

critic), while ∇θactorπ (st|θactor) represents the
gradient of the training actor network under the parameter of
θactor.

For critic network training, the Q-value with regard to
long-term reward has been defined by the Bellman equation.
The target Q-value is produced by inputting the target
actor network’s output in accordance with state st+1 can be
expressed as:

y = Rt (st , at)+ βmax(θ target |st+1, at+1) (14)

where β is the discount factor.
Lastly, the loss function is minimized to update the assess-

ment critic network:

L =
1
NB

∑NB

t=1
(y− θ train|st , at )2 (15)

With the use of soft updating, the target network is going to
periodically update the network weights from the main net-
work for both actors and critics [47]. To construct the policy
while avoiding the unstable and divergent trend appears in
Q-learning.

The following gradient rule’s updates on the target critic
network and the target actor network are given as follows:

θ target = τaθ
train

+ (1 − τa)θ target (16)

θ train = τcθ
target

+ (1 − τc)θ train (17)

where τa and τc≪ 1 are the learning rates for the target
critic network’s soft updating coefficient and the target actor-
network’s soft updating coefficient, respectively.

It’s important to notice that this update strategy involves
slowly updating the target network parameters while track-
ing the assessment network that has been learned. The total
framework for the DDPG algorithm is shown in Figure (3),
where the actor and critic-networks use various structures,
respectively.
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FIGURE 3. Flow diagram of the DDPG proposed algorithm.

2) DDPG ALGORITHM PROCESSING FRAMEWORK
The DRL proposed framework consists of a state set st ,
an action set at , a reward set rt , and an agent IRS-UAV,
which executes a certain action to obtain the proper reward
while updating the current states. The actions are going to be
employed to receive better rewards in various environments
and reinforced iteratively. Moreover, since the THz band IRS
phase shifts are thought to be continuous factors with very
high quantization levels, it is motivated to use DDPG to build
a two-layered actor-critic network in order to solve the issue
with continuous solutions.

According to all of the aforementioned discussions,
Algorithm 2 is a summary that outlines the DDPG’s proposed
algorithm in detail.

The IRSUAV is used as an agent by theDDPG algorithm in
the THz network environment. The remaining corresponding
elements, the state, action, and rewards, are clearly described
as follows:

a: STATE SPACE
The set of states, contains the various observations that repre-
sent the environment. The state st of time step t is described
as:

st = [θ (t−1)
1 , . . . θ

(t−1)
2N , x(t−1), y(t−1)] (18)

where [θ (t−1)
1 , . . . .θ

(t−1)
2N ] denotes the IRS phase shift and

[x(t−1), y(t−1)] represents the UAV optimal location at
time t − 1.

b: ACTION SPACE
The action space is made up of the choices that are available
to an agent when transitioning from current state to the next
state.

The action that the agent takes in time t , which includes
IRS phase shift and UAV motion, entirely corresponds with
the two optimization parameters:

- Deployments in the optimal position: For the deployment,
the agent selects the UAV agent’s next move for every t . The
proposed approach enables the agent to identify the optimal

Algorithm 2 Proposed DDPG Based Algorithm
1: Initialization: Randomly initialize the critic

evaluation network Q (st , at |θ train) and the actor
evaluation network Q ( st , at |θ target) with their
corresponding parameters θ target and θ train Initialize
the experience replay buffer C , discount factor β,
soft update coefficient τ and the minibatch size NB

2: for episode j= 1, � � �,J do
3: Obtain the initial observed state st (18)
4: Initialize the random process for action exploration
5: for step t= 1, � � �,T do (for each step in episode)
6: Select action at+1 from the actor network
7: Extract the actions at and observe new state st+1 and

rewards rt+1
8: Store transition st , at , rt , st+1 into the replay

buffer C
9: Sample the random NB minibatch transitions from

C to train
10: Calculate the target Q-value by equation (14)
11: Update the actor network by using sampled policy

gradient in (13)
12: Update the critic network by minimizing the loss

function (15)
13: Update two target networks via soft updates (16)
and (17)
14: end for
15: end for

movement at every moment while keeping the long-term
reward in mind.

