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ABSTRACT We demonstrate the utilization of the fundamental principle of nonlinear dynamics, namely,
the Liénard-type representations of ordinary differential equations, also referred to as fast-slow systems,
to describe and understand relaxation oscillations in electronic circuits. Relaxation oscillations are charac-
terized by periods of slow signal changes followed by fast, sudden transitions. They are generated either
intentionally by means of usually simple circuits or often occur unintentionally where they would not
have been expected, such as in circuits with only one dominant energy storage device. The second energy
storage required to promote oscillatory solutions of the governing equations can also be provided by spurious
elements or mechanisms. The conditions that distinguish harmonic from (anharmonic) relaxation oscillations
are discussed by considering the underlying eigenvalues of the system. Subsequently, we show how to
intuitively understand relaxation oscillations through analyses of the phase diagram based on the fast-slow
system representation of the nonlinear differential equation. Practical examples of oscillators including RC
and LR op-amp circuits and the so-called ‘‘Joule thief’’ circuit are discussed to illustrate this principle. The
applicability of the method is not limited to electrical circuits, but extends to a variety of disciplines, such
as chemistry, biology, geology, meteorology, and social sciences.

INDEX TERMS Joule thief, nonlinear oscillation, phase diagram, van der Pol.

I. INTRODUCTION
Relaxation oscillators are known to electrical engineers as
simple circuits and are commonly taught in undergraduate
electronics courses. Fig. 1 shows one of these circuits, which
utilizes an op-amp configured as an inverting Schmitt trigger
and an RC circuit feeding the output back to the input.
The principle of operation is explained by considering the
capacitor-charging equation

VC (t) = VC,∞ + (VC,0 − VC,∞)e−t/RC , (1)

which applies when capacitor C , with initial voltage VC,0,
is charged through resistor R. VC,∞ denotes the terminal
voltage reached after infinite time. We assume that initially
VC = 0, and the output voltage of the op-amp is saturated
to the maximum positive output swing VB. The capacitor
charges until VC reaches the upper switch threshold VT =
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VBR1/(R1+R2). At this point, the output voltage swings to the
negative rail −VB by virtue of the positive feedback and sub-
sequently discharges the capacitor until the negative switch
threshold −VT is reached. This, in turn, causes the output to
swing back to the positive supply rail. The resulting output
signal is a square wave with a 50% duty cycle. The period T
is obtained using (1), by setting VC (T/2) = −VT,VC,0 = VT
and VC,∞ = −VB and solving for T yielding

T = 2RC log(1 + 2R1/R2), (2)

where log denotes natural logarithm. The term ‘‘relaxation’’
refers to the fact that the output signal shows only small, or in
this case, no changes over a certain time duration but then
suddenly performs a fast change, i.e., it ‘‘relaxes’’. While this
behavior is not surprising for the shown circuit due to the
hysteresis of the Schmitt trigger, relaxation oscillations also
occur in circuits where no obvious discontinuous functions
are involved; however, hysteresis is found as a result of some
kind of nonlinear behavior.
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FIGURE 1. The relaxation oscillator (a) uses an inverting op-amp Schmitt
trigger and an RC circuit. The transfer characteristic of the Schmitt trigger
is shown in (b) with the switching thresholds given by
VT = VBR1/(R1 + R2) (for a rail-to-rail op-amp). The capacitor voltage V
oscillates between ±VT giving a square output signal VO.

The first formal investigation and the coining of the
term ‘‘relaxation oscillation’’ can be traced back to the
1920s, when Dutch electrical engineer Balthasar van der Pol
observed these phenomena in a triode vacuum tube circuit,
as shown in Fig. 2 [1], [2], [3]. Although the vacuum tube
circuit was expected to exhibit harmonic oscillations owing
to the soft nonlinear transfer characteristic of the vacuum
tube and the linearity of the remaining circuitry, van der Pol
noticed the presence of relaxations.

FIGURE 2. The circuit originally studied by van der Pol [1].

His formal analysis led to a deeper understanding of these
phenomena, paving the way for understanding relaxation
oscillations in various fields, including mechanics, biology,
chemistry, and engineering problems [4]. These oscillations
have been found in diverse systems such as nerve activity
and heart beat [5], the Zhabotinsky reaction [6], earthquakes,
prey-predator and business cycles [7], [8], climate-related
cycles [9], stick-slip oscillations of bowed violin strings [8],
and memristor oscillators [10], [11]. It is fascinating that sim-
ple circuit theory and basic concepts of dynamical systems
are sufficient to understand these far-reaching phenomena.
As such, engineers familiar with these concepts hold the
key to unraveling the complexities of nature and various
technological applications.

A. RLC OSCILLATOR WITH LOCAL NEGATIVE IMPEDANCE
Earlier researchers have described that harmonic signals pro-
duced by oscillators can turn into a relaxation oscillation
upon the change of a specific parameter. However, this type
of transition is not observed in the well-known relaxation
oscillator circuit depicted in Fig. 1, particularly when ide-
alized circuit components are considered. To explore such
behavior, we first focus on the simple RLC tank circuit shown
in Fig. 3(a) and replace resistor R with a negative impedance
converter (NIC), as shown in Fig. 3(b) in the second step.

FIGURE 3. a) A simple RLC parallel circuit. b) The negative impedance
converter (NIC) replacing R in circuit (a) . c) The current over voltage
relation of the NIC.

When energy is initially stored in the RLC tank at t = 0,
the voltage V (t) will perform damped oscillations of the form

V (t) = Ae−λt cos(ωgt − φ), (3)

when R is constant and R2 > L/4C . The decay is determined
by λ = 1/2RC . Amplitude A and phase φ depend on the ini-
tial conditions, whereas ωg represents the angular oscillation
frequency.

Theoretically, sustained oscillations requireG = 1/R = 0.
However, even a slight deviation from this value causes either
an exponential decay or a growing response. A growing
response is associated with a negative value of R, and can
only be generated by a dedicated active circuitry. In prac-
tical systems that maintain sustained oscillations, at least
two energy-storage elements and one active nonlinear ele-
ment featuring locally negative impedance (compensating for
unavoidable losses of the components) are required. This
locally negative impedance can be realized using a so-called
negative impedance converter (NIC), shown in Fig. 3(b)
which features an impedance of −R1 between the shown
terminals, provided that the output of the op-amp is not
saturated. The op-amp output (assuming a rail-to-rail op-
amp) saturates at voltages ±VB for |V | > VT with VT =

VBR1/(R1 + R2). (For details on the NIC circuit, please see
Appendix A and for further discussion see [12]). By attaching
the NIC terminals of the circuit in Fig. 3(b) as a replacement
for the resistor R in the tank circuit of Fig. 3(a) and applying
Kirchhoff’s current law at the node connecting the inductor,
capacitor, and NIC, we obtain

dV
dt
C +

1
L

∫
dt V + I (V ) = 0, (4)
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FIGURE 4. The NIC-loaded LC circuit performs approximately harmonic
oscillations for small conductances, but the signal becomes anharmonic
and shows the characteristics of relaxation oscillations.The time interval
from −50 s to 0 s where the signals slowly build up, is not shown for a
clearer representation of the developing steady-state signals.

which becomes after differentiation with respect to time

d2V
dt2

C +
1
L
V + G(V )

dV
dt

= 0, (5)

whereG(V ) = dI/dV represents the differential conductance
and I (V ) is the current-voltage characteristic of the NIC,
as shown in Fig. 3(c). The value ofG(V ) changes from−1/R1
(domain A in Fig. 3(c)) to 1/R2 (domains B) when saturation
occurs. The differential equation (5) in dimensionless time
t̄ = t/

