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ABSTRACT Solar and Wind energy based Renewable Energy Systems (RES) are one of the most
rapidly growing technologies as a means of producing clean electrical energy. Grid integration of RES
involves various types of power electronics-based converters and inverters. These electronic devices produce
harmonics at their terminals, which are transferred to the grid. Harmonics forecasting is one of the techniques
used to design harmonics mitigation devices in order to reduce harmonics. The core objective of this work
is to develop a hybrid forecasting model to produce accurate and reliable harmonics forecasts for RES. Six
novel hybrid forecasting models are proposed in this work to perform harmonics forecasting. These models
are based on different combinations of multi-layered Artificial Neural Networks (ANN) and Adaptive Neuro
Fuzzy Inference System (ANFIS). The forecasting models proposed are two-staged architecture. Three
hybrid forecasting models (model-1, 2 & 3) use ANN in the first stage and ANFIS in the second while the
other three models (model-4, 5 & 6) are designed vice versa of prior. Two renewable generators are used to
generate harmonics. The first generator combines Double-Fed Induction Generator (DFIG) driven by wind
turbine with solar photovoltaic (PV) panels whereas, the second generator combines wind turbine driven
Permanent Magnet Synchronous Generator (PMSG) with solar panels. The purpose of these generators is to
produce voltage and current waveforms using real-world data (Wind Speed & Solar Irradiation). Harmonics
are extracted from these waveforms which are used to create training and testing datasets for the forecasting
models. Harmonics are forecasted using the six forecasting models proposed and results are validated by
comparing them to benchmark work done in the literature. The results show that model-3 and model-6 are
the best and most consistent performing models.

INDEX TERMS Harmonics, renewable energy systems, power quality, artificial neural networks, advanced
neuro fuzzy inference system.

ABBREVIATIONS
DFIG Double Fed Induction Generator
PMSG Permanent Magnet Synchronous Generator
PV Photovoltaic
RES Renewable Energy Systems
EPS Electrical Power System
PQ Power Quality
PCC Point of Common Coupling
VSC Voltage Source Converter
THD Total Harmonics Distortion
TDD Total Demand Distortion
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ANFIS Adaptive Neuro Fuzzy Interference Systems
ANN Artificial Neural Network
IEC International Electrotechnical Commission
IEEE Institute for Electrical and Electronics

Engineers
FFT The Fast Fourier Transform
RMSE Root Mean Square Error
MAE Mean Absolute Error
MLPNN Multilayer Perceptron Neural Network

(MLPNN)
NARX Nonlinear Autoregressive with Exogenous

inputs
LMS Least Mean Square
NLMS Normalized LMS
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VLLMS Variable Leaky Least Mean Square
UDR Univariate Dimension Reduction
LSTM Long Short-Term Memory
JRC Joint Research Centre
SLP Single Layer Perceptron
MLP Multilayer Perceptron
RNN Recurrent Neural Network
CNN Cascaded Neural Network
FIS Fuzzy Inference System
THDV Voltage Total Harmonics Distortion
THDI Current Total Harmonics Distortion

I. INTRODUCTION
There is a growing need for electrical energy produced
from renewable energy sources, making it one of the most
crucial issues to address. The increasing adoption of renew-
able/sustainable energy production technologies on the Elec-
trical Power System (EPS) has given rise to novel concepts
like smart grids andmicrogrids [1]. One of the key difficulties
in achieving stability in EPS, which leads to a decline in its
Power Quality (PQ), is the unpredictable and uncontrollable
nature of these Renewable Energy Systems (RES) in terms of
power production. With limited controllability, unfavorable
power flow patterns, and non-sinusoidal current and voltage
waveforms, RES differ from traditional power sources in sev-
eral ways. Besides, grid integration of RES involves various
types of power electronics-based converters and inverters [2].
At their terminals, these electronic devices generate both
current and voltage harmonics, which are then sent to the
rest of the grid [3], [4]. Harmonics can adversely affect the
life of connected equipment by overheating transformers or
causing malfunction in the protection systems beside other
factors [5], [6]. According to IEEE 519-2014 recommenda-
tions [7] and IEC 61000 standards [8], [9], [10], harmonics
are one of the most crucial features that must be kept to a
minimum to ensure network power quality. Several indices,
such as Total Harmonics Distortion (THD) and Total Demand
Distortion (TDD), which are used for voltage and current
harmonics, have been developed to measure the degree of
distortions present in the original signal [11]. For instance,
according to IEEE 519-2014, the voltage THD in the Point
of Common Coupling (PCC) must be less than 5% limit.
In order to reduce harmonics, harmonics forecasting is one
of many techniques used to design harmonics mitigation
devices [12], [13].

Harmonics forecasting involves predicting the future
behavior of time series data that exhibits periodic patterns or
harmonics. A study of literature reveals that efforts are being
made to forecast harmonics as it could serve as an important
input to improve power quality. One of such application is
filtering which could use predicted harmonics to refine its
design in order to enhance their performance. Researchers
have used a variety of methods to achieve accurate pre-
diction. The Adaptive Neuro Fuzzy Interference Systems
(ANFIS) andArtificial Neural Network (ANN) are among the

techniques used by authors to produce harmonics forecasts.
The aim of this work is to develop and evaluate a hybrid
forecasting model that effectively captures the complex har-
monics patterns in time series data and provides accurate
predictions. The research will focus on integrating a fore-
casting model that combines the strengths of ANFIS and
multi-layeredANN to improve the accuracy and robustness of
harmonics forecasting. The integrated ANFIS-ANN models
is expected to effectively capture the complex harmonics
patterns in time series data and provide accurate predictions.

II. BACKGROUND
Traditionally, utility companies used to know the precise
industry of the customers who possessed the dominant
harmonics sources. As a result, harmonics problems were
corrected by using a passive harmonics filter at the Point
of Common Coupling (PCC) of major distorting loads [14],
[15], [16]. The harmonics in the power system has been
observed to rise as a result of the grid integration of
renewable energy sources, which uses a variety of power
electronics-based converters [18], [19]. Hence, in order to
determine the necessary compensation to prevent the effects
produced by harmonics and to anticipate and alleviate prob-
lems brought on by their existence, utilities must be able to
forecast the projected impact of harmonics. In order to main-
tain power quality and guarantee harmonics levels within
acceptable bounds, authors in literature have tried to apply
harmonics forecasting.

A harmonic forecasting method based on the Variable
Leaky Least Mean Square (VLLMS) algorithm was put forth
by Ray et al. in [20]. To avoid parameter drift, the sug-
gested method employed a leak compensating technique.
To speed up convergence in this process, the step size was
also changed. Also, a real-time power system was simulated
using several examples to show how the suggested approach
is superior to othermethods provided in [20]. Ivry et al. in [21]
looked at how uncertainty affected harmonics prediction in a
power system with many Voltage Source Converters (VSCs).
The level of harmonics distortion of the VSCs observed at the
PCC to the grid was predicted using the Univariate Dimen-
sion Reduction (UDR) approach. The proposed prediction
approach ensured complete interactions between the harmon-
ics sources (VSCs) and the entire power system for predicting
the THD at the PCC. Hussam et al. in [22] developed the
idea of adaptive filters that use real-time harmonics prediction
algorithms by adopting the Least Mean Square (LMS), Nor-
malized LMS (NLMS), and Recursive Least Square (RLS)
approaches. To further reduce the time delay caused by the
harmonic information collecting process, this was used in an
active filter.