- IRS Phase Shifts: For every element expressed in the
system, the agent determines the optimal phase shift for the
time being.

Neglecting the time necessary to rotate the angle of the
reflecting elements. Thus, the action function is defined as:

at =

[
θ
(t)
1 , . . . .θ

(t)
2N , x

(t), y(t)
]

(19)

The agent inputs the state st at time step t to obtain the
corresponding action based on the current environment.

The agent then gets the optimal horizontal location q and
the updated IRS phase shift.

c: REWARD
The agent obtains a reward rt (st , at) after performing action
at in state st at time t .

In keeping with our goal, describe the reward as the sum
data rate per group:

rt : R(t)sum =

∑M

m=1
R(t)k ,m = 1, . . . ,M (20)

V. RESULTS OF SIMULATION AND PERFORMANCE
EVALUATION
This section, the performance of the proposed algorithm
is evaluated for a scenario in an outdoor environment in
using extensive simulations. The simulation is executed in the
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TABLE 1. Simulation parameters for system environment settings.

Python programming language. Both the actor-network and
the critic-network in the proposed DDPG algorithm use the
same fully connected neural network structure that includes
an input layer for status information, an output layer that
outputs the optimal action, two layers that are hidden in this
simulation using the Rectified Linear Unit (ReLU) function
as the function of activation, and modular normalization
components, as shown in Figure (3). Additionally, Adam
Optimizers should be used to train the policy network and
the Q-network, and the parameters should be initialized at
random using the zero-mean normal distribution.

It is worth mentioning that the simulation results presented
were averaged over 500 independent iterations.

Moreover, we consider the communication scenario in an
urban area of 100 m2, including one BS in the middle of
the area serving 60 ground users. The positions of the users
are uniformly distributed inside a circle area with a coverage
radius of r = 6 m. Each user’s total input data rate ranges
from [250] to [550] Mbps. The users’ positions are assumed
to be fixed in each episode. Fly-IRS assumed hovering at a
fixed altitude of hi = 55 m and move with a velocity of vc =

15 (m/s), other parameters are shown in Table 1 [33].
The simulation environment settings are illustrated in

Table 1, and the simulation hyperparameters of the network
model for the suggested DDPG algorithm with the actor
and critic structures used in Algorithm 2 are displayed in
Table 2 [49].
To illustrate the effectiveness of the proposed framework

and compare its performance with the following three bench-
mark schemes that have been specified as follows:

A. THz-ENABLED UAVs SCHEME
This is the case where the BS provides communication to
all users without needing the assistance of the IRS config-
uration. That is an approach to maximizing the sum data
rate by only serving the BS to all users without IRS in the
environment [33].

B. LOCAL SEARCH PHASE SHIFT SCHEME
This scheme is chosen an optimal value of IRS phase shift
when the SINR constraint is satisfied. clearly, for each IRS

TABLE 2. Simulation parameters for network model settings [49].

element, all possible values are traversed. After that, this
optimal value is utilized as the new value of IRS element to
optimize another phase shift, until all phase shifts are fully
optimized [34].

C. PRIMAL-DUAL PPO SCHEME
This scheme is employed to compare and assess the perfor-
mance of the IRS model. As with the traditional IRS that
is placed on a building, consider phase shift optimization.
Herein, the IRS phase shift is optimized by the primal-dual
proximal policy optimization algorithm [35].

D. RANDOM PHASE SHIFT
The actions in this scheme are picked by randomly selecting
the IRS phase shift reflecting matrices, and the phase shifts
of the IRS elements in this case have been determined with
randomly configured values. This scheme’s performance is
referred to as the actual lower bound since the matrices are
selected at random.

It is discovered that by employing the proposed DDPG
algorithm, the rewards may be constantly enhanced and con-
vergence to a constant value round episode may occur in both
the non-IRS-assisted and IRS-assisted instances.

