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ABSTRACT Humans possess an intrinsic ability to hide their true emotions. Micro-expressions are subtle
changes in facial muscles that are involuntary by nature and easy to hide. To address these issues, several
machine and deep learning models have been proposed in the past few years. Convolution neural network
(CNN) is a deep learning method that has widely been adopted in vision-related tasks due to its remarkable
performance. However, CNN suffers from overfitting due to a large number of trainable parameters.
Additionally, CNN cannot capture global information with respect to an input image. Furthermore, the
identification of important regions for the classification of micro-expressions is a challenging task. Self-
attention mechanism addresses these issues by focusing on key areas. Furthermore, specific transformers,
known as vision transformers are widely explored in vision-related applications. However, existing vision
transformers divide an input image into a fixed number of patches due to which local correlation of
image pixels is lost. Further, a vision transformer relies on self-attention mechanism which effectively
captures global dependencies but does not exploit the local spatial relationships in an image. In this work,
we propose a vision transformer based on convolution patches to overcome this problem. The proposed
algorithm generates c number of feature maps from input images using c filters through convolution
operation. These feature maps are then applied to a transformer model as fixed-size image patches to
perform classification. Thus, the proposed architecture leverages advantages of both convolutional layers and
transformer, and captures both spatial information and global dependencies respectively, leading to improved
performance. The performance of the proposed model is evaluated on three benchmark datasets: CASME-
I, CASME-II, and SAMM and compared with state-of-the-art machine and deep learning models, which
generated classification accuracy of 95.97%, 98.59%, and 100%, respectively.

INDEX TERMS Facial expression recognition, deep learning, micro-expression recognition, self-attention,
vision transformer.

I. INTRODUCTION
Micro-expressions (ME) are involuntary subtle facial muscle
movements which represent true emotions of a
person [1]. There are a variety of possible applications for
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micro-expression recognition (MER), including forensics,
security, surveillance, education, entertainment, and health-
care systems [2]. However, identification and classification of
ME is a challenging task due to a variety of reasons. Typically,
ME appear for a very short duration of time, i.e., 0:04 to
0:50 seconds [3]. Furthermore, ME show very subtle change
in facial muscles, due to which identification and spotting of
ME become difficult.
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Traditional machine learning methods such as local binary
patterns [4] and histogram of oriented gradients (HOG) [5],
[6], [7], depend on handcrafted features for classification.
This dependency has been avoided by the use of deep learn-
ing models. Convolutional neural network (CNN) is a deep
learningmethodwhich has recently demonstrated remarkable
performance in several vision based applications and outper-
formed both handcrafted features and shallow classifiers [8].
A deep fusion-based CNN model proposed by [9] has been
implemented for facial expression recognition, which shows
the impact of transfer learning and feature fusion on the per-
formance of the model. Similarly, CNN and transfer learning
are incorporated by [10] to determine the level of engagement
of hearing impaired and hard-of-hearing students by analyz-
ing their facial expressions and categorizing these expres-
sions as highly engaged, nominally engaged or not engaged.

CNN requires large training dataset; however, most of
the publicly available MER datasets are small in size, [11]
used a data augmentation technique for CNN to increase
the size of the facial expression datasets. Similarly, a CNN-
based MER model proposed by [12], exploits optical flow
information related to subtlemusclemovements through apex
and reference frame. Then, this information is passed to a
CNN model for classification of an emotion. In the past few
years, performance of CNN has been elevated by using it in
stream or branch based networks.

However, implementation of CNN models in MER is lim-
ited due to variety of reasons: (i) CNN requires large number
of trainable parameters (ii) CNN based models often suffer
from overfitting (iii) convolution operation only captures
local receptive field of a pixel and it is incapable of handling
global receptive field, (iv) CNN does not effectively handle
sparse spatio-temporal information, and, (v) ME consist of
subtle movements of facial muscles which are difficult to
handle.

As mentioned above, CNN is incapable of handling spatio-
temporal information. Hence, 3D CNN has been explored
by [13], [14], and [15] to address this issue for MER.
A Siamese 3D CNN (MERSiamC3D) proposed by [13] is
based on two-stage learning. The first stage applies an opti-
cal flow estimation technique to explain the spatio-temporal
information, followed by a Siamese CNNmodel. The second
stage adjusts the network parameters obtained from the first
stage. Similarly, [15] also exploits a 3D CNN in combination
with SqueezeNet. Another work proposed by [16], incorpo-
rates Squeeze-and-Excitation Networks with a 3D DenseNet
to exploit spatio-temporal features.