√
LC , using the dimensionless differential conduc-

tance Ḡ(v) = G(v)
√
L/C is given by

d2v
dt̄2

+ Ḡ(v)
dv
dt̄

+ v = 0, (6)

where v is the dimensionless voltage v = V/VT, such that
Ḡ(|v| < 1) = −ḠA = −

√
L/C/R1 and Ḡ(|v| > 1) =

ḠB =
√
L/C/R2. The nonlinear system can be separated into

two linear systems: System A for |v| < 1 and System B for
|v| > 1, featuring two different eigenvalues resulting from a
solution ansatz ∝ exp(λt):

λA± = ḠA/2 ±

√
Ḡ2
A/4 − 1, (7)

λB± = −ḠB/2 ±

√
Ḡ2
B/4 − 1. (8)

The associated individual solutions are given by

vA(t̄) = K1eλA− t̄ + K2eλA+ t̄ , (9)

vB(t̄) = K3eλB− t̄ + K4eλB+ t̄ , (10)

with expansion coefficients K1 to K4. As expected from the
negative impedance, function vA(t̄) exponentially increases
with time, whereas vB(t̄) decays. For a particular initial condi-
tion, for example, in terms of v and its time derivative at some
time, depending on what range (e.g., A) is associated with
these conditions, the respective expansion coefficients (e.g.,
K1 and K2) can be determined. The obtained solution is valid
up to the time, where v crosses the border |v| = 1, where the

FIGURE 5. Signal for nonlinear oscillator using ḠB = −ḠA = 5. The signal
is composed by vA (red) and vB (blue) as given by (9) and (10). The
dashed lines represent the single exponential functions in the solutions
with expansion coefficients and the respective eigenvalues denoted.

respective other solution (B in our example) takes over. The
coefficients (e.g., K3 and K4) can be determined from v and
its derivative at that time. This solution is valid up to the next
crossing of |v| = 1. Thus, the obtained partial solutions can be
combined to obtain a complete solution for v(t).1 Fig. 4 shows
the voltage v over dimensionless time for ḠB = −ḠA =

0.3, 5, 10 and the small initial condition v̄(−50) = 10−4 and
˙̄v(−50) = 0. The oscillations are sinusoidal for small con-
ductances (represented by eigenvalues that are approximately
λ ≈ ±j), resulting in an angular oscillation frequency of
ω ≈ 1/

√
LC (that is ≈ 1 using the scaled frequency ω =

ω
√
LC). However, for larger conductances, the oscillations

become anharmonic, which can be explained by considering
the eigenvalues in (7) and (8): For Ḡ2

A and Ḡ2
B much larger

than 4, the eigenvalues are real-valued, very different, and
approximately given by:

λA− ≈ 1/ḠA, λA+ ≈ ḠA − 1/ḠA, (11)

λB− ≈ −ḠB + 1/ḠB, λB+ ≈ −1/ḠB. (12)

Fig. 5 shows the contributions vA and vB for ḠB = −ḠA = 5.
The exponentially growing signal contribution vA is domi-
nated by the large eigenvalue λA+ = 4.79. As outlined above,
the solution vB, composed of exponentially decaying con-
tributions, takes over for |v| > 1. Somewhat unexpectedly,
the signal increases further for the first moments due to the
large negative eigenvalue λB+ = −4.79 before it slowly
decays, dominated by the smaller eigenvalue λB− = −0.21.
Generally, that increasing dissimilarity of the magnitudes of
the eigenvalues λA− and λA+ as well as that of λB− and
λB+, as Ḡ increases, causes a narrowing of the fast sig-
nal contribution vA while dilating the slow vB. The signal

1Note that assuming initial conditions, where both v as well as its time
derivative vanish, yields the trivial solution v = 0. However, the slightest
fluctuation in terms of noise would in reality push the system into an
exponential increase in v initiating oscillations, as discussed below.

99454 VOLUME 11, 2023



T. Voglhuber-Brunnmaier, B. Jakoby: Understanding Relaxation Oscillator Circuits

FIGURE 6. Voltage signals for the circuit shown in Fig. 3 for VB = 15 V,
L = 1 H, R2 = 1 kΩ, C → 0 F, and A0 = 5. To show the current IL on one
common voltage axis it is multiplied by R2.

becomes increasingly anharmonic, which is a characteristic
of relaxation oscillations.

Both dimensionless conductances ḠA and ḠB become large
as C tends to zero, leading to very sharp transitions and
extended slow parts. As the relation between dimensionless
and physical time is t̄ = t/

√
LC , the slow part of the oscil-

lation remains finite in physical time, even if C approaches
zero. We refer to this situation, where the duration of the
fast transition is negligible compared to the duration of the
slow-part, as a fully developed relaxation oscillation. It is
important to emphasize that ifC is exactly zero, theoretically,
only one energy-storing device remains in the circuit, and
no oscillation can exist. However, in real circuits, some sort
of spurious capacitance is always present, causing a fully
developed relaxation oscillation.

Instead of pursuing deeper analyses of the associated dif-
ferential equations (for more details see, e.g., [13]), an intu-
itive circuit analysis is performed to determine the charac-
teristics of the fully developed relaxation oscillation with the
resulting signals shown in Fig. 6, where it can be observed
that the duration of fast transitions decreases to zero.

The circuit of the NIC in Fig. 3(b), loaded with an inductor,
can also be viewed as a non-inverting amplifier with an ampli-
fication factor A0 = 1 + R2/R1 loaded with a series circuit
consisting of L and R2. The node between L and R2 is fed
back to the positive input. From this viewpoint, the operating
principle of this circuit can be derived conveniently.

Assuming that on turn-on, the output of the op-amp is
saturated at the supply voltage VB, and there is no flux in the
inductor (corresponding to IL,0 = 0), such that the potential
at the non-inverting input is VB, which, for the moment,
sustains the positively saturated output. Subsequently, as the
magnetic field in the inductor builds up and the current
starts to increase, the voltage V = VB − iL(t)R2 across
L decays exponentially until it falls below the level V =

VB/A0 required to saturate the op-amp output, which causes
the output, and thus, V to decrease further. This positive
feedback causes the output to quickly flip to the negative

supply voltage−VB. Therefore, the voltage V jumps virtually
instantly from VB/A0 to −VB(2 − 1/A0). After this rapid
change, the current in the inductor continuously changes in
the opposite direction with the same time constant as before.
The associated waveforms are shown in Fig. 6. The circuit
generates a square wave with a duty cycle of 50% at the
output of the op-amp. Consequently, the oscillation period is
obtained using the charging equation of an LR series circuit

IL(t) = IL,∞ + (IL,0 − IL,∞)e−tR2/L , (13)

where IL,0 and IL,∞ denote the initial and terminal inductor
currents, respectively, analogous to (1). Based on the working
principle discussed above, (13) can be transformed to give the
period T , setting IL,0 = VB(1 − 1/A0)/R2, IL,∞ = −VB/R2,
and IL(T/2) = −IL,0, yielding

T = 2
L
R2

log(2A0 − 1). (14)

Solving the nonlinear differential equation (6) for more com-
plex nonlinearities is only possible using numerical methods
for most problems. However, the insight gained from such an
analysis is limited because important features of the oscil-
lation (e.g., the period) cannot be directly obtained from
the numerical model. Alternatively, intuitive circuit analysis
reveals the operating principle and allows for the determi-
nation of the signals and oscillation periods. However, the
result is accurate only for C ≈ 0 in the previously discussed
example. The waveforms are not easily obtained when, for
example, the amplifier features a soft saturation curve (as will
be discussed later in this paper). The main aim of this work
is to illustrate the use of a third method namely analysis of
the fast-slow system representation of the equations, which is
illustrated for the so-called van der Pol equation first and for
various other circuits later.

B. THE FAST-SLOW SYSTEM REPRESENTATION AND THE
VAN DER POL EQUATION
Equation (6) represents a special case of the so-called Liénard
equation [14], which can be written as

d2x
dt2

+ f (x)
dx
dt

+ e(x) = 0. (15)

Although (6) allows for the exact solution discussed earlier,
only a limited number of exact solutions to the general Lié-
nard equation (15) are known (see, e.g., [15], [16], [17]).
However, these known solutions are not directly related to cir-
cuit engineering problems; therefore, they are not discussed
in this work.