The next Figures display the average data rate (in Gbps)
with the benefits of the IRS elements and evaluate the efficacy
of the proposed flying Fly-IRS algorithm with optimal UAV
location and optimized phase shift. Also, compare the pro-
posed DDPG algorithm’s performance with these schemes:
Primal-dual PPO scheme, THz-enabled UAVs scheme, the
Local Search phase shift scheme, the Random Phase Shift,
and the proposed algorithm Without IRS.

Figure (4) illustrates the average sum data rate versus
transmission power. Take a look at two cases of system
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FIGURE 4. The average sum data rate versus different total transmit
power.

parameter setups, onewith IRS elements N= 16 and the other
with N = 64.

In all schemes, it has been observed that increasing the
power of transmission at the BS results in a higher overall
average data rate. The proposed algorithm outperforms other
compared techniques, with a larger performance gap as trans-
mit power increases due to the more stringent constraints
imposed by problem P1. For example, when using 64 IRS
elements, the sum data rate is around 540 Gbps, while 4Watts
of transmit power are needed when the proposed DDPG
algorithm is deployed. Therefore, compared with the other
approaches, we reach 409 Gbps in the primal-dual PPO
scheme, 346 Gbps at the Local Search Phase Shift scheme,
the Random Phase Shift case is about 321 Gbps, and the
THz-enabledUAVs scheme can achieve 278Gbps.Moreover,
it may be observed that the system data rate steadily increases
and tends to stabilize progressively. The explanation for this is
that the average system data rate grows with the transmission
maximum power limitation. Additionally, because channel
interferences can’t be disregarded under high Pmax, the sys-
tem rate of data is going to eventually reach convergence.

Here, the figures depict the impact of IRS size, and the
main observations are summarized below. In Figure (5), the
average data rate is determined as a function of the num-
ber of IRS elements with the various comparison schemes
mentioned.

The performance of the average data rate aided-THz com-
munications is also significantly impacted by the number of
IRS elements reflecting. It may be observed that the pro-
posed algorithm, with the optimized UAV location and IRS
phase shift, can achieve a data rate of 450 Gbps when there
are 16 IRS elements and an approximate 530 Gbps sum data
rate when employing IRS with 64 elements. By providing the
IRS elements, the sum data rate gap between the proposed
model and the Primal-dual PPO case increases. When the
IRS phase shift is optimized, the performance difference
between the proposedmodel and the primal-dual PPOmodels
becomes even more noticeable. Furthermore, the data rate of
the other techniques is about 485 Gbps at the primal-dual

FIGURE 5. The average sum data rate versus the number of IRS elements.

PPO algorithm, the Local Search Phase Shift scheme is
about 450 Gbps, 430 Gbps at the Random Phase Shift case,
and reach 230 Gbps at Without IRS for 64 elements. This
is because the Fly-IRS may successfully change the phase of
reflected signals to enhance the quality of the received signal,
allowing the desired THz wireless channel to enhance a per-
fect line-of-sight. By improving UAV location and IRS phase
shift, the proposed algorithm may attain an optimal balance
between the BS and users, as well as improve the channels of
all links, thereby improving the system performance.

In addition, it may be shown that the average data rate
increases as the IRS increase when compared to other
schemes, this is because of the large number of elements
in the IRS employed, which leads to a higher gain in the
system. This is not the case for the method Without IRS,
which isn’t impacted by the number of IRS elements. There
is only a slight gain when compared to the Random phase
shift approach. Additionally, increasing the number of IRS
elements is an effective way to improve the sum data rate.
However, this also results in a larger size of training data
and more neurons, which increases complexity and output
latency. Therefore, when constructing an IRS system, it is
crucial to take into account the tradeoff between sum data
rate and complexity.

Figure (6) displays the average sum data rate against the
number of users, where N = 64 IRS elements. We addi-
tionally show an instance in which the IRS is configured
at random, the case without the IRS, and the primal-dual
PPO algorithm for the comparison. In all four scenarios, it is
observed that as the user number rises, the sum data rate
initially rises and then falls. The proposed DDPG approach
surpasses the other cases and achieves the best performance
for all scenarios.