Based on information from a limited number of smart
meters, Rodríguez-Pajarón et al. in [23] presented an
approach for estimating voltage THD for Low Voltage bus-
bars of residential distribution feeders. Various voltage THD
forecasting methods, including feed-forward and autoregres-
sive Artificial Neural Networks (ANN), were used. With this
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method, new capabilities can be added to existing monitoring
tools to predict harmonics distortion in the future. A network
of advanced smart meters with a small number of thesemeters
was shown to be sufficient for precise harmonics estima-
tions [23]. In addition, Mori and Suga in [24] suggested a
technique for forecasting power system harmonics voltages
based on artificial neural networks (ANN). Recurrent neural
networks were used to manage harmonics dynamics (RNN).
Four RNNs, notably the Jordan, Elman, Noda, and Nagao
models as well as a fourth model that included a context layer
between the output and hidden layers as a separate recurrent
network, were used to forecast the fifth harmonics voltage.
It was discovered that the Elman’s technique outperformed
the other models [24].

In order to track the impacts of the current harmonics
produced by PV systems, Mori and Suga in his research [24]
introduced long-term current harmonics distortion predic-
tion models. The suggested models employ a Multilayer
Perceptron Neural Network (MLPNN) to forecast current
harmonics. The 10-kW PV system’s PCC and the distribution
network’s data from a year’s worth of power quality measure-
ments, as well asmeteorological information (solar irradiance
and ambient temperature) gathered at the test site, were used
to train the models. Six different models were built, tested,
and certified, varying in the number of hidden layers and
input parameters. The fifth, seventh, eleventh, and thirteenth
were predicted using a three-phase, grid-connected PV plant
inverter using MLPNN. The results of the MLPNN model
prediction demonstrated that adding the third input parameter
(time of day) to the models improved performance to a small
extent [24].

Panoiu et al. in [26] presented a study on the modelling and
prediction of total harmonics distortion of current emerging in
an electric arc furnace’s medium voltage installation. Adap-
tiveNeuro Fuzzy Interference Systems (ANFIS) inMATLAB
are used for modelling. According to the findings, ANFIS has
a good understanding of how to adjust THD. As a result of
the system’s ability to read 800 data points, it can provide
THD variation for another 400 examples with a very low
error rate. It was also attempted to train the system with
varying numbers of samples from all the samples. However,
the system fails to model appropriately when the number
of samples used in training is less than the number used in
testing [26].

Shengqing et al. [27] proposed the Hybrid Active Power
Filter (HAPF) harmonics current prediction methods based
on Empirical Mode Decomposition (EMD) – Support Vec-
tor Regression (SVR) theory to solve the microgrid power
quality problem. This strategy first explores harmonics cur-
rents for each harmonics using EMD, and then predict the
next step harmonics currents of different times using SVR’s
varied kernel functions, and finally the predicted value of
each harmonics weighted summation was determined. The
simulation results demonstrated the EMD decomposition
for all harmonics for harmonics current and the usage of

different kernel functions in SVR to predict harmonics cur-
rents at the next step, and finally, the predicted value of each
harmonics weighted summation. In conclusion, the author
established that by adopting this combination of EMD-SVR
the harmonics currents at the next time step could be accu-
rately predicted, resulting in harmonics current minimum
error compensation [27].

Long Short-Term Memory (LSTM) deep learning was
employed by Kuyunani et al. [28]. In order to train the net-
work, 8103 samples of voltage harmonics from the Jeffreys
Bay Wind Farm in the Eastern Cape Province were used
in the study. In two steps, the proposed approach collected
important data from voltage harmonics signals. To determine
the mean voltage amplitude, moving window segmentation
was employed. Based on the retrieved voltage attributes, the
prediction of voltage harmonics production using LSTMwas
made. The LSTM model predicted the following 3800 sam-
ple mean values with a low Root Mean Square Error
(RMSE) [28].

Hatata and Eladawy [29] used Nonlinear Autoregressive
with Exogenous inputs (NARX) neural network in their
research in order to anticipate the load current harmonics
introduced into electric power systems. The suggested tech-
nology was used on a micro grid at the Khalda – Main
Razzak power station in west Egypt, which is a petroleum
site. The test nonlinear load was an Electrical Submersible
Pump, driven by an induction motor and controlled by a
Variable Speed Drive. In their work, they explained the pro-
cess for developing the suggested NARX network to simulate
nonlinear loads and calculate their THD of currents. The
intended network was tested using both simulated pure sinu-
soidal voltage waveform and standalone measured voltage
with the aim of finding the actual harmonics current of the
load and the nonlinearity of each load. It was found that the
recommended NARX method was faster and more accurate
than the Recurrent Neural Network (RNN)-based strategy by
contrasting it with the latter [29].

Pang [30], in their study, developed amethod of Stack Auto
Encoder (SAE) Neural Network-based short-term harmonics
forecasting and evaluation affected by electrified trains on the
power grid. The goal of harmonics forecasting was achieved
by the findings, and the harmonics value was assessed using
the techniques of harmonics assessment. It offers a theoretical
frame of reference for the harmonics analysis of the impact
of the railroad, which can help enhance the power quality in
the power network.

Hamed [31], in his study offers a statistical framework for
examiningmodal behaviour, trend extraction, and forecasting
based on Dynamic Harmonics Regression (DHR). Synthetic
and observational data were both used to evaluate the model’s
performance. Wind power generation measurements were
used to test the practical applicability of this technique under
diverse data gathering settings. The forecasting function of
the DHR model, was shown to be a useful tool which could
compete with other techniques already in use, exhibiting a
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low error in forecasting data that can be decreased by an
appropriate selection of the moving window.

A summary of literature review discussed is presented
in Table 1 describing the strengths and weaknesses of the
forecasting models discussed. In continuation of the literature
review presented, the core objective of this work is to develop
a forecasting model for accurate and reliable harmonics fore-
casting. To achieve this, six hybrid forecasting models are
proposed, which are constructed by a combination of Artifi-
cial Neural Network (ANN) structures and Advanced Neuro
Fuzzy Inference System (ANFIS). As a first step, two hybrid
generator models are utilized to produce current and voltage
harmonics. The first hybrid model is based on using a Doubly
Fed Induction Generator (DFIG) driven via a wind turbine
with Photovoltaic panels (Wind DFIG-PV). The other model
is a hybrid of wind and photovoltaic using Permanent Magnet
Synchronous Generator (PMSG). After getting output wave-
forms, harmonics are extracted from the data which forms
datasets for training and predicting harmonics by using the
proposed forecasting models. Furthermore, following section
provide rationale to construct hybrid models by combining
ANN and ANFIS models for this work.

III. RATIONALE TO BUILD HYBRID MODEL COMBINING
MULTILAYERED-ANN WITH ANFIS FOR HARMONICS
FORECASTING
Harmonics forecasting is an important task in various fields
most importantly in improvement of power quality and grid
integration of renewable energy generators. The objective is
to predict the behaviour of harmonics components to serve as
inputs for RES integration to the grid. To improve the accu-
racy and reliability of harmonics forecasting, a hybrid model
that combines multilayered artificial neural networks (ANN)
with adaptive neuro-fuzzy inference systems (ANFIS) can
be considered. This approach offers several benefits and
provides a robust solution to harmonics forecasting prob-
lems. The rationales behind building such a hybrid model is
discussed as follows:

A. COMPLEMENTARY STRENGTHS OF ANN AND ANFIS
Artificial neural networks (ANNs) are powerful computa-
tional models capable of learning complex nonlinear relation-
ships between inputs and outputs. They excel at recognizing
patterns and capturing hidden dependencies in the data.
ANNs can efficiently handle large volumes of training data
and can generalize well to make predictions on unseen data.
On the other hand, ANFIS combine the strengths of fuzzy
logic and neural networks. They can model fuzzy rules,
linguistic variables, and expert knowledge to provide trans-
parent and interpretable results. ANFIS can handle uncertain
and imprecise data effectively and capture the nonlinear rela-
tionships present in the data. Combination of ANNs and
ANFIS in a hybrid model can benefit from the complemen-
tary strengths of both techniques. ANNs can handle complex
patterns and capture intricate nonlinear relationships, while

ANFIS can incorporate expert knowledge and provide inter-
pretable results.

