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ABSTRACT One weakness of machine-learning algorithms is the need to train the models for a new task.
This presents a specific challenge for biometric recognition due to the dynamic nature of databases and,
in some instances, the reliance on subject collaboration for data collection. This paper investigates the
behavior of deep representations inwidely usedConvolutional Neural Network (CNN)models under extreme
data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of
CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the
network layers’ output for unseen data and evaluate the method’s robustness concerning data normalization
and generalization of the best-performing layer. We improved state-of-the-art results that made use of
networks trained with biometric datasets with millions of images and fine-tuned for the target periocular
dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard
computer vision algorithms. For example, for the Cross-Eyed dataset, we reduced the EER by 67% and 79%
(from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively,
for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs
in situations with limited data or scenarios where the network has not been trained with the test classes
like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and
3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and
a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric
case.

INDEX TERMS Biometrics, deep representation, periocular, transfer learning, one-shot learning.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have become the
standard increasingly in applications of Computer Vision and
Pattern Recognition. From object detection [1], [2] to object
recognition [3], data generation [4], image manipulation [5],
CNNs dominate the state-of-the-art. The popularity and
success of CNNs largely stem from their ability to learn
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and extract highly discriminative features, as well as to
easily adapt to different applications such as medical
data [6], autonomous driving [7], or, in our case, biometric
recognition [8].
Nonetheless, to achieve good results, CNNs usually require

a substantial amount of varied data to allow the network
to learn the abstraction of objects [9]. Since acquiring such
data is often expensive and infeasible, many researchers
are working to make CNNs more efficient [10]. Transfer
Learning is one of the most common approaches to tackling
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data scarcity. It aims to adapt a network trained for a usually
more complex task for which much more training data exists
to a new target domain. The idea is to take advantage of the
feature extraction power of the pre-trained CNN and fine-tune
it for the specific task under consideration. One-shot learning
is an extreme case of Transfer Learning, where no data is
available to train the network for the new target. Instead,
a vector of embedding, or deep representation, is extracted
from a class-sample image using a pre-trained network
for comparison. Then, distance or similarity-based metrics
between the deep representations are used to determine if
a new image belongs to the same class. Typically, the last
layer before the classification stage is used to extract such
deep representations. However, as this paper and previous
preliminary studies on periocular recognition show [11], [12],
selecting the final layer of the network may not always be the
best option. Moreover, as we also study here, the best layer
selection depends heavily on the input data normalization as
well as the amount and variety of data available when training
the model.

With the need for One-Shot Learning appeared newer
approaches like the use of Contrastive-Loss [13] and Triplet-
Loss [14]. In these types of losses, the network is optimized to
extract a vector of embedding that maximizes the inter-class
distance and, in the case of Triplet-Loss, also minimizes the
intra-class distance up to some margin. The approaches for
One-Shot Learning explained in this section can, once the
network has been trained on a large dataset, be used directly
on other datasets for recognition. For example, to use a
VGG-Face [15] network directly on a target Face dataset.
The eye region is one of the most discriminative areas of

the face [16], [17]. However, it was not until 2009 when [18]
first introduced the concept of periocular recognition. They
described this new biometric as using the facial area in the
immediate vicinity of the eye to recognize a person’s identity.
Besides the iris, a well-established biometric trait [19], the
eye’s shape, texture, and subcomponents, like eyebrows,
eyelids, commissures, or skin, provide much information that
one can exploit to recognize a person. This periocular area
has proven to achieve high recognition performance [20],
not only for identities but also for soft-biometric traits
like gender, ethnicity, and age [21], [22] [23], [24], [25],
while having fewer acquisition constraints than other ocular
modalities like the iris. However, despite its potential,
large periocular datasets are scarce [26], leading to limited
research in this area. Nonetheless, due to the recent COVID-
19 pandemic and the widespread use of face masks, this
region has gained significant attention within the biometric
community [27].

In a previous contribution [11], we evaluated a selection
of CNNs for One-shot periocular recognition on the UBIPr
database. Later in [28], we also analyzed the utility of
a pre-trained CNN for few-shot cross-spectral periocular
recognition on the IMP database. Here, we evaluate a wider
selection of networks and databases. We also analyze the
effect of other factors, such as image pre-processing, domain

adaptation, and data partition. Our contributions are shown
below:

• State-of-the-art (SOA) periocular recognition compar-
ison using One-Shot Learning. We report the perfor-
mance per layer of six widely used CNN architectures
(ResNet101v2, DenseNet121, VGG19, Inceptionv3,
MobileNetv2, and Xception), as well as the most widely
used hand-crafted features in periocular recognition
(LBPH, HOG, SIFT) for three different datasets (IMP,
PolyU, Cross-Eyed).

• We investigate the effect that Domain Adaptation had
on the selected networks’ deep representation when
we used CNNs trained for the periocular modality for
Cross-Dataset recognition. We consider the following
scenarios: CNNs pretrained with the ImageNet dataset,
ImageNet CNNs fine-tuned for periocular recognition
with auxiliary datasets, randomly initialized CNNs, and
finally, randomly initialized CNNs trained for periocular
recognition with auxiliary datasets.

• We examined how the acquisition method and input
image preprocessing can affect the performance of Deep
Representations and best-performing layers.

• Finally, we also report the generalizability of the best
layer found by showcasing how performance varies
when using the best-layer information between datasets
and same-dataset partitions on the Open-World (OW)
and Close-World (CW) cases.