The ability of attention mechanism to concentrate on cer-
tain locations makes it effective. Attention mechanism is
either employed in conjunction with CNN or it replaces
certain components of CNN. Accurate detection of ME plays
a vital role in improving performance of the MER model.
Attention mechanism can be used to effectively detect the
presence of micro-expression in a video frame. A dual atten-
tion network known as LGAttNet, was proposed by [17] for

automatic detection of micro-expression. Similarly, micro-
expression analysis network (MEAN) proposed by [18],
is used for simultaneous spotting and recognition of ME.

In this work, effective and accurate classification is per-
formed by exploiting vision transformer which depends on
self-attention mechanism. In the past few years, vision trans-
formers have attained remarkable results on vision-related
classification tasks with substantially fewer computational
resources. A simple vision transformer typically divides an
image into fixed size patches. These non-overlapping patches
form a linear embedding which is provided to the vision
transformer. This architecture captures global dependencies
but cannot capture spatial information. On the other hand, the
proposed vision transformer architecture takes convolution
feature maps as input patches; these feature maps contain
spatial information. These feature maps are then provided as
the input patches for the subsequent transformer layers. Thus,
the proposed architecture leverages advantages of both con-
volutional layers and transformer and captures both spatial
information and global dependencies for improved perfor-
mance. Due to its remarkable performance, the proposed
model can have a wide variety of real-life applications across
different domains. For instance, the proposed model can
be used for early detection and diagnosis of mental health
issues such as anxiety and depression. It can also be used
in security and law enforcement, where, security personnel
can improve their ability to recognize possible threats by
identifying ME associated with suspicious behavior. Fur-
ther, MER can also play a very vital role for applications
based on human-computer interaction and cross-cultural
studies.

The major contributions of this paper are as follows:
1) We propose a deep learning framework for MER

through a vision transformer with low computational
cost.

2) Conventional vision transformers divide input image
into fixed-sized patches; due to which it becomes dif-
ficult for the model to exploit the local correlation of
pixels. The proposed model addresses this issue by
maintaining the correlation of the target pixel with
its neighbors through a local receptive field by using
convolution patches.

3) We exploit global as well as local correlation in an
image through a vision transformer and convolution
patch respectively, which improves the overall classi-
fication performance of the model.

4) Extensive experiments have been performed on three
benchmark datasets and comparison with existing
state-of-the-art models validates the effectiveness of
the proposed model.

The remaining sections of the paper are arranged as follows.
Section II discusses the related work. Section III presents the
proposed vision transformer for MER. Section IV provides
a description of the datasets, experimental setup, and hyper-
parameters for training the model, results, and comparison
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FIGURE 1. Flattening of image patches in conventional vision transformer.

of the proposed model with current state-of-the-art models.
Conclusions are provided in Section V.

II. RELATED WORKS
A. MICRO-EXPRESSION RECOGNITION
Based on input data, MER models can be broadly cate-
gorized into single-image-based and sequence-image-based
systems. Datasets such as AffectNet [19] and FER2013 [20]
are single-image-based datasets, whereas, CASME-I [21],
CASME II [22], SAMM [23], and SMIC [24] are sequence-
image-based datasets. Sequence-image-based datasets are
widely adopted for spotting and recognition of micro-
expressions because they provide better insight into data.
However, primitive sequence-image-based datasets such as
USF-HD [25] and Polikovsky’s [26] are not adopted at
present because such datasets contain image sequences
of posed expressions, and hence they cannot be used
for practical implementations. Whereas, state-of-the-art ME
datasets contain spontaneous image sequences captured in a
laboratory-controlled environment. Due to the availability of
these datasets, research in the MER domain has significantly
accelerated.

Primitive approaches for MER rely on hand-crafted and
low-level features such as local binary pattern (LBP) [4],
gradient features and optical flow. Local binary pattern from
three orthogonal planes (LBP-TOP) is a commonly used
feature for MER which considers horizontal and vertical
directions. However, LBP-TOP cannot capture muscle move-
ments in oblique direction which is essential for MER.
To address this problem, [27] proposed a new feature called
LBP-FIP which could easily capture dynamic textures from
images calculated through five intersecting planes. Sim-
ilarly, [28] proposed an invisible emotion magnification
algorithm (IEMA) which effectively magnifies the strength
of facial muscle movement for better classification of micro-
expression.