B. CAPTURING NONLINEARITIES AND COMPLEX
RELATIONSHIPS
Harmonics forecasting often involves dealing with non-
linearities and complex relationships between harmonics
components and other variables. ANNs are well-suited for
capturing such nonlinear relationships due to their ability to
model complex functions. By training a multilayered ANN
on a dataset containing harmonics measurements and other
relevant variables, ANN’s capability to capture the intri-
cate relationships between the variables and the harmonics
behaviour can be exploited.

ANFIS, with its fuzzy rule-based structure, can handle
linguistic variables and expert knowledge effectively. By inte-
grating ANFIS into the hybrid model, domain expertise
and fuzzy logic-based rules can be incorporated, which can
enhance the forecasting accuracy by capturing the underlying
linguistic patterns in the data.

C. IMPROVED FORECASTING ACCURACY AND
ROBUSTNESS
The combination of ANN and ANFIS in a hybrid model can
lead to improved forecasting accuracy and robustness. ANNs
can learn from historical data patterns and make accurate pre-
dictions, while ANFIS can provide interpretability and handle
uncertainties. The hybrid model can leverage the strength
of both techniques, leading to more reliable and accurate
harmonics forecasts.

D. ADAPTABILITY AND GENERALIZATION
The hybrid model can adapt to different datasets and general-
ize well to unseen data. ANNs are known for their ability to
adapt to new patterns and data variations, enabling the model
to capture changing harmonics behaviours over time. ANFIS
can adapt its fuzzy rules and linguistic variables based on the
input data, making the hybrid model adaptable to different
operating conditions and system configurations.

E. MODEL TRANSPARENCY AND INTERPRETABILITY
The transparency and interpretability of the hybrid model
are crucial in harmonics forecasting applications. ANFIS,
with its fuzzy rule-based structure, provides a transparent
framework that allows experts to understand and interpret
the model’s decision-making process. This interpretability
can aid in identifying the factors contributing to harmonics
variations and assessing the model’s reliability.

F. SUMMARY
Table 2 presents a summary of the model components and
their specific contributions to building a hybrid model based
in combining multilayered ANN and ANFIS for harmonics
forecasting. In conclusion, developing a hybrid model for
harmonics forecasting that combines multilayered ANN and
ANFIS offers several benefits. The model may incorporate
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TABLE 1. Strengths and weaknesses of forecasting models.
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expert information, handle uncertainties, capture nonlinear
relationships, and produce findings that are easy to under-
stand. The hybrid model can improve accuracy, resilience,
flexibility, and generalisation by taking advantage of the com-
plimentary capabilities of both methodologies, which makes
it an appealing option for harmonics forecasting applications.

IV. GENERATOR MODELS
A. HYBRID WIND DFIG-PV MODEL
The hybrid wind DFIG-PVmodel was introduced to generate
the harmonics that represented the real-world response to
inputs of wind speed and solar irradiation. It was created by
modifying the DFIG model from the MATLAB library and
combining it with the PV model [32]. The 1.5 MW wind
turbines of the hybrid wind-DFIG PV Model combine an
AC/DC/AC IGBT-based PWM converter with wrapped rotor
DFIG. In this concept, the wind speed signal was generated
by a signal generator block. The hybrid model additionally
consists of 518 parallel strings and a 1.5 MW-rated PV array.
On each string, seven SunPower SPR-415E modules were
connected in series. The temperature and solar irradiance for
the PV model were generated by the signal generator block.
As a result, the hybrid wind DFIG-PVmodel was constructed
for a total 3 MW capacity.

The wind speed, solar irradiance, and temperature read-
ings were taken as actual data for Halifax, Nova Scotia,
Canada, between June 1 and June 24, 2015 and logged into
the signal generators. The data was obtained from the Joint
Research Centre (JRC) of the European Commission [33].
The generator model was simulated 19 working days using
the real-world data for wind speed and solar irradiation as
inputs and producing output power. Furthermore, with volt-
age and current waveforms from the simulated generator data
the harmonics were extracted using the Fast Fourier Trans-
form (FFT) in MATLAB. Refer to figure 2 which presents
the Wind DFIG-PV model used in this work.

B. HYBRID WIND PMSG-PV MODEL
The hybrid PMSG-PV model was made by changing the
PMSG model found in the MATLAB library [34] and fusing
it with the PV model. The model has a multipole PMSG
without a gearbox and 1.5MWwind turbines that are coupled
directly to it. Similar methodology was followed in simulat-
ing the Wind PMSG-PV generator model as Wind DFIG-PV
model to obtain the output voltage and current waveforms and
extract harmonics. Refer to figure 3 which presents the Wind
DFIG-PV model used in this work.

C. GENERATOR MODELS SIMULATION
To record and utilize the data for simulation and forecasting,
the complete data set showing the variations in wind and solar
characteristics over the course of 19 working days from June
1 to June 24, 2015, was separated into datasets. The datasets
used are displayed in Fig. 1:

FIGURE 1. Datasets for generator models simulation.

Data was logged into the workspace and stored throughout
the simulation time in a structured manner. Fig. 2 and Fig. 3
show a sample of the 3-phase voltage and current waveforms
for the time period starting at 5 seconds in order to demon-
strate and see the occurrence of harmonics in the waveform
developed for the Wind-DFIG PV model. A zoomed view of
the whole wave is shown in Fig. 2 & 3.

Harmonics can be seen in the waveforms of both voltage
and current. In order to extract harmonics from the data
collected from the scope, an FFT analysis was performed. The
FFT samples were extracted for 432 hours (18 days), and a
total of 4320 samples were recorded with 10 samples logged
per hour for both current and voltage waveforms. These were
grouped as training dataset to forecast the harmonics param-
eters for 19th day. The following harmonics parameters were
extracted from the simulated signals which after statistical
analysis were selected as parameters to be forecasted for both
voltage and current waveforms:
1. Total Harmonics Distortion (THD)
2. Magnitude of 11th (h11) harmonics component.
3. Magnitude of 13th (h13) harmonics component.

V. FORECASTING MODELS
A. ARTIFICIAL NEURAL NETWORK (ANN)
McCulloch and Pitts published the first Artificial Neuron
model in [35] that can mimic the actions of a biological
neuron. An artificial neuron model functions as a sum of
the products of the inputs denoted by the letter ‘‘p’’, the
weights associated with those inputs (‘‘w’’), and the bias
(‘‘b’’). To generate the output, this sum is sent through a
nonlinear transfer function named ‘‘f’’. Weights (w) and bias
are the two variables that can be altered (b). Mathematically,
n is given by the following equations,

n = w1p1 + w2p2 + · · · + wRpR + b (1)

n =

∑R

j=1
wjpj + b (2)

where w1, w2 . . .wR are weights, p1, p2. . . pR are inputs, b is
bias and R is number of inputs. The neuron’s output is given
by,

a = f (n) = f
(∑R

j=1
wjpj + b

)
(3)

Equation (3) represents the output for a basic ANN model
consisting of a single neuron and single layer. In order to
improve the adaptability of ANN, it is constructed with
multiple number of neurons and layers called Multi-Layer
Perceptron Neural Network (MLPNN). For MLPNN with l
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TABLE 2. Rationale for ANN-ANFIS based hybrid model summary.

FIGURE 2. Wind-DFIG PV generator model.

number of layers and S l number of neurons in layer l, (3) can
be expressed as follows:

alS l = fl
(
nlS l

)
= fl

(∑S l

i=1

∑S l−1

j=1
wija(l−1)j + blS l

)
. (4)

where l is the number of layers, S denotes the number of
neurons, S l denotes the number of neurons in layer l. There

are three MLPNN developed in this work to be used in the
hybrid forecast model. They are explained in this section.