The rest of the paper is organized as follows. Section II
frames our work within the related research area of periocular
biometrics. Section III presents the databases, metrics, and
matching strategies used. Section IV explains the paper’s
experimental framework. Section V shows the results,
presents relevant findings, and compares our methods with
the state-of-the-art for the databases used. Finally, Section VI
draws the final conclusions obtained from our research.

II. RELATED WORK
This section surveys Deep Learning biometric recognition,
focusing particularly on periocular biometrics and One-Shot
Learning.

This paper extends two previous works [11], [28] that
dealt with deep representations for periocular recognition.
In [11], we compared the performance per layer of deep
representations from a selection of four well-known architec-
tures pre-trained on ImageNet or face recognition databases
(AlexNet, GoogLeNet/Inception v1, ResNet, and VGG) and
the results with traditional computer vision hand-crafted
features. The data employed consisted of periocular images
in the visible range from the UBIPr database. This paper
discovered that intermediate CNN representations of such
networks could outperform traditional CV methods used in
biometric recognition with no additional training needed.
Furthermore, we saw that biometric-trained models like
VGG-Face did not perform better than their general-purpose
counterparts trained for the ImageNet challenge.

VOLUME 11, 2023 100397



K. Hernandez-Diaz et al.: One-Shot Learning for Periocular Recognition

FIGURE 1. Image samples from each database. a) Original database samples, UBIPr shows the relative difference size between image
samples b) normalized images after pre-processing as explained in III-A. Cross-Eyed c) and d) show the normalization difference used in
Section V-B. In c), the only modifications to the images were the conversion to grayscale and cropped to be squared, while d) shows the
full normalization effect as explained in III-A.

In [28], we extended the work for cross-spectral periocular
recognition using the IMP database, which contains images
with three different types of illumination: visible, near-
infrared, and night vision. We first analyzed the changes in
the performance per layer, observing that the optimal layer
is different for each spectrum. We later investigated how
intermediate representations could be used for cross-spectral
purposes. We found that cross-spectral performance could be
improved by training a fully connected network at the end of
the best-performing layer of each spectrum, thus demanding
a small fine-tuning step only. The cross-spectral performance
was observed to improve largely, up to 65% (EER) and 87%
(accuracy at 1% FAR) w.r.t. previous papers, constituting
the best-published results to date on the IMP database. The
work [28] focused on one CNN only (ResNet), while the
present paper extends the study of the cross-spectral issue to
a selection of six different architectures.

The mentioned periocular research of [11] and [28] is
inspired by [29], where the authors studied the per-layer
performance in iris recognition of five different ImageNet
pre-trained CNNs (AlexNet, VGG, Inception, ResNet, and
DenseNet). The segmented and normalized iris image is given
to the CNN. The intermediate layers’ output at different
depths is then extracted and used as feature representations
to feed an SVM for identity classification. The paper
achieved state-of-the-art recognition performance on two
large iris databases, LG2200 (ND-CrossSensor-Iris-2013)
and CASIA-Iris-Thousand. The authors concluded that the
employed Off-The-Shelf CNNs can extract rich features from
iris images that could be used for recognition, thus reducing
the complexity of using CNNs for the task by not having to

train them, opening the door to new iris representations. In our
previous papers [11], [28], and in the present contribution,
we also follow this direction for the periocular modality.

CNNs pretrained on large image datasets such as Ima-
geNet, MS1M, and VGG-Face have been widely used as
the backbone of many architectures in the literature. In [21],
the authors use a frozen VGG16 trained on ImageNet
with its Fully Connected layers discarded as the backbone
architecture to extract periocular features later used for
person recognition, for soft biometric classification, and
both together in a Joint Periocular Recognition Block.
They improved the SOA for periocular recognition on both
UBIRISV2 and FRGC datasets, as well as the soft-biometric
classification on FRGC.

In [30], the authors used a VGG16 trained for face
recognition using the VGG-Face dataset, a dataset with 2,6M
images and 2,622 identities, and fine-tuned the network for
periocular recognition while controlling the size of the final
feature vector. Once the network was adapted to the new
domain, the last layers were removed, and the recognition
was made by comparing the deep representations of the test
images using the Euclidean distance, Spearman distance,
or Cosine similarity. They demonstrated the feasibility of
using the periocular area in unconstrained scenarios by
achieving SOA on NICE.II and MobBIO, two datasets with
images captured in uncontrolled environments in the visible
spectrum. In another study [31], the authors used a similar
approach to analyze the effect that iris normalization and
segmentation have on Deep Representations for biometric
recognition. They used two networks (VGG and ResNet50)
trained for face recognition and fine-tuned them for iris
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recognition by removing the last layer and incorporating
two new fully connected layers. Once the training was
complete, they removed the last classification layer and used
the Cosine similarity between the deep representations for
biometric verification, reaching a new SOA for the NICE.II
dataset.

The authors of [32] used a One-Shot learning approach
to extract a vector of embeddings for joint biometric
and sensor recognition. They extracted the images’ deep
representations using an embedding network that was trained
using one of three different types of losses: Cross-Entropy,
Contrastive (single and double margin), and Triplet-Loss
(with off-line and online triplet mining, as well as multi-
class negative-pairs). They then extracted the vector of
embedding from the final layer of the network (removing
the classification layer from the Cross-entropy approach)
and used it for recognition. They compared their results
in three different biometric modalities: face, periocular,
and iris, as well as for two different types of sensors:
Near-Infrared iris sensors and smartphone cameras. They
found that the representations were robust across the three
biometric modalities and different sensors, outperforming
SOA commercial approaches.