The conditions for e(x) and f (x) in (15), for which unique
and stable limit cycles exist, are obtained by considering the
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equivalent problem:

dx
dt

= y− F(x), (16)

dy
dt

= −e(x), (17)

with F(x) =

x∫
0

dξ f (ξ ), (18)

and applying the Liénard theorem [18], which states that
under the assumptions

• F and e are differentiable and odd in x,
• xe(x) > 0 for x ̸=0,
• F(0) = 0 and F ′(0) < 0,
• F has a single positive zero at x = a,
• F increases monotonically to infinity for x ≥ a as
x → ∞

it follows that (15) has exactly one stable limit cycle.
Van der Pol derived a well-known equation based on stud-

ies of a triode vacuum tube oscillator circuit [1], as depicted in
Fig. 2. Assuming a third-order polynomial transfer character-
istic of the vacuum tube anode current, the dynamic equations
can be transformed (see Appendix B) into the following
dimensionless form [19]

d2x

d ¯̄t2
+ λ(x2 − 1)

dx

d ¯̄t
+ x = 0, (19)

where we introduced a scaled time ¯̄t (note that this was t̄
in Appendix B), which will be re-scaled for convenience
below. This equation represents an oscillating system with
amplitude-dependent damping. For |x| < 1, the oscillation
grows, whereas it decays for |x| > 1, yielding a stable
oscillation after the settling period. However, because the
damping is time-dependent, a pure harmonic oscillation can
only be obtained for λ = 0. For larger values of λ, the time
signal x exhibits fast transitions.

The Liénard equation (15) is a generalization of the van
der Pol equation (19) and can be represented by the so-called
fast-slow system [20]:

ε
dx
dt̄

= h(x, y, ε), (20)

dy
dt̄

= g(x, y, ε), (21)

where two variables, i.e., a ‘‘fast’’ (x) and a ‘‘slow’’ (y)
variable appear and replace the single variable in van der Pol’s
equation. If x and y are vectors of dimensionsm and n the sys-
tem is also termed (m, n)-fast-slow system; however, in this
study, we consider only (1,1)-fast-slow systems. Parameter
ε is positive and much smaller than 1. Characterizing the
limit cycles of this generalized representation is difficult.
A reduced version of this problem, where g and h are poly-
nomials, is known as Hilbert’s 16th problem [21], which has
only been partly solved to date. Even Poincaré abandoned the
search for exact solutions in favor of studying qualitative fea-
tures. Two important theorems are the uniqueness theorem,

FIGURE 7. Phase diagrams for the fast-slow system representation of the
van der Pol equation for different initial conditions p1 to p6 and ε = 0.
The state strictly follows the singular limit and approaches either one of
the two points s1 and s2, from which fast horizontal transitions occur
also known as relaxations.

which states that trajectories in the phase diagram never inter-
sect, and the Poincaré–Bendixson theorem [8], which states
that if a trajectory is confined to a closed bounded region and
there are no fixed points in the region, the trajectory must
eventually approach a closed orbit.

Throughout this paper, we use the convenient representa-
tion in (20) and (21) to describe various oscillator circuits by
adapting the functions h and g to fit the respective problem.
To obtain this fast-slow system representation for the van der
Pol equation, the so-called Liénard transform (see [20]) is
applied, where the new variable y is introduced as

y =

x∫
0

dξ (ξ2 − 1) +
1
λ2

dx

d ¯̄t
. (22)

The scaled time in the Liénard equation is given by t̄ = ¯̄t/λ.
Applying this to the van der Pol equation (19), we obtain:

ε
dx
dt̄

= y−
1
3
x3 + x, (23)

dy
dt̄

= −x, (24)

i.e., h = y−x3/3+x and g = −x. In the context of relaxation
oscillations, the parameter ε = 1/λ2 is sometimes referred to
as the ‘‘small parameter’’, as the smallness of ε corresponds
to fast signal transitions. To understand the reason for this,
we first study the degenerate equation, where ε = 0:

y =
1
3
x3 − x, (25)

dy
dt̄

= −x. (26)

Setting ε = 0 corresponds to reducing one energy storage
device in the circuit to zero. The cubic parabola in the first
equation gives a strict relation between x and y in the phase
diagram shown in Fig. 7 and is denoted here as the singu-
lar limit [20], whereas the second equation determines the
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dynamics in the phase diagram. The degenerate system does
not represent a conventional differential equation in the sense
that the initial conditions cannot be arbitrarily chosen [19].
Instead, they must be points on the singular limit. For initial
conditions, such as p1 and p2 (see Fig. 7), where x < 0, ẏ is
positive, causing y to tend upward until point s1 is reached.
However, s1 is not a stable point, because x is still negative
at s1, therefore, y continues to tend upward (dy/dt > 0).
Simultaneously, the state must remain on the curve defined
by the first equation of the system. The only way to fulfill
both conditions is by an instantaneous jump to the right
branch of the curve, where x is positive. From here, point
s2 is approached (as now dy/dt < 0), where, similar as
before, a jump to the left branch of the curve is induced.
By eliminating y from (25) and (26), the time-derivative of
x can be obtained as follows:

dx
dt̄

= x(t)/(1 − x(t)2). (27)

Instantaneous jumps occur at points x(t) = ±1. These
jumps appear nonphysical and are present only because of
the oversimplification by setting ε to zero. When consider-
ing specific cases, it turns out that this oversimplification
is commonly associated with neglecting a component or,
more generally, a mechanism that requires the system to be
of second order (otherwise, a point in the phase diagram
cannot reverse its direction [8]). In the case of nonzero ε, the
trajectories are allowed to depart from the singular limit. This
deviation is equal to h in (20), and by moving ε to the right,
the expression

dx
dt̄

=
h(x, y)

ε
(28)

reveals that fast transients in x (i.e., fast horizontal move-
ments in the phase diagram) can occur, particularly for
small ε.

Returning to the consideration of the degenerate system
ε = 0, points p3 and p4 are expected to tend toward s1 or
s2. However, the dashed part of the singular limit in Fig. 7
is unstable; therefore, for the initial conditions p3 and p4, the
state jumps to the stable parts of the curve. This can be under-
stood by considering (27). When 0 < x < 1 then x moves
in the positive x-direction and accelerates as it approaches 1.
The stable parts are characterized by ∂h(x, y)/∂x < 0 and the
unstable parts by ∂h(x, y)/∂x > 0. As pointed out in [19],
these conditions can be explained kinematically in terms
of the stability of the equilibrium positions of an auxiliary
first-order equation by applying Liapunov’s second method
for stability [18]. Relaxations occur at transition points s1 and
s2 where

∂h(x, y)/∂x = 0. (29)

Fig. 8 shows examples for different ε values under various
initial conditions. When ε is very small, fast horizontal tran-
sients occur, quickly bringing the state close to the singular
limit. As the state approaches the singular limit up to a dis-
tance on the order of ε, it begins to follow the singular limit in

FIGURE 8. Phase diagrams for the fast-slow system representation of the
van der Pol equation for different ε and the initial conditions indicated by
the colored dots. Fast relaxations occur for small ε and are associated
with the horizontal segments in the phase diagram.

close vicinity until it reaches the vicinity of s1 in Fig. 7. At this
point, a fast horizontal transition catapults the state against the
positive arm of the singular limit, and subsequently follows
the curve until it approaches point s2. A rapid transition to the
negative leg of the singular limit closes the limit cycle. Fig. 8
shows that the fast horizontal transitions become ‘‘smoother’’
for larger ε, which is plausible when considering that the
direction of the trajectory is dy/dx = −εx/h, i.e., the ratio
of (26) and (28).