1) 3-LAYERED CASCADED NEURAL NETWORK WITH
RECURRENT LOCAL FEEDBACK (3LCRNNL)
The 3-Layered Neural Network having cascaded inputs with
local feedback is portrayed in Fig. 4. This MPLNN will be
termed as Three Layered Cascaded Neural Network with
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FIGURE 3. Wind-PMSG PV generator model.

FIGURE 4. Sample voltage waveform (Wind DFIG-PV model).

Recurrent Local feedback (3LCNNRL). Equation (5) repre-
sents the output of the network.

a3S3 = f3
(
n3S3

)
= f3

(∑S3

i=1

∑R

j=1
wijpj

+

∑S3

i=1

∑S1

j=1
wijf1

(∑S1

i=1

∑R

j=1
wijpj

+

∑S1

i=1

∑S2

j=1
wija1j (t − 1) + b1S1

)
+

∑S3

i=1

∑S2

j=1
wijf2

(∑S2

i=1

∑R

j=1
wijpj

+

∑S2

i=1

∑S1

j=1
wija1j

+

∑S2

i=1

∑S2

j=1
wija2j (t − 1) + b2S2

)
+

∑S3

i=1

∑S3

j=1
wija3j (t − 1) + b3S3

)
(5)

2) 3-LAYERED CASCADED NEURAL NETWORK WITH
RECURRENT GLOBAL FEEDBACK (3LCRNNG)
The second MPLNN combines the Cascaded Neural Net-
work with Recurrent Network with Global feedback to create

FIGURE 5. Sample current waveform (Wind DFIG-PV model).

Cascaded Neural Network with Recurrent Global feedback
(3LCRNNG). Fig. 5 shows its construction and (6) presents
its output equation.

a3S3 = f3
(
n3S3

)
= f3

(∑S3

i=1

∑R

j=1
wijpj

+

∑S3

i=1

∑S1

j=1
wijf1

(∑S1

i=1

∑R

j=1
wijpj

+

∑S1

i=1

∑S3

j=1
wija2j (t − 1) + b1S1

)
+

∑S3

i=1

∑S2

j=1
wijf2

(∑S2

i=1

∑R

j=1
wijpj

+

∑S2

i=1

∑S1

j=1
wija2j + b2S2

)
+ b3S3

)
(6)

3) 3-LAYERED CASCADED NEURAL NETWORK WITH
RECURRENT GLOBAL FEEDBACK (3LCRNNG)
As the name suggests, in order to integrate the networks to
improve accuracy, in the third MPLNN, the inputs are cas-
caded to the next layers and each layer also receives feedback
from its output as well as from the output layer. Fig. 6 below
shows the architecture and (7) depicts the output of 3-Layered
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FIGURE 6. Architecture of 3LCRNNL.

FIGURE 7. Architecture of 3LCRNNG.

Cascaded Neural Network with Recurrent Local & Global
feedback (3LCRNNGL).

a3S3 = f3
(
n3S3

)
= f3

(∑S3

i=1

∑R

j=1
wijpj

+

∑S3

i=1

∑S1

j=1
wijf1

(∑S1

i=1

∑R

j=1
wijpj

+

∑S1

i=1

∑S1

j=1
wija1j (t − 1)

+

∑S1

i=1

∑S3

j=1
wija3j (t − 1) + b1S1

)
+

∑S3

i=1

∑S2

j=1
wijf2

(∑S2

i=1

∑R

j=1
wijpj

+

∑S2

i=1

∑S1

j=1
wija2j +

∑S2

i=1

∑S2

j=1
wija2j (t − 1)

+

∑S2

i=1

∑S3

j=1
wija3j (t − 1) + b2S2

)
+

∑S3

i=1

∑S3

j=1
wija3j (t − 1) + b3S3

)
(7)

B. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
In the early 1990s, the Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) was created as a result of Jang Roger’s proposal
to combine Adaptive Neural Networks (ANN) and Fuzzy
Logic. Based on the Takagi-Sugeno Fuzzy Inference System,
ANFIS combines the durability, ease of use, and convenience
of implementing the rule bases of the fuzzy system with the
self-learning characteristics of ANN. The ANFIS systems are
particularly efficient and straightforward to build, especially
in circumstances where non-linearity and data uncertainty are
problems [36]. Eq. (8) demonstrates a typical fuzzy rule in a

FIGURE 8. Architecture of 3LCRNNGL.

FIGURE 9. Hybrid forecasting models concept design.

Sugeno fuzzy model:

IF x is A and y is B, THEN z = f (x, y) (8)

where A and B are fuzzy sets, z = f (x, y) is a crisp function
defining the output. The function f (x, y) is typically a polyno-
mial which describes the output based on the input variables
x and y within the fuzzy region specified by the fuzzy sets of
the rule. Considering a first-order Sugeno FIS which contains
two rules expressed in (9):

Rule1: IF x is A1 and y is B1,

THEN f 1 = p1x + q1y+ r1

Rule2: IF x is A2 and y is B2,

THEN f 2 = p2x + q2y+ r2 (9)

The final output is a summation of all incoming signals
expressed as follows:

f =

∑
i
w̄ifi =

∑
i w̄ifi∑
i w̄i

(10)

C. NOVEL HYBRID FORECASTING MODELS
There are six hybrid forecastingmodels proposed in this work
by combining the three-layered ANN models and ANFIS.
The concept design of these models is depicted in Fig. 7.

The combinations for the six hybrid forecasting models are
as expressed in Table 3.

The six hybrid models as expressed in Table 3 are con-
structed by combiningANN andANFISmodels as explained.
Three types of ANN (3LCRNNL, 3LCRNNG, 3LCRNNGL)
are used with hyperbolic tangent transfer function employed
in hidden layers and are trained using scaled conjugate gradi-
ent algorithm. The ANFIS is used deploying the subtractive
clustering technique for training network. A total of six
hybrid models are proposed.
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TABLE 3. Proposed hybrid models.

VI. METHODOLOGY FOR IMPLEMENTATION OF
FORECASTING MODELS
A. DATA GENERATION FROM GENERATOR MODELS
To generate harmonics forecasts using the proposed hybrid
models, the two generator models as discussed in section
III-B were simulated for 31 days. Real-time data for wind
speed and solar irradiation for Halifax was used as recorded
between June 1st and 19th 2015 [57]. The generator models
produce output voltage and current waveforms from which
harmonics were extracted using FFT. This harmonics data
was further analyzed and stored to be used as inputs for the
forecasting models. The data for the 30 days (June 1st to 30th,
2015) was used for training and formed the training set, while
the data for 1 day (July 1st, 2015) was used as test set.

B. SELECTION OF INPUTS
The selection of input is crucial to achieve accurate forecast.
Inputs shall be carefully selected from the available data
by analyzing the trends for the target signal. In order to
extract harmonics, an FFT analysis was carried out on the data
procured from scope. The MATLAB command line was used
to extract harmonics information. The FFTwindow employed
consist of 5 cycles which extracts the samples from voltage
and current waveforms. The FFT samples were extracted for
432 hours (18 days), a total of 4320 samples were recorded
with 10 samples logged per hour for both current and volt-
age waveforms. The following harmonics parameters were
extracted from the simulated signals which after statistical
analyses were selected as parameters to be forecasted for both
voltage and current waveforms:
1- Total Harmonics Distortion (THD)
2- Magnitude of 11th (h11) harmonics component.
3- Magnitude of 13th (h13) harmonics component.
Additionally, the forecasting models employ various

amounts of parameters for input variables (predictors) which
are used as inputs to produce forecast. They are stated as
follows:
1- Wind Speed
2- Solar Irradiation
3- One day before observation of predicted parameter
4- Two days before observation of predicted parameter

The selection of wind and solar irradiation was obvious
as the forecasted parameters (THD, 11th, or 13th harmonics)

directly depend on magnitude if wind or solar irradiation.
As for the historical parameters, the one day and two days
before observations, the predicted parameter has no depen-
dencies on these inputs but rather related as at these time
intervals the conditions were observed to be similar.