In the paper [33], authors proposed a method that consists
of a periocular ROI detection model for image alignment,
custom data augmentation, and illumination normalization to
extract robust and generalizable periocular features using a
MobileNetv2 network. They followed an Open-Set protocol
in which they trained their models using the VISOB database
on visible images and then evaluated the generalizability
of their model on UBIRIS-V2, UBIPR, FERET, Cross-
Eyed, CASIA-IRIS-TWINS,which includes adverse imaging
environment and cross-spectral comparisons, by matching
the features vectors extracted using Cosine similarity. They
reduced the error rate up to 7 times when compared with
existing models in the literature.

In [34], authors proposed to use an unsupervised con-
volutional auto-encoder to create subject-invariant feature
representations for ocular recognition. For each image input,
two augmented views were created and fed to the network.
They used an L1 norm between the Deep Representations
of both image views created by the encoder and between
the original and reconstructed images by the decoder.
They coupled the loss also with a KL-divergence term as
a sparsity regularizer and two coefficients to weigh the
contribution of the regularizer and Deep Representations to
the loss. They followed an Open-Set cross-dataset evaluation
protocol where they used the Cosine similarity or Hamming
distance for matching. They achieved a 2.2% lower EER for
cross-illumination conditions when compared to a supervised
ResNet50.

III. DATABASES, METRICS, AND PROTOCOL
This section describes the databases, the matching protocol,
and the metrics used to compare the results from our
experiments and the baselines.

A. DATABASES
We employed images in the visible (VIS) range from four
commonly used periocular datasets in the experimentation:
IIITD Multispectral Periocular (IMP) [36], UBIPr [37],
Cross-Eyed [38], [39] and PolyU [40].

UBIPr is a periocular database captured with a
CANON EOS 5D digital camera with different degrees of
subject-camera distance (4-8m), resolutions, illumination,
poses, and occlusions in two separate sessions. We only
kept the frontal images to match the same type of images
as the other databases. In addition, we retained only the
users that had two recorded sessions. Since both eyes
are available per user per session, our final database has
86 individuals ×2 sessions ×2 eyes ×5 distances = 1,720
images. Each eye is considered a different identity, thus
having 172 identities. Furthermore, we resized the images
using bicubic interpolations. We normalized them (with the
annotated ground-truth used in [11]) to have the same average
sclera radius in their distance group and aligned them by
extracting a square region of 7.6Rs x 7.6Rs around the sclera
center.

IMP is a cross-spectral periocular database. It offers
images captured in three spectra: Near-Infrared (NIR),
Visible (VIS), and Night Vision. The VIS images were
captured using a Nikon SLR camera from a distance of 1.3m
in a controlled environment and illumination. The database
has 62 users with 5 images per user and spectrum containing
both eye regions. We manually annotated the sclera center of
each eye and the sclera radius. Then, we separated each eye
and normalized the images to have the same sclera radius, and
aligned them by cropping a squared region around its sclera
center. The database thus has 62 users ×2 eyes ×5 images
per eye = 620 VIS images.
Cross-Eyed is a cross-spectral periocular database cap-

tured for the 1st Cross-Spectral Iris/Periocular Competi-
tion [38]. The database was collected using a custom
dual-spectrum image sensor that simultaneously captured
images in bothNIR andVIS at a distance of 1.5m in an uncon-
trolled indoor environment. It comprises images of periocular
and iris regions of 120 subjects from different nationalities,
ethnicities, and eye colors. There are 120 subjects ×8 images
×2 eyes = 1,920 images per spectra and modality. In this
paper, we make use of VIS periocular images. Periocular
images in Cross-Eyed have their iris masked to ensure pure
periocular recognition. We used these masks to normalize
them to have the same sclera radius, center, and orientation.
Theywere also zero-padded and cropped, so all have the same
size.

PolyU is an iris image database captured using simul-
taneous bi-spectral imaging. It offers iris images in NIR
and VIS, where each eye has pixel correspondence between
both spectrum versions. It has 209 subjects ×15 images ×2
eyes = 6,270 images per spectrum. As with the previous
datasets, we only used the VIS images for this paper. Since
the periocular region in this dataset is rather limited, images
are just resized to be squared.
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FIGURE 2. Different database partitions for the Close World (CW), Open World (OW), and Complete protocol.

TABLE 1. Summary of train/test partitions per database. The Close World (CW) and Open World (OW) protocols with PolyU and cross-eyed are defined
following [35].

All images were converted to grayscale to normalize skin
color across databases, paddedwith zeroes when images were
not squared, resized using bicubic interpolation, and copied
across the RGB channels to fit Imagenet networks’ input
size. Figure 1 shows examples of images from the different
databases after this procedure.

B. METRICS
The Equal Error Rate (EER) is the most common evaluation
metric for biometric verification systems. EER refers to the
error at the intersection point between the False Acceptance
Rate (FAR) and the False Rejection Rate (FRR) curves.

To compare two feature vectors v1 and v2, we used
the cosine similarity illustrated in Equation 1 for its fast
calculation, even for very high dimensionality vectors,
to calculate the FAR and FRR from the CNN embeddings,
as well as with the LBPH and HOG descriptors. With SIFT
features, we used Equation 2, defined as the ratio of matches
(M) between images over the minimum number of keypoints
(K) detected in either image a and b, with epsilon being

a control parameter for any case when no keypoints where
found in an image.

cos(θ ) =
v1 · v2

∥v1∥∥v2∥
(1)

ratiosift =
M

min(Ka,Kb, ϵ)
(2)

C. PROTOCOLS
Although biometric identification was used for training the
networks for periocular recognition, a verification setting was
the choice for analyzing the performance of the proposed
method. In biometric verification, one compares an input
image against an image of the identity the user claims to
be. If the similarity between images is above a predefined
threshold, the user is considered genuine; otherwise, the user
is regarded as an impostor.