The oscillation frequency of the van der Pol oscillator can
be estimated from the fast-slow system representation by
assuming ε = 0 [7]. align (21) characterizes the slow signal
parts, which determine the oscillation period calculated by
separation of variables:

T =

∮
cycle

dy
g(x, y)

. (30)

Here, dy is obtained from (25) and for the van der Pol oscil-
lator this yields

dy = (x2 − 1)dx. (31)

Therefore, the dimensionless period of oscillation is [8]

T̄ =

 s2∫
s3

dx +

s1∫
s4

dx

(x−1
− x

)
= 3 − 2 log(2). (32)

However, the calculation becomes much more complicated
for nonzero ε. Typically, asymptotic methods such as those
presented in [22] must be employed. The result in (32) is
considered to be a zeroth-order approximation of such an
asymptotic expansion [19]. The period of the van der Pol
oscillator is known to be approximately 20% longer for
ε = 0.01 [23], indicating that this approximation is coarse.
However, in the following examples, the small parameter ε

is introduced by considering spurious components, includ-
ing wire inductances, the band limit of an op-amp, and the
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FIGURE 9. a) Relaxation oscillator using an amplifier with saturation. The
small spurious inductance L is included to realize a small ε. b) The
transfer function of the non-inverting amplifier is denoted by A and is
shown for the two A0 = 1 and 5.

spurious capacitance of an LED. As a result, the actual ε is
much smaller, and the period is accurately determined by the
zeroth-order approximation.

II. VARIOUS RELAXATION OSCILLATORS
In the following sections, the transformation of the differ-
ential equations and the analysis of the fast-slow system
representation, as shown in the example of the van der Pol
oscillator, are applied to various oscillator circuits. These
circuits include a saturating op-amp oscillator, the Schmitt
trigger oscillator already introduced, and a popular simple
voltage step-up converter known as the ‘‘Joule thief’’.

All these oscillators share the characteristic that their prin-
ciple of operation can be easily understood through inspec-
tion. The oscillation frequencies of these circuits can be deter-
mined by considering the charging and discharging of capac-
itors and inductors. However, although establishing a simple
form of nonlinear ordinary differential equations (ODEs)
for each circuit is most often feasible, merely inspecting
these ODEs typically does not yield the signals or oscillation
frequencies as obviously as intuitive circuit analysis does.
Because advanced analyses rooted in nonlinear dynamics
are required to obtain these insights, understanding circuits
solely by their governing equations may appear unnecessarily
complicated.

Nonetheless, the transformation to a fast-slow system rep-
resentation, which is easily obtained in most cases, allows
for insights beyond basic circuit analysis. This representation
offers a powerful tool for exploring the behavior of oscillator
circuits and gaining a deeper understanding of their dynamics
and characteristics.

A. RELAXATION OSCILLATOR USING SATURATION
1) BASIC CIRCUIT ANALYSIS
In Fig. 9(a), an oscillator is shown, where the op-amp in
the circuit is configured as a non-inverting amplifier with
moderate amplification. The limited supply voltage causes
the output voltage to saturate at a certain level. The transfer

FIGURE 10. Voltage waveforms for the circuit shown in Fig. 9(a) for
VB = 15 V, C = 100 nF, R = 10 kΩ and A0 = 5. The first peak of V is lower,
as the capacitor is assumed empty at startup.

function of the op-amp with negative feedback is exemplary
shown in Fig. 9(b) for two different amplification factors:
A0 = 1 and A0 = 5. By adding capacitor C and resistor R,
a positive feedback path is established.

For engineers familiar with circuit theory, the principle of
operation is easily revealed by, e.g., assuming that the capac-
itor is initially uncharged and the output initially provides a
positive supply rail voltage (assuming that a rail-to-rail op-
amp is used for simplicity). As the capacitor charges, the
voltage across the resistor decreases, as shown in Fig. 10.
When the voltage across the resistor, which is also the input
voltage of the op-amp, falls below the value required to keep
the output in positive saturation, i.e., VB/A0, by virtue of the
positive feedback of the then reducing output voltage, the
output quickly swings to the negative rail −VB. Because the
capacitor was close to fully charged VC = VB(1 − 1/A0),
the input voltage jumps to −VB(2 − 1/A0). Using the RC
charge equation (1) and setting VC (T/2) = VB(1 − 1/A0),
VC,0 = −VC (T/2), and VC,∞ = VB, the period T is derived
as follows:

T = 2RC log(2A0 − 1). (33)

The equality of the wave-forms in Fig. 6 and 10 is not
coincidental. The step response of the resistor voltage of an
RL circuit is identical to the voltage at the capacitor in an
RC series connection for equal time constants. This circuit
and the circuit in Fig. 3 may be considered unusual designs
because op-amps with permissible input voltages outside the
supply voltage range are rare.

2) FAST-SLOW SYSTEM REPRESENTATION
To obtain a fast-slow system representation, a small parame-
ter ε must be introduced to yield a second-order differential
equation. This can be achieved, for instance, by considering a
small parasitic inductance L in series with the capacitor. The
ODE for current I , with A(V ) denoting the transfer function
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of the amplifier (i.e., VO = A(V ))

L
dI
dt

+ RI +
1
C

∫
dt I = A (IR) , (34)

can be transformed into an ODE for the dimensionless input
voltage v = V/VB

d2v
dt2

L
R

+ (1 − A′(v))
dv
dt

+
1
RC

v = 0 (35)

where A′
= dA(v)/dv denotes the voltage-dependent differ-

ential small-signal amplification. A similar oscillator with
an additional resistor R2 in series to C and L is discussed
in [24], where it is considered a negative resistance oscil-
lator.2 Indeed, (35) resembles that of an RLC circuit (when
multiplied by R), featuring a nonlinear resistor R(1 − A′(v)).
For the nonsaturated op-amp, assuming A0 > 1 and 4L ≪

CR2, the eigenvalues are approximately s1 ≈ (A0−1)R/L and
s2 ≈ 0. Therefore, waveform v builds up exponentially and
is dominated by v(t) = v(0) exp(s1t) for an initial condition
v(0). Introducing a variable x = v and dimensionless time
t̄ = t/τ with τ = RC in (35) yields the following Liénard
equation:

ε
d2x
dt̄2

= −
(
1 − A′(x)

) dx
dt̄

− x = 0. (36)

The small parameter is ε = τp/τ corresponds to the ratio
of the time constants τp = L/R to τ . Therefore, a small
parameter ε also corresponds to a rapid voltage build-up
during start-up. In Fig. 11, the limit cycles for three different
ε values are shown, along with their associated signals. The
ideal saturation characteristic A(x) is shown in Fig. 12(a) for
various A0 values. A′(x) in (36) is a box function, taking the
value A0 in the linear range |x| < 1/A0 and 0 when saturated.
The exact solution can therefore be determined by piece-wise
solving of two linear ODEs while maintaining continuity
at the transition points, similar to the NIC example shown
before. However, a graphical approach based on a fast-slow
system representation will be pursued instead. By equating
−x in (36) with dy/dt̄ , the variable y is defined similar to the
van der Pol equation:

y =

∫ x

0
dx(1 − A′(x)) + ε

dx
dt̄

. (37)

The integral in (37) is evaluated, yielding the associated
fast-slow system representation as follows:

ε
dx
dt̄

= y− x + A(x), (38)

dy
dt̄

= −x. (39)

For small spurious inductances L, ε is also small, resulting
in relaxation oscillations with fast transitions. The equation
is formulated in dimensionless time t̄ = t/(RC), and the
physical time axis scales with the time constant τ = RC .

2It can be shown that the respective differential equation of the extended
circuit can be transformed into (35) using the transformed quantities v →

v/α, R → R2/α,A′
→ αA′, and VB → αVB with α = R2/(R+ R2).

FIGURE 11. Phase diagrams for the oscillator using a saturating op-amp
for supply voltage VB = 10 V and A0 = 5 and different initial conditions
and ε. The input voltage swings above the power supply which requires a
careful selection of the op-amp.

FIGURE 12. a) Transfer functions of a hard saturating amplifier for
various A0 and VB = 1. b) The singular limits y = x − A(x) are shown for
the A0 in (a). The transition points ±xt and the signal maxima ±yp are
indicated for A0 = 3. The left slow part is considered for the calculation of
the half period of oscillation.