Another observation from this Figure is that once the
number of users is 50, the proposed algorithm may achieve
a sum data rate of 540 Gbps. Hence, compared with the
other approaches, we reach 525 Gbps in the primal-dual
PPO algorithm, 512 Gbps at the Local Search Phase Shift
scheme, 506 Gbps in the Random Phase Shift case, and the
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FIGURE 6. Average sum data rate versus the number of users.

THz-enabled UAVs scheme can achieve 496 Gbps. This is
due to the fact that the signal-to-noise ratio is significantly
greater at THz frequencies because of the high path-loss
characteristics of terahertz channels, leading to little user
interference. This demonstrates that the carefully configured
IRS outperforms the proposed algorithm’s gain over the sce-
nario with a randomly configured IRS. Furthermore, once the
number of users exceeds 70, user interference rises, and so the
proposed DDPG works well in this scenario and delivers a
greater sum rate of data compared to the other schemes. This
is owing to the fact that the system capacity is considerably
degraded at the THz frequency since the signal-to-noise ratio
is significantly greater owing to the high pathloss property of
the terahertz channel and low user interference.

The Outage Probability (OP) here can be described in the
proposed case as the percentage of unsatisfied users whose
downlink an occurrence of achievable data rate is below a
required predefined data rate settled. (The application operat-
ing in THz network the range data rate of each user is between
[250, 550] Mbps. So, the average threshold required data rate
value) denoted by γth which is set to be 325 Mbps.
The POPi of the THz communication under consideration

may be calculated as [50]:

POPi = P(R < γth) (21)

Figure (7) depicts the effect of increasing the number of
users on the outage probability with different schemes. The
simulation parameters state that the power Pmax is set to 4W
when employing 64 IRS elements. As the number of users
increases, the reason for this the network architecture rapidly
changes, causing communication to become unstable and
the probability of outages to increase. The figure illustrates
that our proposed algorithm maintains the outage probabil-
ity and obtains the minimum value in comparison with the
other techniques. As a result, in our proposed algorithm,
we take into account the optimized IRS phase shifts as well
as the UAV location that leads to the best performance. This
best performance is then followed by the Primal-dual PPO
algorithm, and then comes the ‘‘Local Search Phase Shift’’

FIGURE 7. Outage probability versus the number of users.

algorithm, ‘‘Random Phase Shift’’ scheme where only the
IRS elements phase shifts are optimized randomly, owing
to increase in the outage probability, particularly with the
increase in the number of users. The highest OP is achieved
by the ‘‘THz-enabled UAVs’’ algorithm, where no IRS assists
in the communication. This is because of increasing system
demands, particularly when the number of users increase,
as the rise increases the probability of users’ links failing.
That might cause the achievable rate of data to decline, which
would therefore have an impact on the probability of an
outage.

The data satisfaction rate ratio, due to the usage of the
probability of satisfying users or not in outage probability,
is used to determine the percentage of the links that satisfy
the data rate threshold Rth.

Therefore, can be calculated for each link as [51]:

µm =
1

1 + e−δ(
Re2etotal
Rth

)
(22)

It can be found that the normal sigmoid function is used to
determine the satisfaction rate, which ismore suitable to show
the rate between [0, 1]. A user’s level of satisfaction may be
employed to determine if or not they are satisfied.

Figure (8) demonstrates the user data satisfaction rate ver-
sus the different number of users under 64 IRS elements,
Pmax = 4 watts. The user is stated to be satisfied if their
satisfaction level is greater than or equal to the average
threshold of 325 Mbps, and vice versa. It may be observed
clearly from Figure (8) that the user data satisfaction rate
decreases monotonically with an increased number of users
because the users are going to be more satisfied if they’re
receiving a greater data rate above their minimum demand.
This implies that the rate of data satisfaction among users
improves when the number of IRS elements grows, due to the
IRS ability to effectively change the phase of reflected signals
in order to improve the quality of received signal, and then
SINR increased in equation (9) could obtain better channel
gain. Our analytical results are in good agreement with the
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FIGURE 8. Satisfaction rate against increase of the number of users.

TABLE 3. Capacity of the system with numbers of IRS elements.

simulations, and the obvious scheme performs enhanced than
the benchmark schemes.