However, it is difficult to accurately interpret and repre-
sent ME through low-level features. Thus, a combination of
several low-level features forming high-level features can be
exploited for a better representation ofME.High-level feature
representations can be obtained by deep learning models
such as CNN. At an early stage, researchers exploited only
spatial features [29], [30] through CNN, however, studies
demonstrate that MER involves facial movement which can
be captured through long image sequences. Thus, state-of-
the-art MER models exploit both spatial as well as temporal
information. A Deep 3DCNN-ANN model proposed by [31]
performs micro-expression recognition by learning spatio-
temporal features from the image sequences by combining
deep 3DCNN and ANN through a feature called visual
associations. However, it has been observed that CNN can-
not capture the relationship of an entity with its parent as
an image. To address this issue, [32] proposed CapsuleNet
based on agreement routing mechanism for MNIST dataset.
Inspired by its success, [33] experimented CapsuleNet for
MER model on SMIC, CASME-II and SAMM datasets.
It has been observed that training a model on a particular
dataset may not necessarily perform well on other dataset.
Thus to experiment with cross-dataset MER, [34] proposed a
dual-inception network which exploits horizontal and vertical
components extracted through optical flow.

B. TRANSFORMERS
Transformer model was originally designed for text based
applications [35], where it has exhibited remarkable results.
Inspired by its success, it has also been experimented in vision
tasks [36]. Vision transformers (ViT) take image as an input
and represent it as a series of fixed size image patches as
shown in Figure 1. The obtained image patches are flattened
and subjected to lower dimensional linear embedding. Due to
flattening of patches, the correlation between adjacent patch
might be lost. Therefore, positional embedding is added to
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keep the correlation information intact. Furthermore, vision
transformers rely on self-attention mechanism that provides
global receptive field, unlike CNN, which yields local recep-
tive field.

Considering the limitations of CNN models, vision trans-
former has been widely adopted for MER models. A late-
fusion based vision transformer proposed by [37], exploits
motion features through optical flow. Late-fusion and optical
flow mechanisms allow the model to deal with small ME
datasets. Similarly, a muscle motion-guided network pro-
posed by [38], exploits the subtle muscle motion features for
accurate classification of ME through a two branch model.
The first branch comprises of a continuous attention block,
which focuses on modeling muscle movement, whereas, the
second branch comprises of a position calibration module
which consists of a vision transformer.

Studies show that MER is difficult due to the fact that
they are highly dynamic in nature and appear on local-
ized facial regions. To solve this problem, [39] proposed
a sparse transformer which exploits multi-head attention
for sparse representation of emotions appearing in local-
ized facial regions, whereas, temporal attentional fusion is
employed to deal with dynamic nature of ME. Further-
more, studies [40] show that combination of local and global
spatio-temporal pattern can improve classification accuracy
of MER. To address the spatial patterns, a spatial encoder is
employed, whereas, a temporal aggregator models the tem-
poral patterns.

Another work proposed by [41], exploits two swin vision
transformers F_transformer and S_transformer placed in two
parallel streams. F_transformer exploits short term motion
dynamics through optical flow sequences, whereas, long-
term motion dynamics are utilized through S_transformer.
Later, feature fusion is performed on features obtained from
these two streams for classification of emotions.

However, the existing vision transformer models for MER
divides the input image into n patches, due to which the
local correlation of pixels with its neighboring pixels is lost.
To address this issue, in this work, we exploit feature maps
generated by convolution operation. Furthermore, convolu-
tion operation helps to capture local receptive field, and
self-attention mechanism in vision transformer allows the
model to capture global receptive field.

III. PROPOSED METHODOLOGY
Existing vision transformer models [36], [42] create fixed
size patches from input image, which are flattened and
provided to transformer for classification. However, this tech-
nique limits the performance of vision based algorithms,
because, image pixels exhibit correlation with their neighbor-
ing pixels. Dividing images into fixed size patch deteriorates
the correlation with neighboring pixels. Thus, a major lim-
itation of this technique is that it cannot handle correlation
among pixels in an image. To address this issue, the proposed
algorithm generates c feature maps by applying c filters
on an input image. These feature maps are considered as

fixed size image patches and passed to transformer model for
classification.