The singular limit, y = x − A(x) is shown in Fig. 12(b) for
different amplification factors. Owing to op-amp saturation,
a zig-zag curve results with clearly defined transition points at
xt = ±VB/A0, as previously found by basic circuit analysis.

The oscillation period can also be determined directly for
ε = 0 by using (30). For g(x, y) = −x = −(A(x) + y) (see
(38)) , and considering the left slow-part in Fig. 12, where
A(x) = −VB, the period in the dimensionless time frame is

T̄ =

∮
cycle

dy
g(x, y)

= 2

yp∫
−yp

dy
VB − y

= 2 log(2A0 − 1),

(40)

with yp = VB(1 − 1/A0). (41)

The integration bounds ±yp in (40) are determined by the
local extrema of y at the singular limit. A(x) is either VB or
−VB at the slow branches. The time constants obtained from
this direct calculation and from the intuitive circuit analysis
are equal when converted to the same time frame.
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FIGURE 13. a) Transfer functions (43) to (45) of smoothly saturating
amplifiers and for various A0. b) The singular limits y = x − Ata(x) for the
hyperbolic tangent and various A0. The transition points s2 and s4 and
the signal maxima are s1 and s3 are indicated for A0 = 3. The transition
points lie on the dash-dotted line for all 1 ≤ A0, showing the high
sensitivity to A0 when it is close to 1.

For the case A0 = 1 (40) yields a period of zero. However,
it is apparent from (38) and (39) for A(x) = x, i.e.,

ε
d2x
dt̄2

= −x, (42)

a harmonic oscillation with a period of T̄ = 2π
√

ε in
dimensionless time and T = 2π

√
LC in physical time is

possible; however, it is not self-exciting.

3) SOFT SATURATION
The singular limit will look more similar to that of the van der
Pol oscillator if a softer saturation function of the amplifier
is considered. The oscillation period of such an oscillator
depends sensitively on the saturation characteristics. Three
different hypothetical sigmoid functions for the transfer func-
tion of the op-amp, including a hyperbolic tangent function,
Gudermannian function, and simple algebraic function that
saturate at ±1 featuring a slope of dA/dx = A0 at x = 0, are
considered:

Ata(x) = tanh (xA0) , (43)

Agd(x) = 4 arctan (tanh (A0πx/4)) /π, (44)

Aal(x) =
A0x√

1 + (A0x)2
. (45)

These functions are shown in Fig. 13(a) for various values
of parameter A0. For hard saturation (sharp corners of the
transfer function), the differential amplification dA(x)/dx
jumps from A0 to 0. However, for soft saturation, the tran-
sition points are not as obvious using basic circuit analysis,
but they can be easily revealed by considering the fast-slow
system representation (38) for ε = 0. According to (29), the
transition points xt of the singular limit shown in Fig. 13(b)
are given by the local extrema of y = x − A(x), associated
with dy/dx = 0 (i.e., (38) for ε = 0) and hence

dA(xt )/dx = 1. (46)

Therefore, the transition points for soft saturation can be
defined as, where the differential amplification drops to 1.

The input voltage thresholds xt for the respective saturation
curves are therefore

xt,ta = arsech
(√

1/A0
)

/A0, (47)

xt,gd = 2arsech(1/A0)/(A0π), (48)

xt,al =

√
A2/30 − 1/A0, (49)

where arsech denotes the inverse hyperbolic secant function.
The limit cycle shown in Fig. 13(b) for the hyperbolic tangent
function (43) resembles that of the van der Pol oscillator,
and is excited by the same mechanism. Assuming the initial
condition s1, the state approaches point s2 from where a
fast transition to s4 is induced, followed by a slow approach
to s3. The limit cycle is closed by another fast transition.
From threshold −xt , an instantaneous jump to xp occurs. xp
is therefore related to xt by y(−xt ) = y(xp), i.e., −xt −

A(−xt ) = xp − A(xp). This can be rearranged for xp, yielding
an attracting fixed-point iteration xp,n = A(xt )−xt+A(xp,n−1)
as |A′(x)| < 1 on the slow branches. A suitable starting
condition is, e.g., A(xp,0) = 1. To obtain the exact value for
the oscillation period (assuming ε = 0), (30) can be used:

T̄ =

∮
cycle

dy
g(x, y)

= −

 s2∫
s1

dy+

s4∫
s3

dy

 .
1
x

(50)

The period in physical time is therefore given by

T = 2RC

xp∫
xt

dx
1 − A′(x)

x
. (51)

The obtained period T is a function of A0 and scales linearly
with τ = RC . The numerical evaluation of the integral for
various A0 yields the results shown in Fig. 14. Surprisingly,
the deviations of the periods increase with A0, although the
saturation functions appear more similar as they approach the
shape of hard saturation with increasing A0. The reason for
this behavior lies in the differences of threshold voltages xt
in (47) - (49). As the capacitor discharges, its voltage tends
to zero, but relaxes as it reaches xt . Therefore, the period
is particularly sensitive to xt for large A0. These results can
be conveniently reproduced using LTspice simulation [25],
as shown in Fig. 15.

The consideration of a spurious inductance in the circuit
led to the identification of the small parameter ε. It can be
shown that assuming low-pass behavior of the amplifier can
be used equivalently to obtain a small ε parameter. This
approach is used in the following example.

B. RELAXATION OSCILLATOR USING HYSTERESIS
In this example, the circuit discussed in the Introduction is
analyzed using a fast-slow system representation. The typi-
cal interpretation of the circuit is that the capacitor voltage
oscillates between the two thresholds ±VT of the Schmitt
trigger. To introduce the small parameter ε in this example,
a small time constant τp is added to the output of the Schmitt
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FIGURE 14. Oscillation periods in dimensionless time over A0 for the
three different saturation functions tanh (43), Gudermannian (44), and
the algebraic function in (45).

FIGURE 15. LTspice schematic using the behavioral voltage source B1 to
implement the tanh saturation characteristic in (43) for A0 = 100. Replace
the expression V=tanh(V(x) *A0) by one of the functions in the comments
(blue text) for the other characteristics. The period of oscillation T is
found in the log-file. The current source I1 provides a short current pulse
at t = 0 to initiate the oscillation.

FIGURE 16. Relaxation oscillator using a Schmitt trigger from Fig. 1 where
the small spurious time-constant τ = RP Cp is included to realize a
small ε. The transfer function of the amplifier is denoted by A.

trigger (see Fig. 16), which can be considered a first-order
approximation of the slew limit or transition time of the op-
amp. The buffer is added for simplicity to decouple the RC
circuit from the loads. The transfer function of the trigger
is denoted as A(V ). Circuit analysis yields the following
expressions:

RPCp
dVO
dt

= A(V ) − VO, (52)

RC
dV
dt

= VO − V . (53)

1) FAST-SLOW SYSTEM REPRESENTATION
Introducing the dimensionless time t̄ = t/τ where τ = RC
and ε = τp/τ with τp = RpCp, and using the substitutions
x = VO/VB and y = V/VB yields the fast-slow system

FIGURE 17. Phase diagrams for the Schmitt trigger oscillator for
dimensionless threshold voltage VT/VB = 0.66 and different initial
conditions and ε. The spurious output RpCp causes the expected slower
settling of the dimensionless output voltage x .

representation

ε
dx
dt̄

= A(y) − x, (54)

dy
dt̄

= x − y. (55)

The singular limit x = A(y) is shown in Fig. 17. For arbitrary
initial conditions, the singular limit is quickly approached
horizontally. Once in the vicinity of the singular limit, the
state slowly follows the vertical segments with fast jumps
between the transition points.