All tests employed a cross-dataset One-Shot Learning
approach. If a network is to be trained, we used a dataset
formed from the combination of all databases introduced
in III-A except the one used for testing. For instance, when
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FIGURE 3. Example of a middle layer’s deep representation extraction for VGG19.

calculating the EER for the Cross-Eyed, a combined dataset
with all data from UBIPr, IMP, and PolyU was used to form
the training set. Subsequently, we followed an all-against-
all strategy to calculate the test performance, computing all
pairs of genuine and impostor scores. All images in the test
dataset were used to analyze the performance per layer of
the networks. However, we also follow the same protocols as
in previous papers employing the same databases to enable
comparison. In particular, for comparison for the PolyU and
Cross-Eyed, we use the same approaches carried on [35]: the
closed-world (CW) protocol, where the images from each
user are split into training and testing, and the open-world
(OW) protocol, where the users are divided into training and
test, along with all their available images in such a way that
there are no images from the same user in training and test
simultaneously. Figure 2 reflects the difference between the
partitions in CW and OW.

In the PolyU dataset and the Close-World setup, the ‘‘Test’’
partition contains the last five images of each user, while the
remaining ten images are included in the ‘‘Train’’ partition.
In the Open-World approach, the subjects are divided into
two halves of 209 users each, the first half used for the
‘‘Train’’ partition and the latter half of the subjects for the
‘‘Test’’ partition. Regarding the Cross-Eyed database, the CW
‘‘Test’’ partition includes the last three images of each user,
and the remaining five images go to the ‘‘Train’’ partition.
For the OW protocol, the users are divided into two halves,
with the first 120 users for ‘‘Train’’ and the last 120 for
‘‘Test’’.

To summarize the number of classes, images, and compar-
isons for each partition, refer to Table 1. In the case of the
IMP database, due to limited data, we only make all-against-
all comparisons to calculate the performance on the complete
dataset. Finally, the UBIPr dataset is only used in training
due to the experiments with different networks already done
in [11].

IV. METHODOLOGY
This section presents the experimentation setup used for this
study. In particular, the networks, libraries, training strategies,
and other algorithms used and how the data was handled and
compared.

This paper investigates the performance of deep rep-
resentations in the middle layers of convolutional neural
networks (CNNs) for periocular recognition. We also focus
on the impact of training and Transfer Learning on perfor-
mance. We utilized six widely used and readily available
CNNs: ResNet101v2 [41], DenseNet121 [42], VGG19 [43],
Xception [44], Inceptionv3 [45], and MobileNetv2 [46].
We conducted periocular verification on the VIS images of
the IMP, Cross-Eyed, and PolyU datasets presented in the
previous section. We assessed how the performance per layer
of each network varied as a One-Shot verification algorithm
on a target dataset. To do so, four cases were considered:
i) networks trained with the ImageNet dataset; ii) ImageNet
networks fine-tuned for periocular recognition; iii) random
initialized networks, and iv) networks trained for periocular
recognition from scratch.

In cases ii) and iv), where the network requires training
for periocular recognition, we do so by training it for
biometric identification. The training set comprises all the
available periocular datasets except the one used for testing,
as indicated in the previous section. When the target (test)
dataset was IMP, we combined UBIPr, Cross-Eyed, and
PolyU to form a dataset with 830 classes and 9,909 images.
We then split it into training and validation sets. The
validation set included the last image-distance of each session
and user from the UBIPr dataset, the last two images of the
Cross-Eyed dataset for each user, and the last five images
of each user from PolyU, resulting in training and validation
partitions of 6,996 and 2,913 images, respectively. When the
target dataset was Cross-Eyed, we trained the networks on a
dataset combining UBIPr, IMP, and PolyU, which comprised
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8,609 images from 714 classes. The training and validation
split followed the same strategy as IMP for UBPIr and PolyU;
for the IMP dataset, we used only the last image of each
eye and user for the validation split, resulting in training and
validation sets of 6,052 and 2,557 images, respectively.

We used Tensorflow-Keras to download, initialize, train,
and test the networks. We retained the network’s main body,
altering only the final Dense layer to fit the number of
training classes. We trained them using the Adam optimizer
with a learning rate of 0.003, except for VGG, for which
we employed Stochastic Gradient Descent with a learning
rate of 0.001 and a ClipValue of 0.5, as it provided better
stability during training. We trained the networks with Early
Stopping, monitoring the validation loss with a patience of
20 epochs and a maximum limit of 500, saving and restoring
the weights of the best-performing epoch. Due to GPU
memory constraints, the batch sizes were either 16 or 32,
depending on the network. We performed data augmentation
by randomly rotating the images up to 30 degrees, shifting
the height and width by up to 20 percent, and zooming by
up to 20 percent. All training was conducted on a Windows
10 machine with 64GB of RAM and an Nvidia RTX2070
GPU with 8GB of VRAM.

After preparing all the networks, we extracted the output
of the network layers as illustrated in Figure 3. We sliced
the network from the input to the desired layer, inputted
all the images from the target dataset, extracted the layer’s
output 4D matrix, and flattened the matrix while maintaining
the batch dimension. Subsequently, we compared the entire
dataset using an all-against-all matching strategy, employing
Cosine similarity for its rapid and straightforward compu-
tation before proceeding to the next layer, as described in
Section III-B.

