
Received 17 June 2023, accepted 17 August 2023, date of publication 13 September 2023, date of current version 21 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3314754

Automatic Creation of Tiled Maps in
Two-Dimensional Top-Down Digital
Role Playing Games
KRZYSZTOF KACZMARZYK AND DARIUSZ FREJLICHOWSKI
Faculty of Computer Science and Information Systems, West Pomeranian University of Technology, Szczecin, 70-310 Szczecin, Poland

Corresponding author: Dariusz Frejlichowski (dfrejlichowski@zut.edu.pl)

This work was supported in part by the Zachodniopomorski Uniwersystet Technologiczny (ZUT) Highfliers School (Szkoła Orłów ZUT)
Project coordinated by Assoc. Prof. Piotr Sulikowski within the framework of the Program of the Minister of Education and Science under
Grant MNiSW/2019/391/DIR/KH and Grant POWR.03.01.00-00-P015/18, and in part by the European Social Fund under Grant PLN
2,634,975.00.

ABSTRACT Game level maps are fundamental for modern Digital Role Playing Computer Games. Creating
such maps by hand is a time-consuming process. We propose an approach that can be applied to create such
maps automatically. The approach is explained with clearly defined steps. The map creation process divides
a map into four distinct layers. First, we explain the idea of converting input in the form of a rough sketch
of a layer into the suitable form— a colour grid. Next, the issue of map creation from the initial stage of the
colour grid is presented.We then introducemethods used to correct the inputs in order to create layers without
defects. We apply specific methods to each layer, explaining the method in detail in subsequent sections. The
layers are then merged to create the final map. As the next step, we discuss the improvements applied to the
process that we developed. The complete approach is then tested in practice with a questionnaire, which
— following a careful analysis — has showed that there are no significant differences between handcrafted
maps and the maps created using our approach.

INDEX TERMS Automatic map generation, digital role playing games, tiled maps.

I. INTRODUCTION
Traditionally, Role Playing Games (RPGs) are games in
which a player or a group of players assume the roles of
characters and play (control) them in a fictional setting [7].
Digital Role Playing Games (DRPGs) are based on the same
concept, but played usingmodern technology. On Steam [11],
one of the biggest digital markets, Digital Role Playing
Games are the fifth best-selling category, with one such game
bought by every tenth of Steam’s 150 million users [13]. The
DRPGs are played on a computer, where characters as well
as the setting are usually represented graphically. In most
cases, the characters are able to traverse the fictional setting
by moving on a randomly generated map or on one created
by a game developer. Those maps can be further categorized,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jose Saldana .

for example, based on their dimensionality. In this paper we
focus on two-dimensional, top-down maps.

Our approach uses top-down maps which have a slightly
oblique view and is based on tiled images, common in maps
created using the RPG-Maker software [3]. The proposed
solution is developed using the game Margonem [5], which
has the same type of maps. Tiled images which compose
those maps are called ‘‘tiles’’, and the group of tiles that
a map is composed of is a ‘‘tileset’’. A tile is made up of
an image and a set of constraints that dictate what tiles it
connects to. It usually entails a specific type of background
that is either on the side of a tile or at its corner. In the case
of specifying corner backgrounds, both touching corners of
adjacent tiles must have amatching background. The idea and
related problems are described in more detail in Section III.
Using tiles to create maps greatly simplifies the process

and makes it possible to create maps of the same quality

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 101813

https://orcid.org/0000-0002-0839-8901
https://orcid.org/0000-0002-8051-476X
https://orcid.org/0000-0002-6977-6363


K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

much faster, because after creating a tileset a developer needs
only to place the tiles in the correct manner to create a map.
Even then, creating a map may be time-consuming and is
prone to error, as each tile needs to be placed individually and
even one incorrectly placed tile can create a visual mismatch,
ruining the seamless effect. That is why several solutions
have been developed to aid developers in the map creation
process, e.g. Tiled [12], Margonem Map Editor (in Polish
‘‘Edytor Mapek Margonem’’) [6] and MapForge [4]. What
these solutions have in common is that they all still work on
a tile-by-tile basis. They contain tools to expedite the map
creation process; nevertheless, each tile needs to be placed
individually by using brush-like tools or filled in randomly in
a selected area.