The formal calculation of the period from the dimension-
less fast-slow system representation for ε = 0 yields the same
result when converted to physical time, as was found by the
circuit analysis in the Introduction, i.e.,

T̄ =

∮
cycle

dy
g(x, y)

=

∮
cycle

dy
A(y) − y

= 2

VT/VB∫
−VT/VB

dy
1 − y

= 2 log
(
1 + 2

R1
R2

)
, (56)

with VT/VB = R1/(R1 + R2). (57)

C. TRANSISTOR OSCILLATOR JOULE THIEF
The term Joule thief refers to a simple voltage step-up con-
verter, which as far as we know, was first presented in [26].
The circuit shown in Fig. 18, is designed to remain func-
tional even at low battery voltages, enabling it to harvest
(‘‘steal’’) the last remaining bits of energy from drained
batteries that are no longer useful for conventional appli-
cations. One common application of the Joule-thief is to
drive an LED flashlight. The circuit’s appeal lies in its low
part count and relatively simple transformer design, where
a few turns on a small toroid are typically sufficient for
operation.
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FIGURE 18. The self-oscillating voltage step-up converter Joule thief.

FIGURE 19. Idealized input (a) and output (b) characteristics of transistor
and LED (c). IC = βIB for VCE > Vsat.

1) BASIC CIRCUIT ANALYSIS
A basic circuit analysis is performed using idealized tran-
sistor and LED characteristics. The input (IC over VBE ) and
output (IC over VCE ) characteristics of the transistor, as well
as the current-voltage characteristics of the LED (ID overVD),
are approximated by abrupt functions, as shown in Fig. 19.
After connecting the battery to the circuit, a rapidly increasing
small yet sufficiently large base current drives the transistor to
saturation. Consequently, the voltage at the secondary side of
the (tightly coupled) transformer jumps to the battery voltage
VB minus the saturation voltage Vsat of the transistor. Current
I2 increases linearly, as shown in Fig. 20, according to

dI2/dt = (VB − Vsat)/L2, (58)

where L2 is the inductance of the secondary winding. The
primary current I1 = −IB is small and its influence on the sec-
ondary side is neglected. The mutual inductance coupling the
primary and secondary sides of the transformer is denoted by
M , and the ratio of the transformer windings N1,2 is denoted
by a = N1/N2. The induced voltage V1 = Mİ2 = aV2 on the
primary side enhances the base current IB:

IB = ((1 + a)VB − aVsat − VBE )/R, (59)

driving the transistor further into saturation. However, when
the constant base current, by virtue of the limited current gain
β, is no longer sufficient to maintain the linearly increasing
current I2, the transistor opens. At this point, the collector
current reaches its maximum Î2 = βIB. The charging time
Tc is calculated using (58) by separation of variables and

FIGURE 20. Waveforms simulated using the circuit in Fig. 21.

assuming I2(0) = 0, yielding:

Tc =
L2 Î2

VB − Vsat
= β

L2
R

(1 + a)VB − aVsat − VBE
VB − Vsat

. (60)

After the charging interval, the voltage V2 inverts as induc-
tance L2 maintains the continuity of I2. Simultaneously, the
inverted primary voltage V1 of the transformer shuts off
the transistor even more. During the discharging interval,
the inductor drives the current through the LED with a for-
ward voltage VLED assumed to be constant. Consequently,
V2 = VB − VLED is negative, leading to a linear decrease
in I2 according to L2dI2/dt = V2 until the current almost
vanishes. Hence, the discharging interval Td is given by

Td =
L2 Î2

VLED − VB
= β

L2
R

(1 + a)VB − aVsat − VBE
VLED − VB

. (61)

The full period is T = Td + Tc, and the duty cycle D can be
calculated by

D =
VB − Vsat
VLED − Vsat

. (62)

The current delivered to the LED decreases linearly (due to
the assumption of a constant VLED) from Î2 to 0 during time
Td (see Fig. 20) and is zero during the charging period Tc.
The RMS value of the current, denoted by ĪD, is calculated
by

ĪD =

√√√√√ 1
T

Td∫
0

(
Î2
Td
t

)2

dt = Î2
√
D/3. (63)

This analysis demonstrates that the power delivered to the
LED increases with higher values of a and β, and increases
with a lower value of R. The most convenient method for
adjusting LED power is therefore to vary R. The waveforms
presented in Fig. 20 for the idealized circuit can also be sim-
ulated in LTspice by using the circuit shown in Fig. 21. The
following transistor parameters are used for the simulation:
β = 152, Vsat = 0.28V and VBE = 0.7V. The LED’s
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FIGURE 21. An idealized circuit simulation using LTspice utilizing a
behavioral current source (xi introduces a high, but finite steepness of the
saturation characteristic required for numerical stability).

forward voltage is set to VLED = 2.1V to achieve the best
agreement with the actual circuit. Note that an abrupt change
in the output characteristics of the transistor when leaving
saturation results in a non-converging simulation. To address
this issue and ensure numerical stability, a finite steepness
parameter xi = 1µ is introduced, causing the collector current
to increase from zero to themaximumvaluewithin a1VCE =

1µV. In the simulation, a small capacitor C1 is incorporated
into the idealized circuit to facilitate oscillations. However,
its value can be as low as attofarads.

The results of this intuitive circuit analysis are approxi-
mate. In the actual circuit shown in Fig. 18, Vsat,VLED,VBE ,
and β change over a cycle. This introduces additional com-
plexities that are considered using the fast-slow system rep-
resentation discussed below.

2) FAST-SLOW SYSTEM REPRESENTATION
The circuit in Fig. 18 can be analyzed in the phase diagram
based on the fast-slow system representation where the vari-
ations of the transistor and LED parameters during one cycle
can be considered, yielding a deeper insight into the operation
of the circuit. To derive the fast-slow system representation,
a small parasitic capacitance C is assumed to be in parallel to
the LED. By circuit simulation, it was found that considering
the LED voltage x = VD and the inductor current y =

I2 as the fast and slow variables yields a familiar limit cycle
trajectory. Using Kirchhoff’s voltage law at the primary and
secondary sides of the transformer, and the current law at
the collector and LED node, we can establish the following
relations:

VB = −V1 + IBR+ VBE , (64)

VB = V2 + VD, (65)

C
dVD
dt

= I2 − IC − ID. (66)

Since the current I1 is assumed negligible, the transformer
equations reduce to

V1 = L1
dI1
dt

+M
dI2
dt

≈ M
dI2
dt

, (67)

V2 = M
dI1
dt

+ L2
dI2
dt

≈ L2
dI2
dt

. (68)

FIGURE 22. The output characteristic IC over VCE (= VD) for a BC547B
transistor for constant base currents IB, simulated using the part model
provided by Analog Devices, see Appendix C.

The ratio a = M/L2 equals the turns ratio of N1 : N2 of
a tightly coupled transformer, and therefore V1 = aV2.
Combining (65) with (68) yields

dI2
dt

=
VB − VD

L2
, (69)

which, together with (66), is a fast-slow system representa-
tion3 for ε = C , x = VD and y = I2, when the collector
current IC and the LED current ID are expressed in terms of
VD and I2. The base-emitter voltage VBE depends on the base
current IB(= −I1) and the collector-emitter voltage VCE (=
VD). The LED current ID depends on the LED voltage VD,
and as driving the transistor into saturation is a crucial part
of the operation principle, the collector current IC must be
considered as a function of the collector-emitter voltage and
the base current, i.e.:

VBE = F(IB,VD), (70)

ID = G(VD), (71)

IC = T (VD, IB). (72)

Functions F,G, and T are nonlinear and can be obtained
from circuit simulations. The output characteristics of the
used transistor (BC547B) IC = T (VD, IB) are depicted in
Fig. 22 for constant base currents IB generated using the
part model included in LTspice. Using (64) and (65) with
V1 = aV2 and VBE = F(IB,VD), an implicit relation between
the base current IB and the LED voltageVD can be established
as

VB = −a(VB − VD) + IBR+ F(IB,VD). (73)

IB is therefore a function of the variable VD denoted by H ,
i.e.,

IB = H (VD), (74)

which is shown in Fig. 23 for various values of resistor R
in the circuit depicted in Fig. 18. The solid lines in Fig. 23

3In favor of easier interpretation, the variables are left in dimensional form.
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FIGURE 23. The simulated relation between base current and
collector-emitter voltage IB = H(VD) following (73) for a supply voltage
VB = 1 V and a 1:1 transformer, i.e. a = 1.