A. PRE-PROCESSING AND CONVOLUTION PATCH
Figure 2 presents detailed network architecture of the pro-
posed model. First, the input sequence frames are provided to
the network through a pre-processing stage. The input frames
are subjected to pre-processing operations such as horizontal
flip, normalization and resize to 256 × 256 pixels. After pre-
processing, the images of 3 × 256 × 256 pixel dimension are
generated. Next, to exploit local correlation, two subsequent
convolution operations are applied. First convolution opera-
tion takes images of 16 × 3 × 256 × 256 pixel dimension,
where, 16 is the batch size and applies 64 filters with stride
equivalent to patch size i.e., 16. Then, Gaussian error linear
unit (GELU) activation function proposed by [43] is applied,
where GELU is computed by Equation 1.

GaussianErrorLinearUnit(z)

= 0.5 × z× (1 + Tanh(

√
2
π

× (z+ 0.44715 × z3))) (1)

Thereafter, another convolution operation is applied which
takes 64 feature maps and applies 3 filters with stride 1. Next,
GELU activation function is applied to the obtained feature
maps of dimension 16 × 3 × 256 × 256, which are reshaped
to obtain 16 × 256 × 256 × 3 feature maps.

B. VISION TRANSFORMER
Conventional vision transformer models divide an image of
dimension h × w pixels into n × m number of fixed size
patches (as shown in Figure 1), where each patch is of
h/n × w/m pixel dimension. Thereafter, these patches are
flattened and passed through linear projection.

However, in the proposed work, we exploit local corre-
lation of images through convolution operation, shown in
Figure 2. Here, feature maps of 16 × 256 × 256 × 3 dimen-
sion are flattened to form 16 × 256 × 768 feature vector.
To maintain the order of sequence, we add positional embed-
ding and perform reshape operation to generate feature vector
of shape 257× 16× 256. It is further passed to six subsequent
transformer encoders. The final feature vector is of shape
257 × 16 × 256, passed to multi-layer perceptron (MLP)
head for classification of emotions. Figure 3 illustrates a
single transformer encoder, which incorporates Multi-head
attention, which is further based on self-attentionmechanism.

Attention mechanism was introduced in encoder-decoder
block of a neural sequence transduction model by [44].
It enable content-based summary of data from a variable
length sentence. Attention mechanism is widely adopted
because it has the ability to learn to focus on key areas. Self-
attention mechanism also called intra-attention [35], allows
the model to identify the inputs we should pay more atten-
tion to. It is used by [45] for facial expression recognition
to deal with intra-class variation and inter-class similarity.
It computes a weighted average of sequence elements where
the weights are dynamically determined using the element
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FIGURE 2. Detailed architecture of proposed model for MER using vision transformer.

FIGURE 3. Transformer encoder.

keys and an input query. Attention mechanism rely on three
feature vectors, key, query and value. In Figure 3, Query
feature vector (represented by Q) attempts to identify the
sequence-specific information the model is searching for.Key
vector (represented by K ), describes what the input element

is offering. The Value vector (represented by V ) is the one
that we intend to average over. In this work, we exploit scaled
dot product attention which takes Query ∈ RSL×dk , Key ∈

RSL×dk and Value ∈ RSL×dv , where SL is sequence length,
dk and dv are hidden dimensionalities. The scaled dot product
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FIGURE 4. Sample images of (a) CASME-I (b) CASME-II (c) SAMM datasets.

FIGURE 5. Unbalanced nature of emotion samples in datasets.

attention is computed by Equation 2.

Attention(Query,Key,Value)

= Softmax(
QueryKeySL

√
dk

)Value (2)

where, 1
√
dk

is the scaling factor, used to monitor the variance
of attention values. In Equation 2, Query and Key are two
vectors with σ 2 variance, when a product operation is applied
on Query and Key, it generates a scalar with dk times higher
variance. Thus, there is a need to scale down the variance back
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TABLE 1. Description of datasets (a) CASME-I, (b) CASME-II, and
(c) SAMM.

to σ 2, otherwise, softmax will make one random element
saturate to 1 and other elements saturate to 0. Therefore,
we use dk for scaling, to maintain the optimal variance of
attention values.