C. DATA PRE-PROCESSING
Data pre-processing is a step in which all data points are
normalized between values of 0 and 1. This simplifies the cal-
culations and uniformly presents all input parameters under
one scale. For ANN and ANFIS implementation, it is neces-
sary to normalize data this way for better convergence. The
following formula is used to normalize data:

xnorm =
x−xmin

xmax − xmin
(11)

where,
xnorm is the normalised data point
x is the actual data point
xmin is the minimum data point in the series
xmax is the maximum data point in the series

D. NETWORK TRAINING AND FORECASTING
1) APPLICATION OF ARTIFICIAL NEURAL NETWORKS
The ANN models used in this work aim to predict the next
step harmonics. The ANN uses previously observed har-
monics patterns of simulated data for training and learning
in order to provide forecasts. Furthermore, for the ANN to
work well, there must be a strong correlation between the
inputs and outputs. Additionally, in order to improve perfor-
mance, the hidden layer and output layer weights must be
carefully adjusted throughout the training phase [31]. Hence,
determining the architecture specifically, the ideal number of
hidden layers, the number of neurons in each layer, and the
role of each layer’s activation becomes essential for better
performance [25]. In order to improve weight adjustment, the
hyperbolic tangent transfer function was used for the hidden
layers. By default, MATLAB uses sigmoid transfer function.
For a complex and non-linear dataset as employed in this
research, the selection of hyperbolic transfer function is more
beneficial as compared to the sigmoid function. Figure 8
superimposes the sigmoid function over the hyperbolic tan-
gent function [37].

Figure 8 establishes two features that differentiate hyper-
bolic tangent function with sigmoid function.
1- The sigmoid function has a substantially smaller slope

than the hyperbolic tangent function;
2- The sigmoid function always responds positively, but the

hyperbolic tangent function responds negatively for neg-
ative input values and positively for positive input values.
The larger slope of the hyperbolic tangent function indi-

cates that it responds more strongly to even a modest change
in the input variable. As a result, it can provide a considerably
more nonlinear response and can better distinguish between
subtle variations in the input variable. For network nodes, it is
also crucial that the sign of the response coincides with the
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FIGURE 10. Superimposed hyperbolic function over sigmoid function.

sign of the input in the hyperbolic tangent transfer function.
With normalizing and standardizing the data to the zero mean
gives a node’s output value some meaning. A node’s average
state is represented by 0, the lowest response level is repre-
sented by -1, and the highest response level is represented by
+1. With this structure, the inputs to the nodes of the first
hidden layer are similarly zero when the input variables are
nominally zero. Consequently, when applying a hyperbolic
tangent transfer function, the outputs of such nodes are also
zero. The output layer’s inputs and outputs are all zero, as are
those of the other hidden layers. In other words, the network
already accurately predicts the nominal situation before any
training even begins, thus it essentially only must be trained
for deviation from the nominal case. In contrast, a 0 input to
a sigmoid transfer function results in an output response of
0.5, indicating that the network must additionally modify its
initial weights in order to train the nominal case, reducing the
effectiveness of training. The 3LCNNRL, 3LCNNRG, and
3LCNNRGL ANNmodels and architecture used in this work
employ the hyperbolic tangent transfer function in all their
hidden layers.

Additionally, the ANN models employ various amounts of
parameters for input variables (predictors), including Solar
Irradiation, Wind Speed, and historical values for the fore-
casted parameter (i.e., one hour, one day and two days
before). Moreover, the ANNmodels employ scaled conjugate
gradient as an optimizer for the reduction of the error function
(training). This optimal harmonic prediction optimizer was
identified by trial and error. Based on conjugate directions,
Moller [38] created the scaled conjugate gradient (SCG)
algorithm. Unlike other conjugate gradient algorithms, which
need a line search at each iteration, this technique does not do
a line search at each iteration; SCG was created to do away
with the tiresome line search. A network training function
called ‘‘trainscg’’ in MATLAB changes bias and weight vari-
ables using the scaled conjugate gradient approach.

If the weights, net input, and transfer functions contain
derivatives, it can train any network. The quadratic approxi-
mation of the error function is used to determine the step size

in the SCG algorithm, which further increases its robustness
and independence from user-defined parameters [39].

2) APPLICATION OF ADAPTIVE NEURO FUZZY INFERENCE
SYSTEM (ANFIS)
The adaptive neuro fuzzy inference system (ANFIS) is a
hybrid system that combines the advantages of both ANN and
the fuzzy system [26], [31]. As a result, theANFIS ought to be
more accurate in making predictions than the ANN. In order
to model data uncertainty, ANFIS essentially combines the
learning capabilities of NNs with those of an FIS. It is sim-
ple to train an ANFIS model without the need for detailed
subject-matter expertise. ANFIS has the benefit of utilizing
both verbal and numerical information. Thus, the flexibility,
nonlinearity, and quick learning of ANFIS are its benefits.
However, the system becomes exceedingly challenging to
execute practically when the number of inputs to the standard
ANFIS system’s fuzzy system rises. Additionally, as more
inputs and membership functions are selected for each input,
the more training time is needed for the standard ANFIS
system. Additionally, as the number of membership functions
per input increases, so do the fuzzy rules. Using the ANFIS
method for prediction, which is based on clustering, makes it
simple to overcome the challenges listed above.

Subtractive clustering is a quick procedure for figuring
out how many clusters there are and where their centres
are for making predictions. Moreover, it is also very useful
when data characteristics are uncertain to be clustered. The
subtractive clustering method is an extension of the mountain
clustering method proposed in [40]. This method evaluates
each data point as a prospective cluster centre candidate and
then determines each data point’s potential by calculating the
density of the data points around it. When it is unclear how
many data distribution centres will be needed, this strategy is
used. This is the case in this research due to which subtractive
clustering is used. The approach is iterative, and it assumes
that any point could serve as the centre of a cluster depending
on where it is in relation to other data points. It involves
selecting the point with the best likelihood of being the cluster
centre, then deleting every other point inside the first cluster
centre’s radius (the radius is defined by the neighbourhoods
of the centre). Additionally, to find the next cluster centre,
recalculate the potential of the other spots. Finally, keep doing
this until all the data is contained within a cluster centre’s
radius [41]. The following steps sums up the algorithm:
1. Based on the density of nearby data points, determine

the likelihood that each data point would define a cluster
centre. Measure density index Di corresponding to data xi as
expressed in (12).

Di =

∑n

j=1
exp

(
−

∥∥xi − xj
∥∥2(ra/2)2
)

(12)

where,
ra = positive number that represents the radius where all

the data within it are considered neighborhoods;
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2. Pick the data point that has the best chance of becoming
the first cluster centre. Hence, the data point with the highest
density measure is selected as the first centre cluster denoted
xc1 and its density is Dc1.

3. Eliminate all data points close to the first cluster centre.
With the use of cluster influence range, the area is identified.

4- Recalculate the density measurements for each data
point xi and select the final point with the greatest potential
to serve as the cluster centre expressed in (13).

D′
i = Di − Dcl exp

(
−

∥xi − xc1∥2(rb/2)2
)

(13)

where,
rb = Kra (K is a positive number, usually K = 1.5 [41]).
All the points near to the first cluster centre xc1 will have

low-density degree and thus they will not be considered as the
next cluster centres. The next cluster centre xc2 is nominated
after the density measure for each data point is recalculated.

5- Keep going back and forth between steps 3 and 4 until
a cluster centre can affect all the data.

For optimization, the following parameters were changes
to improve the performance. Specify the following clustering
options:

- Squash factor - Only find clusters that are far from each
other.

- Accept ratio - Only accept data points with a strong
potential for being cluster centres.

- Reject ratio - Reject data points if they do not have a
strong potential for being cluster centres.