We also use in our experiments three methods based on the
most widely used features in periocular research, employed
as baseline in many studies [20]: Histogram of Oriented
Gradients (HOG) [47], Local Binary Patterns (LBPH) [48],
and Scale-Invariant Feature Transform (SIFT) keypoints [49].
HOG and LBPH features are extracted from non-overlapped
regions of the image, forming per-block histograms of 8 bins,
which are then concatenated to form a feature vector of the
entire image. Comparison between two images is done via
Cosine similarity between their histograms. On the other
hand, SIFT operates by extracting keypoints (with dimension
128 per keypoint) from the entire image. The comparison
metric between two images is as explained in III-B. For
LBPH and HOG extraction, we used the native Matlab
implementation, while for SIFT, we employed the Matlab
version available here.1

V. RESULTS AND DISCUSSION
This section presents the results obtained from the experi-
ments for the different networks, databases, and modalities.
We started by analyzing the performance of middle-layer

1https://www.vlfeat.org/overview/sift.html

representations of well-known networks for periocular ver-
ification trained for the ImageNet dataset. These pre-trained
networks have become the standard starting point for most
image classification tasks [50]. Once we obtained the
reference results, we explored how they compare when the
networks are trained for the same type of data as the target
domain, both in EER and depth of the best layer. The results
of this study are reported in Section V-A. Since we are
comparing very high dimensional data using simple similarity
scores, we also investigate the impact that alignment and
preprocessing on input images can have for this type of
Transfer Learning strategy. This is done in Section V-B. In the
mentioned two sections, we have utilized entire datasets to
compare the performance of the methods. To assess how the
employed strategies generalize, we examine in Section V-
C the consistency of the method in terms of layer depth
and performance when changing between training and test
partitions on the same dataset as well as at the best layer
found on other datasets. Finally, in Section V-D, we compare
our results with previous CNN-based works employing
the same datasets, as well as with traditional handcrafted
features.

A. TRAINING EFFECT
Tables 2 and 3, along with Figures 4, 5 and 6 show the effect
that training has on the deep representation of the networks
for periocular verification. using IMP and Cross-Eyed as
test databases. The figures show the performance of the
different CNN layers per network and per training strategy,
while the tables summarize the best performance and
in which layer it is obtained. Results in this subsection
make use of the ‘‘Complete’’ partition of the databases
(Table 1).
As the tables show, the best results are not necessarily

obtained with fine-tuned networks (cases ii, iv). For some
networks, it is better to use ImageNetweights directly (case i),
or even randomweights (case iii), as with MobiletNet. This is
consistent with previous findings in [11], in which the VGG-
Face network, a VGG network trained for face recognition on
a dataset with 1 million images, achieved worse periocular
recognition results than its ImageNet counterpart. In absolute
numbers, ResNet for the IMP dataset and InceptionV3 for
Cross-Eyed are the networks that obtained the best results
(EER of 2.05 and 0.7, respectively). ResNet performs the
best in the IMP dataset for both the ImageNet (case i in
Table 2), and the periocular-trained network (case iv). It also
ranks second best for the IMP dataset for the fine-tuned
ImageNet network (case ii, Table 2) and the Cross-Eyed
dataset ImageNet and fine-tuned ImageNet (cases i and ii
in Table 3), albeit sharing the position in this last case
with DenseNet. Conversely, InceptionV3 performs the best
for these three categories in Cross-Eyed. Overall, it is thus
unclear what training strategy is optimal since the best EER
obtained for each network and dataset varies. For ResNet
and InceptionV3, it seems better to use the ImageNet version
than any other training. On the other hand, it seems better to

100402 VOLUME 11, 2023



K. Hernandez-Diaz et al.: One-Shot Learning for Periocular Recognition

TABLE 2. Best EER performance per network and the layer at which is obtained for the IMP database. The results for all layers are given in Figures 4
and 6. The training strategies i)-iv) are detailed in Section IV. The numbers in bold indicate the best results per training strategy (column-wise), while the
gray cells indicate the best results per network (row-wise). Results are shown for the Complete protocol defined in Table 1.

TABLE 3. Best EER performance per network and the layer at which is obtained for the cross-eyed database. The results for all layers are given in
Figures 5 and 6. The training strategies i)-iv) are detailed in Section IV. The numbers in bold indicate the best results per training strategy (column-wise),
while the gray cells indicate the best results per network (row-wise). Results are shown for the complete protocol defined in Table 1.

fine-tune for DenseNet, VGG, Xception, and MobileNetV2.
Interestingly, when the networks are fine-tuned, starting
from ImageNet weights (‘‘TL ImageNet’’ column in the
tables or blue curve in the figures) gives better results
than starting from scratch consistently (‘‘Trained’’ column
or green curve). This effect is much more prominent in
the Cross-Eyed dataset. This corroborates previous works
that suggest employing a general purpose training such as
ImageNet as a starting point, especially if data available for
training is limited [50].

Upon examining Figures 4 and 5, we can see that
at deeper layers, the fine-tuned networks initialized with
ImageNet weights (blue curves) start to perform better than
the ImageNet counterpart (red curve). This may be due
to the similarity in the domain and higher abstraction at
deeper layers achieved by fine-tuning, which helps to close
the gap between datasets. However, fine-tuned networks
started from scratch (green curves) are, in some cases,
even worse than ImageNet networks, especially with the
Cross-Eyed database. Again, This confirms that fine-tuning
ImageNet networks is a better starting point than scratch
initialization, especially with limited training data. On the
other hand, at early layers, ImageNet and fine-tuned networks
perform very similarly in many cases. This confirms the
general assumption that early layers of CNNs usually
extract low-level features that are domain-agnostic in many

cases, while deeper layers become more specialized for the
particular task at hand. Another very relevant result is that
the very last layers of the networks always suffer a jump in
error, even fine-tuned versions. Moreover, with IMP, many
cases show performance degradation even earlier. Indeed,
optimal performance with any network or database is attained
already at the middle layers or just after the first third of the
network.