A network can pay attention to a particular sequence with
scaled dot product attention. However, it does not allow
sequence elements to attend to different features. This can
be achieved through multi-head attention. Here, key, query,
and valuematrices are converted into h sub-keys, sub-queries,
and sub-values respectively. Each of these sub-components
is then independently passed through a hi scaled dot prod-
uct attention with weight matrices WQ

i and WK
i . Thereafter,

these h heads are concatenated and it generates final weight
matrixWO.

Multi− head(Q,K ,V ) = Concat(h1, h2, . . . , hh)WO (3)

where, hi = Attention(QWQ
i ,KWK

i ,VWK
i )

WQ
1...h ∈ RD×dk (4)

WK
1...h ∈ RD×dk (5)

WV
1...h ∈ RD×dv (6)

WO
∈ Rh·dk×dout (7)

where, D is the input dimensionality.

IV. EXPERIMENT AND RESULTS
A. DATASETS
Performance of the proposed model has been tested on three
benchmark datasets CASME-I [21], CASME-II [22], and
SAMM [23]. Sample images of these datasets are shown
Figure 4. Table 1 describes detail of these datasets on the basis
of number of video samples, subjects, ethnicity, frames per
second (FPS), resolutions (in pixels) and number of emotion
labels. Figure 5 illustrates unbalanced nature of emotion sam-
ples in datasets. Furthermore, class-wise sample distribution
is illustrated in Table 2. Video sequences containing the onset
frame, progressing toward the apex emotion, and then ending
with the offset frame are used to train the model.

B. EXPERIMENTAL SETUP AND TRAINING
HYPERPARAMETERS
The proposed model is trained using Nvidia A100 provided
by Google Colab Pro+. Adam optimizer is used for opti-
mization of model weights, learning rate is set to 0.0003 and
batch size is 16. We initially tuned the number of heads for
training the proposed vision transformer model; to ensure a

TABLE 2. Number of frames against each emotion for (a) CASME-I,
(b) CASME-II, and (c) SAMM datasets, used for training the proposed
model.

TABLE 3. Comparison of number of heads in transformer encoder.

fair comparison, same number of heads is used for ablation
experiments.We have investigated the model based on 1, 2, 4,
8, and 16 heads. As shown in Table 3, it can be observed that
the selection of 8 heads outperformed other variants. Thus,
8 heads are selected in multihead attention module of the
transformer encoder for all the experiments. Other parameters
used in the proposed transformer encoder are listed in Table 4.
To avoid overfitting of our model, we have exploited dropout
regularization technique and layer normalization. In our pro-
posed model, we have chosen layer normalization technique
over batch normalization. The reason is that, in batch nor-
malization, each feature in the mini-batch is independently
normalised, whereas, layer normalisation normalises each
input in the batch across all features. Further, we compare our
proposed model on the basis of number of trainable param-
eters and GFLOPS as shown in Table 5. It can be observed
that the proposed model outperforms existing state-of-the-art
transformer and CNN based models.

C. RESULTS AND DISCUSSION
1) PERFORMANCE ANALYSIS
The proposed model is trained and tested on three bench-
marks datasets i.e., CASME-I, CASME-II and SAMM. The
model is evaluated in terms of classification accuracy, pre-
cision, recall and F1-score. The training and validation
accuracy of CASME-I, CASME-II and SAMM datasets are
shown in Table 6. The validation accuracy of SAMM dataset
is 100%, which raises concerns about potential overfitting.

In order to rule out this possibility, we have used layer
normalization (LayerNorm) as a regularization technique,
as shown in Figure 3, and also applied dropout technique with
value 0.2 to mitigate overfitting in our proposed model. For
further analysis, we have plotted the training and validation
curves as mentioned in Figure 10 (where, x-axis represents
epochs and y-axis represents accuracy), to closely monitor
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FIGURE 6. Training loss curve for proposed convolution patch based vision transformer.

FIGURE 7. Validation accuracy curve for proposed convolution patch based vision transformer.

FIGURE 8. Validation loss curve for proposed convolution patch based vision transformer.

FIGURE 9. Confusion Matrices obtained using proposed vision transformer for CASME-I, CASME-II and SAMM datasets respectively.

the model’s performance. Overfitting can be measured by
observing a widening gap between the obtained training
and validation curve. However, in our case, the training and

validation curves exhibit a consistent alignment without a
noticeable gap between them. Hence, it can be inferred that
the model does not suffer from overfitting.
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TABLE 4. Parameter values for Transformer encoder.