In this work, the ANFIS is utilized using subtractive
clustering which is optimized by trial and error. The input
parameters (predictors) used in ANFIS are the same as those
used for ANN.

E. MODELS 1-3: 3LCNNRL-ANFIS, 3LCNNRG-ANFIS,
3LCNNRGL-ANFIS
The 3 layered neural networks with cascaded inputs and
recurrent feedbacks as utilized in models 1-3 have 8 nodes
in the first hidden layer and 16 nodes in the second hidden
layer. The number of layers selected are optimized to give the
best performance. The optimization was done by trial-and-
error method by using different combinations of hidden and
output layers in stage one with the ANN, which are trained
using the Scaled-Conjugate Gradient backpropagation due to
its fast convergence with a large amount of data. Furthermore,
hyperbolic tangent transfer function is used in the hidden
layers to adjust weights to make the model synchronized with
the input trends. To further improve adaptability, ANFIS is
used in the second stage of the hybrid models with subtractive
clustering to make the comprehensive hybrid structure robust
in order to generate accurate responses for forecasting.

Once the ANN in the first stage of the models is trained
using the training dataset, the results are forecasted. All four
inputs of the training dataset are then fed to the ANFIS model
in the second stage in addition of the fifth input, which are the

forecasted results from stage one. This additional input from
forecasting results from neural networks is expected to refine
the final output.

F. MODELS 4-6: ANFIS-3LCNNRL, ANFIS-3LCNNRG,
ANFIS-3LCNNRGL
For proposed hybrid models 4-6, the ANFIS is used to fore-
cast results for the 19th day in the first stage using training
dataset. Further, the results from ANFIS are fed into the neu-
ral networks along with the four inputs. Hence, the structure
of ANN utilized in the second stage has 10 nodes in the first
hidden layer and 20 nodes in the second. Scaled-Conjugate
Gradient backpropagation method is used for training the
ANNs and hyperbolic tangent used as transfer function to
adjust weights in the stage 2 for proposed hybrid models 4-6.

G. EVALUATION OF FORECASTING MODELS
The performance of forecasting models is evaluated using
the percentages of Mean Absolute Error (MAE%) and Root
Mean Squared Error (RMSE%) indices. When a model’s
mean absolute error (MAE) and root mean square error
(RMSE) are both smaller, it performs better. With time step
N, target sequence denoted by ti while forecast sequence by
fi, idenotes the datapoint, (11) and (12) presents the formulas
to calculate the RMSE% and MAE%:

RMSE(%) =

√
1
N

∑N

i=1
(ti − fi)2 × 100 (14)

MAE(%) =
1
N

∑N

i=1
|ti − fi| × 100 (15)

VII. RESULTS
A. HARMONICS FORECASTING – WIND DFIG-PV MODEL
1) VOLTAGE HARMONICS
The actual versus forecast curves for six proposed hybrid
models for wind DFIG-PV are presented in Fig. 8, 9 and 10
along with the forecasting result curves of all individual mod-
els (i.e., 3LCRNNL, 3LCRNNG, 3LCRNNGL and ANFIS).
There are a total of three variables that have been forecasted.
The major one is the Voltage Total Harmonics Distortion
(THDV) followed by the individual dominant harmonics 11th

(h11) and 13th (h13). To further analyze the error profile and
accuracy of these models, refer to Table 2 which presents
the metrics calculated (RMSE and MAE). From Table 2
it can be observed that model-3 produces the best results
with the lowest RMSE (8.420%) and MAE (4.601%). Which
means overall datapoints variation of ±8.420% for model-3
which has proven to be the most accurate as compared to the
other models. Furthermore, the results of individual models
are also presented. ANFIS is the best performing individual
model with 8.844%RMSE and 5.55%MAE. By using hybrid
model, it is evident that the overall forecasting error produced
by each individual model has shown improvement.

Results shown in Table 4, further suggest for 11th harmon-
ics (h11), model 4 and for 13th harmonics (h13), model-2
perform best with the lowest RMSE%. Specifically, for h11
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FIGURE 11. THDV – actual vs forecast curves wind DFIG-PV model.

FIGURE 12. Voltage 11th harmonics – actual vs forecast curves wind
DFIG_PV model.

FIGURE 13. Voltage 13th harmonics – actual vs forecast curves wind
DFIG_PV model.

the RMSE% for model 4 is 11.262% which is the lowest,
but if MAE% is observed, the individual model 3LCNNRGL
produces the lowest MAE% of 8.975%. Whereas, for h13,
model-2 performs best in terms of RMSE% as well asMAE%
having values of 10.941% and 8.537% correspondingly.
It can be observed that for the case of individual harmonics

TABLE 4. THD, 11th and 13th voltage harmonics forecast results for wind
DFIG-PV model.

forecasting, the improvement of hybrid model over individual
ones is not significant. Though there is a small improvement
while using models in the hybrid framework, ANFIS again
performed better than the rest of the individual models. The
percentages RMSE for THDV as compared to the dominant
harmonics forecast are lower. Model-4 (ANFIS-3LCNNRL)
and model-2 (3LCNNRG-ANFIS) achieved healthier results
for h11 and h13 harmonics respectively.

2) CURRENT HARMONICS
This section presents the actual versus forecasted curves
for the individual as well as the six proposed hybrid mod-
els used to predict the THDI, h11 and h13 harmonics.
Fig. 11, 12 and 13 presents the forecast curves for THDI, h11
and h13 forecast which is followed by Table 5 summarizing
the performance of each model for THDI, 11th and 13th
current harmonics.

Model-6 fits the actual curve better than the other models
for THDI forecasts, as seen in the Figures and Tables above
with the lowest RMSE (0.336%) as well as MAE (0.242%).
Model 1 produces the least MAE with 0.229%. Model-5 has
the lowest RMSE & MAE for h11, while model-3 has the
best result statistics for h13. The RMSE percent for THDI
is 0.341% for model-1, indicating that the predicted points
are extremely close to the actual. In the case of h11, the
results show that model-4 outperforms the others in terms of
all performance metrics. Model-3, on the other hand, has the
lowest percent RMSE of 11.516% andMAEof 9.012,making
it the best predictor model for h13.

It may be concluded that all six proposed models predicted
current total harmonics distortion correctly and produced
improved results as compared to the individual models, with
RMSE% and MAE% relatively low. For THDI, very low
RMSE and MAE of 0.341% and 0.229% corresponds to
very low forecast dispersion around the actual curve. Models
5 and 3, which use the ANFIS-3LCNNRG and 3LCNNRGL-
ANFIS structures respectively, outperformed all other models
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FIGURE 14. THDI – actual vs forecast curves Wind DFIG-PV model.

FIGURE 15. Current 11th harmonics – actual vs forecast curves Wind
DFIG_PV model.

FIGURE 16. Current 13th harmonics – actual vs forecast curves wind
DFIG_PV model.

for the individual harmonics h1 and h13. The improvement of
performance for hybrid models over individual ones are not
noteworthy for h11 and h13 which suggests that it requires a
different approach to forecast these parameters accurately.

TABLE 5. THD, 11th and 13th current harmonics forecast error for wind
DFIG-PV model.

FIGURE 17. THDV – actual vs forecast curves wind PMSG-PV model.

B. HARMONICS FORECASTING – WIND PMSG-PV MODEL
1) VOLTAGE HARMONICS
The actual versus predicted curves for all six proposed
hybrid models and the individual forecasting models for wind
PMSG-PVmodel are shown in Fig. 14, 15 and 16 for Voltage
harmonics parameters. The forecast curves are followed by
Table 6 summarizing the error profile of each forecast made
for each variable.