We examined the performance per layer of randomly
initialized networks as a control (Figure 6). However, the
results are surprisingly good in some cases. As Tables 2, 3
show, the performance of networks with random weights
is not as bad as it could be expected, equating to or even
beating other cases involving training. The performance per
layer, as seen in Figure 6, shows a very stable behavior
after some initial variability. This is somewhat expected
since the weights are random, so the extracted features
are also. Most networks have no clear positive or negative
tendency as we increase depth, but they show a relative
plateau in performance, especially after a relative depth of
0.2. DenseNet, however, does exhibit a slight performance
improvement the deeper the layer is, but this is in the form
of steps. Finally, we can see that MobileNet has a peak
performance at the very last layer. Indeed, MobileNetv2 with
random weights achieves the second-best performance for
both datasets. This represents an outlier, but it shows that
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FIGURE 4. EER per layer for the IMP dataset for the cases when: i) the network is trained with the ImageNet dataset (red curve), ii) the
network is fine-tuned from ImageNet model for periocular recognition (blue), and iv) the network is trained for periocular recognition from
scratch (green curve). These training strategies i), ii), and iv) are detailed in Section IV. The best cases per network and per training strategy
are given in Table 2. Results are shown for the Complete protocol defined in Table 1.

the exponential behavior of the last layer can also work to
one’s advantage. Nonetheless, as mentioned above, some
randomly initialized networks perform relatively similarly
to their trained counterparts. DenseNet exemplifies this for
the IMP dataset and InceptionV3 and DenseNet for Cross-
Eyed, where the difference in EER is less than 1%. A notable
example is VGG, which performs better in the random
version than its trained one for both datasets. Moreover,
as we will analyze later when comparing to other methods
(Section V-C, Table 7), all randomly initialized networks

yield results comparable to baseline CV algorithms like
LBPH and HOG.

B. NORMALIZATION EFFECT
We then examined the method’s robustness for perturbations
in the input data and how it affects the deep representation
behavior. To do so, we employed normalized and unnor-
malized images of the Cross-Eyed database. The normalized
version consisted of the images processed to have the
same sclera radius, center, and orientation, as described in
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FIGURE 5. EER per layer for the Cross-Eyed dataset for the cases when trained with the ImageNet dataset, when: i) the network is trained
with the ImageNet dataset (red curve), ii) the network is fine-tuned from ImageNet model for periocular recognition (blue), and iv) the
network is trained for periocular recognition from scratch (green curve). These training strategies i), ii), and iv) are detailed in Section IV.
The best cases per network and per training strategy are given in Table 3. Results are shown for the Complete protocol defined in Table 1.

Section III-A, whereas the unnormalized images are only
converted to grayscale and cropped to be squared using
the smallest dimension as reference size. Figure 1 shows
the effect of the normalization process on the data for the
Cross-Eyed database. Although the Cross-Eyed database was
captured at a constant distance, small differences in scale
and position between different images can appear if the
image is not normalized. Figure 7 shows the effect per
layer of input normalization on the performance of the deep
representations. For space-saving purposes, we report results

using networks trained for ImageNet only.We can see that the
EER becomes significantly worse if images are unnormalized
(blue curves), especially at the early and middle layers. Only
in the final layers, does the performance with unnormalized
images become closer to the normalized counterparts. This
is understandable since networks are susceptible to scale,
orientation, and, to a minor degree, translation. Only the
deeper layers can achieve a higher-level representation of the
input data, contributing to closing the gap between the two
cases. However, normalized data achieves the best absolute
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FIGURE 6. EER per layer when the networks were not trained and were just randomly initialized. The best cases per network are given in
Table 2 (IMP database) and Table 3 (Cross-Eyed database). Results are shown for the Complete protocol defined in Table 1.

TABLE 4. Best EER comparison per network between normalized and not
normalized input images and the layer at which it is obtained (Cross-Eyed
database). The numbers in bold indicate the best results per
normalization method (column-wise), while the gray cells indicate the
best results per network (row-wise). The results for all layers are given in
Figure 7.

performance with most networks, as shown in Table 4.
Except for VGG, all networks exhibit an increase in EER
between 77% (MobileNetv2) and 439% (InceptionV3) with
unnormalized data. We can also see that the best-performing
layer with unnormalized data becomes close to the last
layer, compared to the normalized version, which usually
achieves the best performance in the first half of the network.
Thus, robust data normalization is key to achieving better
performance.

C. PARTITION EFFECT
Although one can utilize the network without training them
for a specific domain, we have seen in previous subsections
that it is still essential to determine which layer yields the
best performance. As we demonstrate in Tables 2 and 3, the
best-performing layer can vary significantly from database
to database and from network to network, even in the same
periocular domain. In the present subsection, we go one
step beyond and consider how the performance and the
best layer can change considering different partitions of the
database. In other words, we select the best layer in one
data partition and test the performance in another partition.

Furthermore, we check generalizability even further by
looking at how the performance changes using the
best-performing layers from other datasets. For this
subsection, we only retain ResNet, DenseNet, and Inception,
the best-performing networks of previous subsections
(Tables 2, 3, and 4). We report results using networks trained
for ImageNet only for space-saving purposes. In addition,
since only PolyU and Cross-Eyed have different partitions
and CW/OW protocols (Table 1) [35], this section focuses on
these two databases.