We propose an algorithm that can automatically create
complete tiled maps based on a rough sketch of a map along
with a set of tiles. Generation is deterministic and based
on developed algorithms, rather than created using machine
learning. The deterministic method was chosen because of
three key factors. The first is that with a deterministic
method, it is easier to understand what each step in the
method does, and it is easier to modify it if the need arises.
Secondly, the tiled maps are, in our opinion, more suited to
deterministic approaches since one can easily swap out the
input tileset to create maps with vastly different looks without
changing the map layout (in order to, for example, create
a winter version of the same map). Lastly, the collection of
appropriate training data required to train a machine learning
solution would have been extremely difficult, especially for
the problem that our method wants to solve. It comes from
the fact that there are no benchmark datasets containing the
required data, and the creation of such a large database would
take months or more, and even in that case, there is no
certainty that this data would be effective in the process of
machine learning.

In order to evaluate the results, we investigate the generated
maps against to maps created by hand. The results show that
differences are either non-existent or insignificant and most
people cannot pinpoint the origin of a given map, even when
the person is familiar maps created using the selected tileset.

II. RELATED WORKS
In this section, we describe previous works related to the
process of creating tiled maps, as well as the works that
inspired the approach proposed in this article. Additionally,
we provide an explanation of how our solution differs from
them and where it fits in the map creation process. The
problem described in the paper is technical in nature, and
is therefore rarely discussed in the scientific works, most
of which are focused on different aspects of maps; for
example, [9] presents the creation of stylized maps, but it
focuses on a different type of maps, not utilizing tilesets.
However, map creation is a widespread problem in the game
industry and led to the development of tools to make the
process easier and faster. Some of themmight not be available
publicly, but others are provided to the public or developed

as open software from the ground up. They will be briefly
described in the following subsection.

Additionally, our previous works on the problem were
described in [2]. However, whereas [2] focuses in particular
on one aspect of the map creation process — specifically, the
ground layer — this paper demonstrates the whole process
of map creation, describing every step in detail, and presents
more extensive tests for the obtained results.

A. SOFTWARE USED FOR MAP CREATION
The Margonem Map Editor [6] is a solution internally
developed for the game Margonem as a part of its world
editor, later released to the public. The software makes it
possible to create top-down maps for the game using a
predefined set of tiles. The map Editor offers eight layers to
place tiles one by one, in rectangle batches, or by filling a
space with one type of tile. It also provides a functionality
that allows users to automatically connect selected tiles
placed using a provided tool. Despite the tools it offers,
the Margonem Map Editor is considered slow and not very
practical for map creation. The user cannot quickly create a
map according to their vision as each tile (or a group of tiles)
needs to be placed individually. Complexmap formations still
require a significant time investment.

A similar issue can be seen in other publicly available
software such as MapForge [4]. MapForge is map-making
software, but it focuses on tactical battle-maps created
for traditional tabletop RPGs (played at a table, either in
person or virtually). It allows its users to create top-down
or isometric maps and is mainly for creating maps where
tiles can be placed disregarding the grid. Apart from the
available tiles, the software can paint shapes filled with
chosen textures, disregarding the grid entirely. Another
advantage that distinguishes MapForge is that the user can
simultaneously create day and night versions of a map.
However, making complex maps requires putting the tiles
together piece by piece, which is still a very time-consuming
process.

The same problem can be found in Tiled [12], one of the
popular solutions in this field. It focuses on two-dimensional
tiled maps utilizing a side, top-down and isometric per-
spective. Its basic functionalities include placing tiles one
by one, in groups or by filling a large area with one
type of tile, all applied to an unlimited amount of layers.
It also allows users to place previously prepared terrain
automatically, choosing the correct tiles based on selected
rules. Additionally, it supports many miscellaneous features
such as tile animations or collisions. The software still lacks
the ability to automatically create a full map which is not
random and can be easily shaped.

B. A ‘MISSING LINK’ IN THE MAP
DEVELOPMENT PROCESS
All the methods described above are useful for providing
the game developers with tools to allow them to shape the

101814 VOLUME 11, 2023



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

game map however they want. However, their attention to
details creates another problem, which we observed. Map
creation often starts with a general idea of a map that the
mapmaker later creates. Such an idea is usually not very
detailed, consisting of key remarks about the map and objects
placed on it. Large parts of the map are most often left to
the mapmaker’s discretion.While careful map detailing made
by humans is a process that our solution cannot replicate,
its strength lies in map prototyping and the creation of the
map baseline. Our method was developed to enhance this
key part of the map creation process by allowing the maps
to be fully generated with minimal effort from a mapmaker.
Using the previously described software, fast creation of the
full, complex map is not possible. Creating multiple map
prototypes becomes tiresome as each tile or group of tiles
needs to be placed individually. With our solution, not only
do we expedite the process of prototyping, but we also do
not lose attention to the details of handmade maps, as the
generated map can be used as a baseline for custom edits
by the map creators if they decide that the generated map is
missing something (for example, a specific object setup that
is impossible to replicate with a simple sketch).