From results presented in Table 5, it can be observed that
as compared to DFIG, the forecast for all 3 cases to pre-
dict the voltage harmonics have shown much better results.
By observing Table 5, it can be concurred that the overall per-
formance of all models has shown accurate predictions with
percent RMSE and MAE for all hybrid models below 5%,
which suggests that each model predicted quite accurately.
To single out the best performing model, model-1 employing
3LCNNRL-ANFIS has proved to be the best in terms of
all error performance matrices, with RMSE of 3.963% and
MAE of 2.619%. Additionally, a substantial improvement
from using hybridmodels over individual ones for forecasting
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FIGURE 18. Voltage 11th harmonics – actual vs forecast curves wind
PMSG_PV model.

FIGURE 19. Voltage 13th harmonics – actual vs forecast curves wind
PMSG_PV model.

TABLE 6. THD, 11th and 13th voltage harmonics forecast error for wind
PMSG-PV model

is determined by the results presented. For h11, model-6
(ANFIS-3LCNNRGL) performs better than all others. Over-
all results have shown low RMSE% and MAE% with 9.35%
and 6.851% being the lowest respectively for model 6. For

FIGURE 20. THDI – actual vs forecast curves Wind PMSG-PV model.

FIGURE 21. Current 11th harmonics – actual vs forecast curves wind
PMSG_PV model.

h13 forecast, model-2 (3LCNNRG-ANFIS) has been the
clear standout as compared to other models with 13.671%
RMSE and 6.582% MAE. Further, it can be observed that
ANFIS has outperformed all other neural network based
individual forecasting models for all the cases.

2) CURRENT HARMONICS
The actual vs anticipated curves for the proposed forecast-
ing models used to predict the current harmonics for wind
PMSG-PV model is presented in Fig. 17, 18 & 19. The
performance stats for forecasts for THDI, h11 and h13 for
current waveform are presented in Tables 7.

As seen in Fig. 17, 18 & 19 and Table 7, Model-3
(CNNRGL-ANFIS) fits the real curve better than the other
models for THDI, with the lowest RMSE (6.901%) and MSE
(0.941%). The results reveal that model-6 surpasses the others
in terms of both performance measures for forecasting h11
with models 4 & 5 also generating good results with RMSE
and MAE of around 7.6% and 5.5% with the lowest reaching
to 7.616% and 5.569% for model 6 (ANFIS-3LCNNRGL).
Among individual models, ANFIS produces results as good
as models 4, 5 and 6 with RMSE 7.652% and MAE 5.568%.
The hybrid models seem to offer similar results to ANFIS.
Furthermore, for h13, model-5 (ANFIS-3LCNNRG) has the
lowest percent RMSE (14.97%) and MAE (9.458%).
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FIGURE 22. Current 13th harmonics – actual vs forecast curves wind
PMSG_PV model.

TABLE 7. THD, 11th and 13th current harmonics forecast error for wind
DFIG-PV model.

VIII. ANALYSIS OF RESULTS
This section presents a comparison between the forecast-
ing outcomes generated by the hybrid models suggested in
this work and the forecasting techniques used by the work
done in the literature. References [23], [24], and [25] for
different types of ANN, [26] for ANFIS, and [27] for LSTM
(Long Short-Term Memory) network approaches are used as
examples to compare the proposed work with as a way of
validation.

Three Neural Networks are chosen from among the
methods used in [23], [24], and [25] to accomplish the fore-
casting for this work. Cascaded Recurrent Neural Network
with Local Feedback (CNNRL), Cascaded Recurrent Neural
Network with Global Feedback (CNNRG), and Cascaded
Recurrent Neural Network with Local and Global Feedback
(CNNRGL) are these networks. In addition, [26] uses ANFIS
and [27] adopted the LSTM approach for forecasting. These
5 approaches are used to draw a comparative analysis in
which the same data used in this work is utilized for all differ-
ent forecasting methods stated. Percent Root Mean Squared

Error (RMSE%) and percent Mean Absolute Error (MAE%)
are the indices used to compare the results.

A. UTILIZATION OF ARTIFICIAL NEURAL NETWORK (ANN)
References [23], [24], and [25] apply ANNmodels to forecast
harmonics. Three Neural Networks are chosen from among
the methods utilized in these papers to forecast and compare.
The data used to forecast is the same 18 days data which
is employed in this work generated by the simulation of
two hybrid models. The four inputs used are wind speed,
solar irradiation, day before and two days before observations
of forecasted parameters. Each version of ANN has a first
hidden layer with eight nodes, and a second layer with sixteen
nodes.

B. UTILIZATION OF ADAPTIVE NEURO FUZZY INFERENCE
SYSTEM(ANFIS)
Reference [26] employ ANFIS architecture to forecast volt-
age and current THD. In order to draw comparison ANFIS
is utilized with the data used in this work with four inputs
as stated in section VI-A. Subtractive clustering is used to
optimize the training process. Along with THD, h11 and
h13 are also forecasted. The results produced from ANFIS
system are presented in section VI-D to draw comparison
with models proposed in this work.

C. UTILIZATION OF LONG-SHORT TERM MEMORY
NETWORK(LSTM)
Reference [27] utilize the deep learning LSTM method for
forecasting harmonics. The same simulated data and four
inputs are used to generate forecast for THD, h11 and h13 for
voltage and current for the two generator models. The LSTM
utilized consists of four sequence input layers, two hundred
LSTM layers, one fully connected layer, a regression layer,
and an output layer. Since there are four inputs, the size of
the input layer is set to four. The two hundred hidden layers
of the LSTM layer are utilized to execute additive interactions
and learn long-term relationships between sequence and time
series data. The forecast is being generated in MATLAB and
presented in sections VI-D for comparison with the hybrid
models used in this work.

D. RESULTS VALIDATION – WIND DFIG-PV MODEL
1) VOLTAGE HARMONICS
Table 8 provides a comparative analysis of the six proposed
forecasting models for wind DFIG-PV generator model for
Voltage harmonics.

The proposed hybrid models utilized in this work and the
forecasting techniques employed by other researchers are
shown in Table 8 together with their respective findings’
RMSE% and MAE%. The list of references where each of
these techniques was employed by the authors are mentioned
at the bottom of the table. Therefore, by contrasting the results
with CNNRL, CNNRG, CNNRGL, ANFIS and LSTM, the
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TABLE 8. Result comparison for wind DFIG-PV model – voltage
harmonics.

benefit of utilizing a hybrid technique can be seen. The most
accurate model for forecasting THDV is Model 3, which
has RMSE% of 8.42% and MAE% of 4.601%. Addition-
ally, Models 2 and 3 are the only techniques that delivered
outcomes better than ANFIS which is the best performing
model among individual models with RMSE of 8.46% and
MAE of 4.69%. Furthermore, when RMSE is considered,
Model 4 has the lowest value of 11.262% for the prediction of
the eleventh harmonics. Model 2 achieves the best and most
accurate results for the thirteenth voltage harmonics in terms
of both metrics (RMSE 10.941% andMAE 8.537%). Finally,
it is also noteworthy that the second-best results have been
produced by model 6 for THDV and 11th voltage harmonics
and model 3 for 13th voltage harmonics.

2) CURRENT HARMONICS
Table 9 presents a comparative analysis of the six pro-
posed forecasting models for Wind DFIG-PV generator
model for current harmonics for the purpose of comparing
results.

Table 9 shows that Model 6 surpasses all other models in
terms of performance indices for the forecast of the current
THD having the lowest RMSE (0.336%) andMAE (0.229%).
For the eleventh harmonics Model 5 produces the best results
with 11.411% RMSE and 9.465% MAE. In addition, Model
3 has the lowest RMSE for the thirteenth current harmonics
at 11.516% RMSE and 9.012% MAE. Furthermore, model
6 have yielded the second-best performance all the cases for
the current harmonics (THDI, h11 and h13) for wind-DFIG
PV generator model.

TABLE 9. Result comparison for wind DFIG-PV model – current
harmonics.