Table 5 shows the EER obtained on Cross-Eyed on the
different partitions of the Closed-World (CW), Open-World
(OW), and Complete protocols. The ‘‘Train’’, ‘‘Test’’, and
‘‘Complete’’ partitions of the different protocols refer to those
detailed in Table 1. Recall that the main difference between
CW and OW protocols (Figure 2) is that the CW protocol
contains the same users in the ‘‘Train’’ and ‘‘Test’’ splits
(the images of each user are split into two sets), whereas
the OW protocol contains different users in the ‘‘Train’’ and
‘‘Test’’ splits (the users are split into two sets). For better
viewing, Figure 8 (left) depicts the relative accuracy values
(black = 0%, white = maximum EER per CNN/database
considering the CW and OW experiments together).

From table 5 and Figure 8, Inception offers very
stable results with Cross-Eyed, at least when the best
layer is selected on a partition of the same database.
The best-performing layer for each partition and, when
considering the whole dataset, are quite close together,
as do the EER (see the relatively similar gray colors in
Figure 8, left bottom). Inception even yields the same exact
layer regardless of the partition and mode used to select it.
Interestingly, this is true both in the CW case (the Train/Test
partitions contain images from the same users) and the OW
case (the Train/Test partitions have different users), meaning
that Inception generalizes very well over the Cross-Eyed
database, even to unseen users. On the other hand, when the
best layer is selected externally (using the IMP database), the
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FIGURE 7. EER per layer for the Cross-Eyed dataset for the cases when the images were preprocessed and not. The networks employed are
trained with ImageNet. The best cases per network are given in Table 4.

results degrade substantially, giving the worst EER. Indeed,
this is true for any CNN or partition with the Cross-Eyed
database (see the brightest boxes in Figure 8, left, which most
of the time corresponds to the case when the best layer is
selected using IMP). In addition, the best layer with IMP
is usually very different than the best layer calculated with
other partitions. This suggests that, despite using databases in
the VIS spectrum, their differences (in sensor, illumination,
etc.) play an important role in selecting the optimum
layer.

ResNet and Densenet, on the other hand, do not appear
to generalize as well as Inception over Cross-Eyed. The
best layer is different depending on the partition used to
select it, at least in the CW case, where it can also be seen
that the performance across partitions varies. This can be
appreciated in the gray variations of Figure 8, left, for the
CW case with these two networks. This result is interesting
because the CW case contains images from the same users
in all partitions, so one would expect similar optimum
layers and performance. On the other hand, the OW case
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TABLE 5. Table with the best layers and associated EER for each partition (defined in Table 1) of the cross-eyed database.

contains images from different users on each partition, but
the preferred layers are closer, and the performance is more
constant across partitions. One observation in this regard
would be that the CW protocol entails more users but with
fewer images per user in each partition, whereas the OW
protocol includes fewer users per partition but with more
images per user. This connects with previous research [15],
[51] that shows that it is better to make training decisions
based on a larger number of images per user, even if it implies
fewer users. This is because a larger number of samples per
user allows to model the intra-class diversity better. In our
case, it translates to better generalizability when the best layer
is selected under the OW protocol. As seen (Figure 8, left,
OW case), the gray variations between partitions, in this case,
are not so high compared to CW.

Table 6 and Figure 8 show the results for the PolyU
dataset. In this case, we can see that the best layers for
each network and partition are close to the network’s end
when they are selected on a partition of the same PolyU
database. This is, as explained in Section V-B, most likely
due to the normalization of the PolyU dataset and its more
inconsistent periocular region. Even though several papers
use the PolyU dataset as a periocular one, the database was
collected to be an iris database, so the surrounding ocular area

is not consistent. The periocular area, orientation, location,
and scale between images change much more than in Cross-
Eyed. Also, the available periocular area is reduced, making
periocular recognition with this database challenging. As a
result, the layers with the best performance are towards
the network’s end when the networks have achieved a
sufficient level of abstraction. If we use an external database
instead, like IMP, which contains periocular images of better
quality, the best layers appear earlier for all networks.
While the lower abstraction of such layers may be sufficient
for IMP, their performance on PolyU is substantially
worse.

Regarding the best layer of each network, it can be
observed that it is approximately the same when it is selected
using PolyU, no matter the partition or protocol used. This is
relevant from a generalizability point of view. However, when
it comes to the EER, the behavior of the Close-World and
Open-World changes drastically, even if the layers at which
they are calculated are the same. This can be attributed to the
number of comparisons made in each mode combined with
the worse quality of the PolyU images. In the Open-World
case, since both partitions have the same number of users and
the same number of images per user, the EER obtained for
each one is very close. However, the number of images per
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TABLE 6. Table with the best layers and associated EER for each partition (defined in Table 1) of the PolyU database.

user and partition varies in the Close-World mode, resulting
in different genuine and impostor comparisons, as shown in
Table 1. As the number of comparisons is smaller in the
test partition, especially for the genuine case, the EER on
this partition is systematically lower than the train partition.
This is because a smaller amount of genuine scores does not
allow to account sufficiently for intra-class variability effects,
providing a more optimistic performance when the database
is of lower quality.

Lastly, it can also be seen with PolyU the negative effect
of selecting the optimal layer with an external database.