Table 3 summarizes the results of comparisons of system
capacity performance of four schemes with different num-
bers of IRS elements. This Table illustrates the effect of the
increasing number of IRS elements on the system capacity
at the average needed data rate of 325 Mbps, assuming that
the number of users is M = 300 and employing IRS elements
with N = 4, 16, 36, and 64. As it is demonstrated, the table
also presents how the number of IRS reflecting elements
increase with system capacity. This is because we designed
an optimal IRS phase shifting matrix for the optimal location
of the UAV in our system. As seen, when the necessary data
rate is greater than the threshold of 325 Mbps, each network
may satisfy the requirements of nearly all users, escalating the
satisfied-user ratio in the system. Based on the results shown
in Table 3, the system capacity of our proposed algorithm
using the DDPG algorithm outperforms the system capacity
with the Primal-dual PPO algorithm and THz-enabled UAVs
scheme, where it was successful in improving system capac-
ity by an average of 90% over the system employing the
THz-enabled UAVs scheme. This is due to the fact that this
algorithm works without the assistance of the IRS element
configuration.

On the other hand, comparing the primal-dual PPO
algorithm to the DDPG proposed algorithm, the latter tends

to provide better performance in satisfied user ratio boosting
by 30% and 25%, 21% considering the use of 16, 32, 64
IRS elements respectively in the primal-dual PPO algorithm.
However, for the Local Search Phase Shift Algorithm, the
increase in the number of elements has caused the interfer-
ence to increase significantly, which leads to a slower growth
from 16 to 32 elements, and results in a decrease when N
exceeds 64. Finally, comparing the proposed algorithm with
the Local Search Phase Shift scheme, 43%, 33%, and 28%
performance gain is obtained for N = 16, 32 and 64 elements
respectively, for the required data rate of 325 Mbps.

Furthermore, the increase in system capacity slows down
as the number of IRS reflecting elements becomes too large.
This is due to the greater number of IRS reflecting ele-
ments have an impact on the system capacity performance
in the IRS assisted-THz communications, while the power
consumption provided by the extra elements is relatively
high. The performance of system capacity may achieve a
significant convergence value at the expense of the training
rate size, which increases hardware complexity and output
latency. Therefore, when constructing an IRS-UAV system,
it is crucial to take into account the tradeoff between sum data
rate and complexity.

Figure (9) shows the rate of user data satisfaction for
various numbers of IRS elements when the number of users
is 70. Additionally, it has been established that the user data
satisfaction rate increases with the number of IRS elements
and achieves a data satisfaction rate ratio of 90% when
N = 64 elements in the proposed algorithm. This is due to
we proposed cost-effective algorithm based DDPG approach
to select the IRS phase shift while considering the con-
sumed beamforming training time. We considered a nearly
passive IRS phase shift which adopt a combination of some
active reflecting elements, and passive reflecting elements in
sequence, to reflect more signal paths, signal power, and IRS
elements to improve SINR at the cost of a slight performance
loss.

FIGURE 9. Performance of data satisfaction rate the versus number of IRS
element.

Figure (10) clearly shows the episode reward of the DDPG
proposed algorithm when employing IRS with N = 16, 24,
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FIGURE 10. Performance of data satisfaction rate versus episodes, under
different IRS elements for the proposed algorithm.

FIGURE 11. Accumulated rewards versus a function of episodes with
different learning rates.

36, and 64 elements. It is apparent that as the number of
IRS elements increases, the convergence value of the episode
reward increases. The explanation for this is that IRS with
more elements may be employed to offer more accurate phase
shift rules to enhance the user data satisfaction rate, which
efficiently enhances the instant reward. Otherwise, the user
data rate could prove dissatisfaction, and hardware resources
would be wasted.