TABLE 5. Comparison of different models on the basis of number of
parameters and GFLOPS.

FIGURE 10. Training and Validation curve on SAMM dataset.

TABLE 6. Training and Validation accuracy for CASME-I, CASME-II, and
SAMM datasets.

The obtained evaluation metrics are shown in Table 7, 8,
and 9 for CASME-I, CASME-II and SAMMdatasets, respec-
tively. Because of the severe class imbalances in CASME I
and SAMM datasets, the F1-Score is more reliable while
comparing performance of the proposed model. Figures 6 - 9
depict training loss curve, validation accuracy curve, valida-
tion loss curves and confusion matrix, respectively, where,
number of iterations during training or validation are repre-
sented by x-axis, whereas, y-axis represents loss in Figures 6,
8 and accuracy in Figure 7. Validation accuracy and validation
loss curves of CASME-II datasets in Figures 7 (ii) and 8 (ii)
depict higher fluctuations as compared to other datasets.
This might be due to lower number of training samples in

CASME-II dataset. Figures 7 (iii) and 8 (iii) show less
fluctuations for SAMM dataset as compared to CASME-II.
However, despite of large number of samples, fluctuations
in SAMM are higher than CASME-I dataset which is due to
unbalanced training samples in SAMM dataset.

Table 7 shows evaluation metrics for CASME-I dataset.
Based on evaluation of F1-Score, it can be inferred that
the proposed model correctly classifies contempt and fear
emotions, which contain least number of training samples
i.e., 52 and 63 respectively as compared to other emotions
(shown in Table 2). Thus, it can be concluded that the pro-
posed model addresses the issue of smaller training samples
required by state-of-the-art deep learning models. However,
sadness emotion also contain fewer number of training sam-
ples i.e., 79, but the model could correctly classify only 75%
samples. Figure 9 (a) shows confusion matrix obtained for
the proposed model on CASME-I dataset. It can be observed
that 11 samples of sadness emotion are wrongly classified as
disgust. This is due to low inter-class variation among these
two classes. Emotions such as disgust (802), happiness (234),
repression (777), surprise (393) and tense (1495) generate
F1-scores: 93%, 94%, 99%, 91%, and 98% respectively. The
lower recognition rate might be because of overfitting of the
model for emotions with higher number of training samples.
The overall classification accuracy of the proposed model on
CASME-I dataset is 95.97%.

Table 8 shows evaluation metrics for CASME-II dataset.
It can be observed, that the proposedmodel generates 98.59%
classification accuracy for CASME-II dataset. The model
correctly classifies fear (121), and sadness (108) emotion.
F1-score for repression (251), disgust (373), happiness (266),
other (298), and surprise (241) are 99%, 98%, 98%, 98%, and
98% respectively. It can be observed that as the number of
samples increases, the performance of the model drops for
specific emotions. The reason behind this might be overfitting
of the model.

Table 9 shows evaluation metrics for SAMMdataset. It can
be observed, that the proposedmodel generates highest possi-
ble accuracy i.e., 100% for SAMMdataset. It is because of the
availability of large number of training samples. Moreover,
Table 2 shows that SAMM dataset is highly unbalanced,
still the proposed model outperforms existing state-of-the-art
models. Thus, it can be inferred that our model can easily
handle unbalanced nature of the training datasets.

2) COMPARATIVE ANALYSIS
We contrast our proposed vision transformer model based
on convolution patches with a number of state-of-the-art
methods. We have compared the proposed transformer model
with various machine and deep learning algorithms such as
principal component analysis (PCA), CNN, CNN-LSTM,
graph-CNN, and transformer models. From Tables 10-12,
it can be observed that the proposed model outperforms
several advance deep learning models and generates 95.97%,
98.59%, and 100% classification accuracy for CASME-I,
CASME-II, and SAMM datasets respectively.
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TABLE 7. Classification report over CASME-I dataset for 8 Classes.

TABLE 8. Classification report over CASME-II dataset for 7 Classes.

TABLE 9. Classification report over SAMM dataset for 8 Classes.

TABLE 10. Comparison of the proposed method with existing models for
CASME-I dataset in terms of classification accuracy.