3) RESULT SUMMARY – WIND DFIG-PV MODEL
Voltage model-3, which employed a combination of 3 lay-
ered cascaded recurrent neural network with local and global
feedback, recorded the best performance for THDV, whereas
for h11 and h13 model-4 and model-2 produced the best
results. For current harmonics, model-1 proved to be the most
accurate for THDI, while model-5 and model-3 provided the
best results for h11 and h13 respectively. Table 10 manifests
the best forecasting models and the percentage improvements
they offer with respect to RMSE over forecastingmodels used
by other authors for the DFIG-PV generator model. It can
be observed that the best performing hybrid models offer
improvements over all the individual models. For instance,
the model-3 for voltage THD has RMSE 8.42% while LSTM
with RMSE 8.792% is greater than that produced bymodel-3.
This refers to a 4.2% improvement in prediction results pro-
duced by hybrid model-3 over LSTM forecast. Similarly, for
other forecasting models the hybrid model-3 produces an
improvement of 0.5% over ANFIS, 8.3% over CNNRL, 8.6%
over CNNRG and 7.1% over results produced by CNNRGL
respectively.

E. RESULTS VALIDATION – WIND PMSG-PV MODEL
1) VOLTAGE HARMONICS
Table 11 provides a comparative analysis of the six proposed
forecasting models for wind PMSG-PV generator model for
Voltage harmonics. The most accurate results for THDV,
h11, and h13 harmonics were produced by model 1 (RMSE
3.93%, MAE 2.61%), model 6 (RMSE 9.35%, MAE 6.85%),
and model 2 (RMSE 13.67%, MAE 6.58%), accordingly for
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TABLE 10. Best forecast for DFIG-PV model.

TABLE 11. Result comparison for wind PMSG-PV model – voltage
harmonics.

the wind PMSG-PV model. LSTM and ANFIS approaches
produce good results overall, as can be seen by comparing
its performance to that of other models, however proposed
hybrid models, which combine ANFIS and ANN models,
have an edge.

It has been demonstrated that LSTM and ANFIS both
function well on their own. It can also be seen that all
models for forecasting Wind PMSG-PV voltage harmonics
have given accurate results for all three projected parameters
(THDV, h11 and h13). However, the six suggested hybrid
models outperform each of the individual models employed
by other authors when forecasted separately. It serves as an
example of the advantages of using hybrid models. Lastly,
the second-best results have been produced by model 3 for
THDV and h11 and model 6 for h13 voltage harmonics
respectively.

2) CURRENT HARMONICS
Table 12 presents a comparative analysis of the six proposed
forecasting models for wind DFIG-PV generator model for
current harmonics for the purpose of comparing results.

TABLE 12. Result comparison for wind PMSG-PV model – current
harmonics.

Following the data shown in Table 12, it can be concurred
that model 3 delivers accurate results for THDI with RMSE
6.91% and MAE 0.94% for the current harmonics forecast.
It should be noted that none of the forecasting methods either
the proposed ones in this work or those adopted from other
authors have produced accurate prediction results for the
THDI parameter. Model 6 performs best for current h11 fore-
casting, outperforming the other 10 models used to forecast
with lowest RMSE (7.61%). For the thirteenth harmonics,
Model 5 produces the lowest RMSE (14.97%) and MAE
(9.45%).

It is also observed that the second-best result producing
models are model 2, model 4 and model 6 for THDI, h11
and h13 current harmonics respectively. Moreover, with the
results presented in Table 10, it can be concluded once more
that adopting hybridmodels has an advantage over employing
individual methods as they yield better results overall.

3) RESULT SUMMARY – WIND PMSG-PV MODEL
Model-3 had the best THDV performance for voltage, while
model-4 and model-2 outperformed other models for h11
and h13, respectively. With respect to current harmonics,
Model-1, model-5, and model-3 were the most reliable for
predicting THDI, h11, and h13 respectively. Table 13 pro-
vides a summary of the forecasting performance index RMSE
for the best performing forecasting models and presents the
RMSE and percentage improvement of forecasting results
produced by the best performing hybrid models over the other
forecasting models utilized in literature for Wind PMSG-
PV models. The results presented in Table 13 indicate that
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TABLE 13. Best forecast for PMSG-PV model.

for model-3, voltage THD outperforms the LSTM forecast
and offers an improvement of 27.2%. Furthermore, the same
hybrid model-3 with respect to RMSE improves results
by 0.8% over ANFIS, and 33.4%, 29.5% and 25.7% over
CNNRL, CNNRG and CNNRGL respectively.

F. SUMMARY
The comparisons presented in this section concur that, model-
1 has been the best performing model for 3 cases (i.e., current
THD and h11 for wind DFIG-PV and voltage THD for
wind PMSG-PV. Model-2 produced the best performance for
2 cases (voltage h13 forecast for both generator models) and
second-best for one case (current THD for wind PMSG-PV).
Model-3 has produced accurate results more consistently as
compared to other proposed hybrid models as it has yielded
the most accurate results for 3 cases (voltage THD and
current h13 for wind DFIG-PV and current THD for wind
PMSG-PV), and second-best results for 3 cases (h13 for
wind DFIG-PV, voltage THD and h11 for wind PMSG-PV).
Furthermore, model-4 generated best results for voltage h11
wind DFIG-PV and second-best for current h11 wind PMSG-
PV, model-5 performed best for current h13 wind PMSG-PV.
Lastly, the performance of model-6 has also been noteworthy
as it has produced best results for current h11wind PMSG-PV
generator model and the second-best results for 7 cases (i.e.,
voltage THD, h11 and current harmonics THD, h11, h13 for
wind DFIG-PV and h13 both voltage and current harmonics
for wind PMSG-PV model).

With these findings it can be determined that the use of
hybrid models proved to be fruitful when the best performing
model is considered. Model 3 which is composed of 3LCRN-
NGL and ANFIS in first and second stage of its design and
Model 6 as vice versa can be categorized as better and more
consistent as compared to the other proposed hybrid models.
It is also noteworthy that the performance of proposedmodels
was also compared to individual models utilized in other pub-
lications [23], [24], [25], [26], and [27]. The best performing
models among the six proposed ones in this work proved to
be better performing.

IX. CONCLUSION
Harmonics forecasting is one of many methods used to pro-
vide inputs while designing harmonics mitigation devices
in order to lower harmonics in RES. Use of two hybrid

generator models (Wind DFIG-PV and Wind PMSG-PV)
was made to generate voltage and current waveforms and
extract harmonics from the wind speed and solar irradiation
data that represents a real-world response. As a result, the
dominant harmonics (h11& h13) and variations in the voltage
and current total harmonics distortions were identified as the
predictor variables.

Six hybrid forecasting models were proposed to produce
forecasts of the simulated data and the results were validated
by comparing the forecasting outputs of the hybrid models
proposed in this work with the forecasting techniques used by
other authors in the literature. According to the findings that
were provided, the best performing hybrid models proposed
in this work outperformed the models that are adopted in
literature and were used to predict the same data and param-
eters. The results produced by Model-3 and Model-6 have
been established the standout among all models tested, the
major limitation of using this approach is the inconsistency
to produce results as there has not been a single model that is
consistently best performing for all cases tested. It is recom-
mended to apply these twomodels (models 3 & 6) in different
scenarios to further this research.

Referring to the objective of this work, hybrid forecasting
models combining the ANN and ANFIS techniques have
been achieved with satisfying results as stated. The accuracy,
however, needs to be improved and the model performance
need to be consistent. More work is required to test these
models in different scenarios and circumstances. Since two
renewable hybrid generators were utilized to generate har-
monics using real world data for Halifax-NS, Canada, it is
recommended to use same approach with different geograph-
ical locations to test the adaptability and reliability of the
proposed forecasting models.

Furthermore, research is required to be carried out in
this area to discover other combinations of hybrid models
combining other forecasting techniques to achieve improved
accuracy.
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