The worst EER (brightest boxes in Figure 8, right) happens
when Cross-Eyed or IMP are used. In addition, there is no
consistency per CNN. With ResNet, the worst result is given
by the optimal layer in Cross-Eyed. However, with DenseNet
and Inception, the worst EER comes from the optimum IMP
layers.

D. COMPARISON WITH SOA AND OTHERS
Table 7 summarizes and compares the results with previous
works using the same databases [28], [35], [52] and the
LBP, HOG, and SIFT hand-crafted features. We surpass the
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FIGURE 8. Verification accuracy for each partition (defined in Table 1) of Cross-Eyed (left) and PolyU (right). The lower the values, the
better. The values are re-scaled, so the maximum EER per CNN and database of the CW/OW experiments are set to 1 (white). Black
indicates 0% EER. The exact values are given in Tables 6, 5.

state-of-the-art results for the Cross-Eyed dataset achieved
by [35]. In their study, they train a ResNet50 and a VGG
network for cross-spectral periocular recognition but also
calculate the performance for same-spectrum verification.
InceptionV3 reduced the EER by 58% and 79% for
Cross-Eyed in Close-World and Open-World protocols,
respectively, and it even achieves superior results than their
fusion of iris and periocular. ResNet and DenseNet also
reduced the EER w.r.t [35] despite lacking training on the
target dataset. However, for PolyU, the situation is different.
None of the networks achieved comparable or superior results
than [35]. The increment in the EER for our method is
probably due to the higher degree of variability in the PolyU
data. At the same time, the bigger gap in the results for the
PolyU and Cross-Eyed dataset achieved in [35] is partially
due to the amount of data available to fine-tune the network,
allowing training the CNN better for the task. We also

outperformed our previous results on the IMP dataset [28].
Even if we also used a ResNet101, the version used in
this study was a newer ResNet101V2 on Tensorflow-Keras,
which can explain the difference.

Regarding traditional computer vision algorithms, LBPH
and HOG performed worst on each occasion. Nonetheless,
SIFT managed to achieve similar results for all Cross-
Eyed partitions. It also achieved comparative results for
PolyU in the Close-World protocol but outperformed [35]
in the Open-World case when the authors only utilized
the periocular region. This can be due to the weakness
of machine-learning methods when confronted with users
that were not present in the training data, which can
benefit non-trainable algorithms like SIFT. It must also
be highlighted that PolyU has the worst image quality
and highest variability among the databases employed.
In this case, it becomes less evident the gap between
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TABLE 7. Summary of results and comparison with SOA. We reference the best results found in terms of EER for same-spectrum periocular recognition on
the visible spectrum for the selected databases. 1: authors reported the EER for the Left/Right eyes separately.

hand-crafted and data-driven approaches when there is
limited data.

VI. CONCLUSION
This study examined the effect that training and fine-tuning
have on the behavior of CNN’s deep representations for One-
Shot learning. We utilized well-known pretrained networks
as out-of-the-box feature extraction methods for periocular
recognition. We investigated the behavior per layer of the
networks for different datasets and under different training
modes. Additionally, we examined the approach’s robustness
to some natural acquisition noise and how the best layer
changes in relation to an auxiliary database or sampled data
from the same distribution.

There is no clear best option regarding training strategy.
In our experiments, we have observed that it depends on
the network used. ResNet, InceptionV3, and MobileNetV2
do better using the ImageNet weights, while the rest can
benefit from fine-tuning to the target periocular task. As in
previous works, ResNet typically yields one of the best
performances among the networks, making it a good default
option for this approach. It is worth mentioning that we
outperformed CNNs specifically trained not only for the
task of biometric recognition but also for the same dataset
without having to fine-tune our models. Furthermore, non-
CNN-based algorithms like SIFT can still outperform trained
CNNs for the same dataset.

Regarding robustness, a crucial factor seems to be the
normalization of the input data. Since our method relies on
simple similarity scores between high dimensional matrices,
misalignment will heavily penalize the performance. Normal-
ization also affects the depth at which the best-performing
layer is situated, which tends to be close to the end for not
normalized data, which is when the network has achieved a

sufficient level of abstraction. When it comes to the sample
set used to select the best layer, using an external database
with different acquisition conditions has shown to have a
very negative effect, giving much worse EER and a very
different optimal layer w.r.t. using a partition of the same
database. Also, it is essential to have a sufficient number
of images per user to properly model intra-user variability.
This is especially critical if the target dataset is of very low
quality.

A limitation of this approach is that it relies on finding the
best layer for the task. To accomplish this, it is necessary
to have a certain amount of data to calculate the network’s
performance for that specific domain properly. Nonetheless,
the amount of data needed could be, in principle, smaller
than the amount needed to properly train a network, as we
can see in Table 7, where we achieve better performance
for Cross-Eyed than a network trained for biometric recog-
nition with millions of images and then fine-tuned for the
dataset. However, the greater the available data, the better
results the trained network will have. Another limitation of
this approach is that the deep representation matrices of
middle layers can be quite big, posing challenges for large
datasets or embedded systems due to memory constraints.
For these reasons, the normalization process required for
this method makes it a suitable option only for small-
scale, easy-to-normalize scenarios. Nevertheless, using facial
landmarks and iris and sclera segmentation methods, the
periocular region is relatively easy to normalize for frontal
images.

Regarding its advantages, our approach can use CNNs
as out-of-the-box feature extractors with relatively good
results. It also enables us to save resources on training, data
collection, and processing power through network pruning,
removing all other network parts that are not required to
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get to the best-performing layer. Our future work on this
approach includes investigating methods to reduce the deep
representations’ dimensionality or memory used, as well
as exploring its potential for network pruning in transfer
learning.
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