FIGURE 24. The collector current of the transistor shown in Fig. 22, when
IB is expressed as a function of the collector-emitter voltage IB = H(VD)
in Fig. 23.

are simulated, and the dashed lines are approximated using
(59), assuming a constant VBE = 0.7V. The bends upwards
at low VD are associated with drops of VBE as the usually
backward biased base-collector diode begins to conduct for
VD < VBE . The characteristic voltage VK where the base
current approaches zero, and the approximate base current for
VD = 0 (i.e., IK) are therefore given by

VK =
VB(1 + a) − VBE

a
, (75)

IK =
aVK
R

. (76)

Fig. 24 shows the collector current for various values of R
under the constraint that the base current depends on VD(= x)
through (74). The collector current IC can consequently be
expressed as a function of the LED voltage alone, i.e., IC =

T (VD,H (VD)) = T ′(VD). From (66) and (69), the fast-slow

FIGURE 25. Singular limit for various values of R and three different LED
types and VB = 1 V and a = 1. A limit cycle is shown for a red LED and a
base resistor R = 2 kΩ.

system representation

ε
dx
dt

= y− (T ′(x) + G(x)), (77)

dy
dt

=
VB − x
L2

, (78)

where x = VD, y = I2 and ε = C is obtained. The singular
limit of that system therefore is simply the sum of the collec-
tor (Fig. 24) and the LED current as a function of LED voltage
x, i.e., y = T ′(x) + G(x), giving a typical N-shaped curve
shown in Fig. 25, which is needed for relaxation oscillations
to occur. Here, T ′(x) is shown for various values of R and
G(x), i.e., the voltage-current relation of the LED, is shown
for LEDs of three different colors following the PSice models
in Appendix C. The forward voltages of the LED are all
higher than VK (75) at which the collector current vanishes,
such that transistor and LED conduct alternately. The critical
point where relaxation to the right (i.e., a rapid transition) is
induced is at the local maximum Î2 of I2, where the transistor
leaves saturation at approximately x = VD ≈ 0.28V (see
Fig. 22). The base current is well-defined at this point (see
Fig. 23), but the current gain β at the edge of saturation
may depend sensitively on component variations. Conse-
quently, the peak current driven through the LED, although
deterministic in the simulation, may vary considerably in the
experiment. Fig. 26 shows the waveforms for VD and I2 and
Fig. 27 for VBE and IB, respectively. Compared to the wave-
forms in Fig. 20 of the idealized circuit, it is observed that the
forward voltage of the LED and the saturation voltage change
considerably over time. The secondary current I2 depletes to
zero for VB = 1V and a = 1. By increasing the battery
voltage to, e.g., VB = 1.5V, I2 does not deplete, as can be
observed from the singular limits shown in Fig. 28. Such a
condition occurs when VK in (75) is larger than the forward
voltage of the LED, which results when VB is increased or
when a (the turns ratio) is lowered to a < 1. The minimum
secondary current and the minimum voltage VD are nonzero
in this case and are denoted by Ǐ2 and V̌sat, respectively.
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FIGURE 26. Waveforms for the Joule thief in Fig. 18 simulated using
LTspice.

FIGURE 27. Waveforms for the base-emitter voltage and the base current.

FIGURE 28. Limit cycles of the Joule thief using a BC547B with red LED
and R = 2 kΩ for four supply voltages VB and a = 1. In cases where VK in
(75) is larger than the forward voltage of the LED, the current does not
fully deplete.

The oscillation period is again calculated using (30):

T =

∮
cycle

dy
g(x, y)

= L2

∮
cycle

d(T ′(x) + G(x))
VB − x

. (79)

For the left slow branch, only the transistor (corresponding
to T ′) conducts. An improved approximation to (60) for
the charging time Tc is obtained if the collector current IC
over the collector-emitter voltageVD is linearly approximated
between VD = 0 . . . V̂sat, i.e., T ′(x) = xÎ2/V̂sat, which is
justified when Fig. 24 is considered. The result is improved
compared to that in (60) and reads:

Tc =
L2 Î2
V̂sat

V̂sat∫
V̌sat

dx
VB − x

= L2
Î2
V̂sat

log

(
VB − V̌sat
VB − V̂sat

)
. (80)

Here, V̂sat denotes the peak saturation voltage, which can
be obtained graphically from Fig. 25. The discharge time is
calculated for the case when I2 depletes using the diode cur-
rent equation, considering the (typically considerable) series
resistance RS (see Appendix C)

ID = IS

(
exp

(
VD − IDRS

nVth

)
− 1

)
, (81)

where Vth denotes the thermal voltage, and n the ideality
factor. The discharge time Td follows from the integral

Td = L2

Î2∫
0

dID
VD − VB

, (82)

which can be evaluated numerically when (81) is transformed
for VD neglecting the 1

Td = L2

Î2∫
0

dID
RS ID + nVth ln(ID/IS ) − VB

. (83)

A good approximation for (eqn:sdfkjsdhf) can be obtained:

Td ≈
L2
RS

ln

(
1 +

Î2RS
nVth ln(Î2/(3IS )) − VB

)
. (84)

To account for a non-depleting I2 in case of VB = 1.5V, the
lower bound in the integral (83) can be replaced by Ǐ2, which,
however, does not consider that there is a decreasing collector
current for VD < VK (see Fig. 25), which results in a dilation
of the discharge time.4

In Tab. 1 the theoretical values and simulation results
using the circuit in Fig. 29 are compared for a red LED and
R = 2 kΩ at various supply voltages. The power efficiency,
in terms of the ratio of the average power, delivered to the
LED to the average power drawn from the battery (η in
Tab. 1) assuming a lossless transformer, reaches its maximum
of 91.5% for VB = 1.28V. Under these optimum conditions,
the collector current does not fully vanish with Ǐ2 = 7.7mA.

In addition to VB and R, also the turns ratio a can be
changed. Increasing a causes higher currents IK , and with it,
higher LED peak currents, which also leads to lower required

4This effect can be included, but complex expressions that are sensitive to
the transistor parameters result. Therefore, the gains in terms of accuracy are
limited.
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TABLE 1. Simulation results for a Joule thief circuit using a BC547B transistor with R = 2 kΩ and a red LED. The values in brackets were calculated using
the respective equations given in the header of the table.

FIGURE 29. The LTspice circuit used to determine the values in Tab. 1. The
results of the.meas directives are listed in the log-file of the simulation.

minimum battery voltages, which are both desirable features
of a Joule thief. The turns ratio a is therefore a parameter
influencing the singular limit. Increasing the inductances
while keeping the turns ratio constant influences therefore
only the oscillation period, provided that the inductor core
does not saturate.

III. SUMMARY AND CONCLUSION
The relaxation oscillator circuits in this work were analyzed
using conventional circuit analysis and graphical analysis
of the phase diagram based on the fast-slow system rep-
resentation. In particular, it was shown that the graphical
representation of the singular limit yieldes additional insights.
For instance, one can estimate the oscillation onset for an
arbitrary initial condition, determine more exact expressions
for the oscillation periods, or find the parameter ranges for
which relaxation oscillations are excited at all. Particularly,
the singular limit reveals hysteresis behavior in oscillator
circuits even if there is no obvious hysteresis present in a
transfer function of the circuit’s building blocks.

It should be emphasized that effects associated with relax-
ation oscillations can be much more faceted than those pre-
sented here. For instance, a modified van der Pol system,
as discussed in [7], exhibits so-called ‘‘Canard cycles’’ for
certain parameters, where fast horizontal transitions in the
phase diagram are induced not at the local maxima of the
singular limits.