Effect of the learning rate for our proposed critic and actor
networks, we use constant learning rates. Figure (11) shows
the average rewards for the critic and actor networks under
various constant learning rates, i.e., [0.01, 0.001, 0.0001,
0.00001] as calculated by equations 15, 16, and illustrates the
effects of these rates on convergence and rewards. It should
be noted that the average rewards depend on the learning rate.
It was observed that this updating technique entails slowly
following the parameters network that has been taught in
order to update the target network’s parameters. In particular,
the small setting (e.g., 0.00001) or the large setting (e.g.,
0.001) both yield lesser average rewards, but the 0.01 rate of
learning yields the best rewards. Better rewards, on the other
hand, may result in increased convergence times. Since more

rewards imply a bigger state space, it could take a longer time
to converge on the best solution.

In conclusion, we may infer that DRL-DDPG is a complex
learning process and that its performance may be influenced
by a number of hyperparameters, particularly when the envi-
ronment is rapidly changing. These hyperparameters also
comprise the initialization and system settings, as well as
the rate of learning, rate of decaying, minibatch size, and
hyperparameters.

Additionally, it ought to be highlighted that proper DRL
parameter adjustment and settings will significantly improve
performance and reduce the convergence time.

VI. CHALLENGES AND FUTURE DIRECTIONS
Although Fly-IRS aided-THz communication proposed
scheme based on DRL-DDPG has been investigated in sev-
eral directions, it still encounters various difficulties for its
applications. In this section, several main challenges for
future our research are discussed.

A. FRAMEWORK CONSTRUCTION
The primary problem of the schemes is how to establish the
appropriate DRL-DDPG architecture in the highly dynamic
environment, with the help of Flying IRSs aided THz com-
munication network is still a challenging and its complex.
However, the challenges for the THz communications band
are the THz channels are characterized by dynamic frame
structure, which results in: large path loss hence limited
network coverage, and visible-light-like propagation char-
acteristics hence poor support of mobility in blockage-rich
environments. In particular, for THz communication that is
highly sensitive to blockage and pathloss. So, we must con-
duct a deeper study how to deploy the appropriate Flying
IRS system with lower cost to improve the area coverage
extension in the THz communication system.

B. TRAINING OVERHEAD AND COMPLEXITY
To coordinate multiple Flying IRSs to maximize the overall
network performance, the DDPG architecture requires a large
amount of communication channel data for building models,
network training, and performance analysis. The performance
of system capacity may achieve a significant convergence
value at the expense of the training rate size, which increases
hardware complexity and output latency. Moreover, to better
meet the highly dynamic environment of Flying IRSs, the
reward behavior and learning efficiency are contradictory
objects in complex problems. So, we should analyze the input
and output design and study of DDPG to guide the optimal
allocation of control variables to cover larger data models.

VII. CONCLUSION
This paper proposes a framework for designing Flying IRS
algorithm named a (Fly-IRS) aided-THz wireless network
to optimize the system data rate and improve the system’s
performance. Accordingly, we formulated an optimization
problem that by jointly optimizing the user Grouping and the
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phase shift matrix of IRS with the optimal UAV’s location
to achieve the system data rate maximization, enhancing
the system capacity, and minimizing the Outage Probabil-
ity to provide a better satisfied user ratio. To solve the
formulated problem, we have transformed it into two sub-
problems. Consequently, an iterative algorithm based on
modified K-means clustering algorithm is proposed to solve
the first sub-problem the optimizing user Grouping, while
Deep Deterministic Policy Gradient (DDPG) algorithms is
proposed to be employed due to their low complexity, to opti-
mize the IRS phase shift and optimum UAV’s location
optimization. The Simulation results demonstrate how to
assess the proposed algorithm’s performance to maximize the
system’s data rate by up to 95% and improve the capacity
of the system on average by 94% tends to provide bet-
ter performance in satisfying users, boosting the ratio by
90% compared with other benchmarks. Moreover, the system
capacity performance is investigated to define the optimal
number of IRS elements necessary for the system, and it is
discovered that the optimal number of IRS elements needed
is 64 elements in the proposed algorithm, escalating the user
satisfaction ratio for this system. Future works, the flying
IRS energy is also a matter of concern, with limited power
of UAV. We would like to extend our work in the next step
by optimized the UAV trajectory while minimizing the time
consume of the system, reduce the total flying time of UAV,
and minimizing the UAV propulsion energy.
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