A machine learning method proposed by [50], addresses
two important characteristics of ME: low facial move-
ment intensity and short duration of ME. The first issue
is dealt by exploiting robust PCA and the sparse nature
of ME in temporal domain is addressed by using local
spatio-temporal directional features. This method generates
63.41% classification accuracy on CASME-II dataset. How-
ever, deep learning models such as CNN and LSTM generate

TABLE 11. Comparison of the proposed method with existing models for
CASME-II dataset in terms of classification accuracy.

TABLE 12. Comparison of the proposed method with existing models for
SAMM dataset in terms of classification accuracy.

remarkable performance as compared to machine learning
models. Thus, to show a fair comparison we have compared
our proposed model with state-of-the-art CNN models also.
A 3D flow CNN proposed by [14], exploits a 3D convolu-
tion operation to extract spatio-temporal feature information
along with optical flow. In this method, overfitting is avoided
by using dropout mechanism and batch normalization tech-
nique. This method generates 59.11% classification accuracy
on CASME-II dataset. To identify and analyse spatio-
temporal deformations ofME, a recurrent CNNwas proposed
by [51] which generates 80.30% and 78.60% classification
accuracy on CASME-II and SAMM datasets, respectively.
Another category of recurrent neural network, known as
long short term memory in conjunction with CNN was pro-
posed by [29], generates 47.30% classification accuracy on
CASME-II.

A vision transformer based model, muscle motion-guided
network (MMNet), proposed by [38], exploits a two-branch
network. The main branch of MMNet extracts motion-
pattern related features through a continuous attention block,
whereas a transformer encoder is exploited as a sub-branch
of the model to generate positional embedding. Thereafter,
the positionl embedding is added to motion-pattern features
to generate 88.35% and 80.14% classification accuracy for
CASME-II and SAMMdatasets, respectively. Another vision
transformer model based on optical flow and late fusion, pro-
posed by [37], generates classification accuracy of 70.68%
on CASME-II dataset.
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V. CONCLUSION AND FUTURE WORK
When an existing vision transformer is exploited for micro-
expression recognition, it divides the input image into small
patches and a sequence of patch embedding is created by
linearly embedding each patch. Due to this approach, the
model may not exploit the local spatial relationships present
in an image. To address this issue, in this work, a novel
vision transformer based on convolution patches for micro-
expression is proposed, which captures local receptive field
through patches generated by convolution operation, and
global receptive field is captured through a vision transformer
based on self-attention mechanism.

While implementing the proposed network architecture,
the following problems were handled: (i) Due to a large num-
ber of trainable parameters, self-attention-based operations,
and long training time, high-performance computational
resources are needed for the training of a vision transformer,
thus, Nvidia A100 is utilized for training of the model which
was provided by Google Colab Pro+, (ii) existing deep learn-
ing models are prone to over-fitting, thus we have employed
layer normalization and dropout mechanism to avoid over-
fitting which is usually caused by limited training data. The
performance of the model is evaluated in terms of standard
evaluation metrics such as precision, recall, F1-score, and
classification accuracy. It has been demonstrated that the
proposed model outperforms several state-of-the-art machine
and deep learning models on three benchmark datasets i.e.,
CASME-I, CASME-II, and SAMM.

However, experiments show that the performance is still
limited due to the following factors: (i) the existing micro-
expression datasets are highly unbalanced in nature. It is
evident from Table 2, CASME-II dataset is fairly balanced
when compared to CASME-I dataset, thus, CASME-II gener-
ates better classification accuracy of 98.59% as compared to
CASME-I i.e., 95.97%. Hence, it can be inferred that sample
distribution plays a significant role in the performance of
the model. It is to be noted that SAMM dataset is also not
balanced (as shown in Table 2), but it contains large number
of image samples for training, as compared to CASME-I
and CASME-II, leading to the best possible classification
accuracy i.e., 100%. Therefore, it is implied that large number
of training samples can improve the performance of themodel
and help the model to overlook the unbalanced nature of a
dataset. Thus, in future, we will address this issue by using
data augmentation technique to generate a large number of
samples for CASME-I and CASME-II datasets. Most of the
existing MER datasets are laboratory controlled which limits
the implementation of MER in real-life applications, thus,
there is a need of in-the-wild datasets which contain a wide
variety of images of individuals belonging to different age
groups, gender, races, and cultural background. The existing
deep learningmodels can only perform emotion classification
based on pre-defined classes, to address this issue, deep
continual learning can be explored which can identify an
unknown emotion category [66].
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