The examples discussed in this paper are all of order two.
Higher-dimensional systems, denoted as (m, n) fast-slow sys-
tem representations may show chaotic behavior for certain
parameters, where no closed orbits result [13], [27].
The mathematically more involved oscillators of fractional

order [28] are often encountered when distributed systems,

naturally represented by partial differential equations, are
approximated using lumped elements yielding ordinary dif-
ferential equations. An op-amp realization of an oscillator
with fractional capacitance is discussed in, e.g., [29]).

The so-called two-stroke oscillations, known for some
time [30], have recently been discussed for memristor cir-
cuits [31]. The limit cycles of these circuits show one fast
and one slow transition instead of two fast and two slow
transitions. The examples which were discussed in this work
are therefore also referred to as four-stroke oscillators.

In summary, even though there are myriad manifestations
of relaxation oscillation phenomena in natural sciences and
technology worth discussing, the authors believe that elec-
trical engineers, who add the relatively simple technique
presented in this paper to their toolbox, will benefit from the
possibility of viewing oscillation phenomena from a different
angle and tackling problems involving nonlinear differential
equations more intuitively.

APPENDIX A
THE NEGATIVE IMPEDANCE CONVERTER
In the following, the characteristics of the NIC circuit in
Fig. 30 discussed in Sec. I are derived for the general case,
where all resistors are potentially different.

FIGURE 30. Negative impedance converter circuit.

Assuming an op-amp featuring infinite open-loop amplifi-
cation and whose output is rail-to-rail, the voltage V is also
present across resistor R1 by virtue of the negative feedback.
The op-amp output voltage is therefore

Vo = V
R1 + R3
R1

. (85)
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FIGURE 31. Current I over voltage V at the input terminal of the NIC
circuit (black) and op-amp output voltage (blue).

As the op-amp output voltage cannot exceed VB there is a
threshold voltage for V

VT = VB
R1

R3 + R1
(86)

at which the characteristics of the NIC change. In particular,
if |V | > VB, the output of the op-amp will be pinned to ±VB.
The input current of the NIC is therefore

I =
V − Vo
R2

= −V
R3
R1R2

for |V | ≤ VT, (87)

I =
V − VB
R2

for V > VT, (88)

I =
V + VB
R2

for V < −VT, (89)

and the resulting differential resistances are

dV
dI

= −
R1R2
R3

for |V | ≤ VT, (90)

dV
dI

= R2 for |V | ≥ VT. (91)

Fig. 31 shows the corresponding I/V characteristics. In the
case of R2 = R3, as for the circuit in Fig. 3(b), it follows
that the NIC features a negative resistance of−R1. Maximum
current ±Imax flows at the transition points at ±VT

Imax =
VB
R2

·
R3

R1 + R3
. (92)

At this point also the output current from the op-amp is
maximum

IO,max =
VB
R2

·
R2 + R3
R1 + R3

(93)

APPENDIX B
VAN DER POL’S EQUATION
The following brief derivation of van der Pol’s equation from
the oscillator circuit shown in Fig. 2 follows coarsely the
original paper [1]. The anode current of the triode Ia generally
depends on the grid voltage Vg and the anode voltage Va
but can be approximately written as a function φ of a single
variable, i.e., the ‘‘lumped voltage’’ given by Va + gVg,

Ia = φ(Va + gVg), (94)

where g represents the ‘‘voltage-ratio’’ of the tube (also
known as amplification factor). The grid current is neglected.

We only consider changes around the steady, though unstable,
state (i.e., Va0 = VB, Ia0 and Vg0 = 0) and introduce the
variables for the deviations v and i from these bias values:

v = Va − Va0, (95)

i = Ia − Ia0 = φ(Va0 + v+ gVg) − φ(Va0). (96)

The voltage at resistor VR is related to the battery voltage VB
and anode voltage Va by

VR = Va − VB. (97)

As the (tightly coupled) transformer converts only AC signals
with the voltage ratio−M/L, the grid voltageVg is zero-mean
and therefore, Vg = −vM/L and the associated variation in
the anode current is

i = φ(Va0 − kv) − φ(Va0), (98)

with k = gM/L − 1. Differentiating the relation −i = iR +

iC+iL , obtained usingKirchoff’s law of currents, with respect
to time and using equation (97), we obtain the differential
equation

−
di
dt

= C
d2v
dt2

+
1
R
dv
dt

+
1
L
v+

1
L
(Va0 − VB). (99)

Current i can be expanded into a Taylor series around Va0
(using the notation φ′

= dφ(x)/dx etc.), i.e.,

i = −kφ′(Va0)v+
k2

2
φ′′(Va0)v2 −

k3

6
φ′′′(Va0)v3 . . . .

(100)

To obtain the van der Pol equation, it is assumed that the trans-
fer characteristic of the tridode can be approximated in the
vicinity of the steady state by using the first- and third-order
terms of (100) (see Fig. 32). Therefore, the time-derivative of
i is approximately given by:

di
dt

= −

(
kφ′(Va0) +

k3φ′′′(Va0)
2

v2
)
dv
dt

. (101)

Combining equations (99) and (101) and considering that in
the steady state Va0 = VB (because VR is zero as there is no
DC voltage drop across the inductor parallel to R) yields

C
d2v
dt2

+

(
−kφ′(Va0) +

1
R

−
k3φ′′′(Va0)

2
v2
)
dv
dt

+
1
L
v = 0.

(102)

Introducing a dimensionless time t̄ = t/
√
LC and multiply-

ing by L yields

d2v
dt2

+

√
L
C

(
−kφ′(Va0) +

1
R

−
k3φ′′′(Va0)

2
v2
)
dv
dt

+ v = 0.

(103)

By defining the dimensionless parameter λ as

λ =
1
R

√
L
C

(
Rkφ′(Va0) − 1

)
, (104)
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FIGURE 32. Assumed characteristic of the anode current Ia in equation
(94) of the triode over the anode voltage Va when the grid voltage Vg is
expressed in terms of the anode voltage.

and introducing the transformed variable x

x2 = v2
Rk3φ′′′(Va0)

2(1 − Rkφ′(Va0))
, (105)

finally, the van der Pol equation results:

d2x
dt̄2

+ λ
(
x2 − 1

) dx
dt̄

+ x = 0. (106)

Self-excited oscillations occur for the conditionsφ′(Va0) > 0,
φ′′′(Va0) < 0 and λ > 0, i.e., gM/L > 1 + 1/(Rφ′(Va0)).

APPENDIX C
PSpice MODELS
The model for the bipolar transistor BC547B used in the
simulation is that of the manufacturer NXP and can be found
in the LTspice library provided by Analog Devices Inc.
.MODEL BC547B NPN(IS=2.39E-14 NF=1.008~ISE=3.545E-15
NE=1.541~BF=294.3~IKF=0.1357~VAF=63.2~NR=1.004
ISC=6.272E-14 NC=1.243~BR=7.946~IKR=0.1144~VAR=25.9
RB=1 IRB=1.00E-06 RBM=1 RE=0.4683~RC=0.85~XTB=0 EG=1.11
XTI=3 CJE=1.358E-11 VJE=0.65~MJE=0.3279~TF=4.391E-10
XTF=120 VTF=2.643~ITF=0.7495~PTF=0 CJC=3.728E-12
VJC=0.3997~MJC=0.2955~XCJC=0.6193~TR=1.00E-32 CJS=0
VJS=0.75~MJS=0.333~FC=0.9579~Vceo=45 Icrating=100m
mfg=NXP)

The LEDs in the simulation are conventional 5mm (T1
0.75) types with the data provided by the manufacturer
OSRAM.

red:
.MODEL LO_541B-typ D IS=661.43E-24 N=1.6455~RS=4.8592

green:
.MODEL LT_543C-typ D IS=10.000E-21 N=1.6963~RS=3.6653

white:
.MODEL LW_541C-typ D IS=414.48E-15 N=5 RS=22.499
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