C. AUTOMATIC GENERATION OF A GRAPHIC
BASED ON A SKETCH
Creating complex graphics based on a rough sketch is not a
new idea. The technique has gained popularity with the rise
of machine learning and image to image processing, as a way
to influence the created image with minimal human work
required. An example of such usage is shown in [8], where
an input of a sketch created with simple colours marked as
types of texture results in a detailed image of a terrain shaped
like the sketch. The idea is very intuitive, easily applicable,
straightforward for the graphic designer and constitutes a
basis for our approach.

III. TILES
A single tile is composed of two elements: an image
representing it and a set of restrictions limiting what
other tiles it connects to. While there are several ways of
introducing such restrictions, our approach uses a simple
system of four corners. A particular terrain type is assigned
to each corner of a tile, meaning that a full set of tiles for
connecting two terrain types will contain sixteen tiles (one
tile for each permutation). In order to correctly connect two
tiles together, two corners that are adjoined need to have the
same terrain type. Fig. 1 shows how the mechanism can be
applied.

A. DEPTH PERCEPTION IN TILED MAPS USING LAYERS
Top-down oblique-view maps achieve their perceived depth
by layering tiles and images. Objects that are higher on the
Y axis of the map (two-dimensional height) are also lower
on the Z axis (three-dimensional height). Thus, in order to
create a map one should put tiles and objects from the top to
the bottom of the map, so that objects at the bottom can cover

FIGURE 1. An example of of how the tile mechanism can be applied.
On the left, tiles with terrain signified by colour are presented. In the
middle, graphics for the tiles are presented. On the right, an example of a
tile-to-image substitution is provided, with coloured terrain map at the
top (without guidelines) and the final version of the map at the bottom.

objects and tiles at the top on themap.While creatingmaps by
hand map designers usually achieve that by having multiple
layers on which they place tiles. Layers are also used as a
separation tool separating some parts of the map from others,
if necessary. Our approach also uses layers but in a slightly
different manner. There is no problem with placing tiles from
the top to the bottom of a map, so we have distinguished
four layers that an image can comprise: ground, cliffs, paths
and objects. Such categorization makes it possible to create
complex maps with only four different inputs. The ground
layer is the only one which is always required for a map
as it contains the terrain which is the basis of the map and
other layers. The cliffs layer adds more verticality to the map.
It contains multi-levelled cliffs that can be put on the final
map. The paths layer adds details to created maps. It makes
it possible to put paths and patches of terrain that are not
necessarily ground terrain, or are impacted by cliffs. The last
layer contains various objects that can be placed on a map to
add visual flair and avoid it looking empty.

B. PROBLEMS WITH TILED MAPS
Creating maps from tiles is really compelling for game
designers since the style can be easily preserved and one
does not necessarily need to be a graphic designer to make
a map. However, there are some limitations. Firstly, maps
made using the method look blocky. Repeated tile patterns
can be easily seen in maps created from tiles. It is neither
good nor bad and can be viewed as an art style choice. From
the video game developer’s perspective, the tile system itself
and the number of tiles it requires can be seen as problematic.
Sixteen different tiles are needed for just two types of terrain;
adding only one more type of terrain puts the number at forty-
eight (with tiles that can only have two terrain types at most).
Going further, it is clear that the number of required tiles
grows exponentially: for example four types of terrain require
ninety-four tiles.

C. DEALING WITH TERRAIN PERMUTATION PROBLEM
In order to solve the problem of the exponentially growing
number of tiles, it is possible to simply not create some

VOLUME 11, 2023 101815



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

combinations to avoid it. It leads to a different problem
though: some combinations will not be available since
tiles for them will not be created. However, it is still a
much more manageable method. When manually creating
maps, the designer can simply avoid those combinations.
Things get more complicated when we want to create maps
automatically from a sketch.

The person who did the sketch might not necessarily be
aware of terrain combinations that have not yet been created
or might create a transitional terrain part that is too small,
which can get lost later in the translation step. In such cases,
rather than showing a blank tile, we assigned a height index
to each type of terrain. Then, we introduced a new restriction:
types of terrain can only have tiles connecting to other types
of terrains with a preceding or succeeding height index.
As a result, the number of tiles will grow linearly instead of
exponentially. For each newly added terrain type, one only
needs to create either sixteen or thirty-two tiles (the latter is
needed if the terrain is inserted between two existing terrains).

If our map creating algorithm detects terrains that do not
contain preceding or succeeding height indices, it creates
a minimal transition region between them. Starting from
the largest height index difference, it changes the tiles with
incompatible terrain types to ones with a terrain type whose
height index is the average of the incompatible ones. The
width of the transition region is proportional to the height
index difference.

IV. PROPOSED APPROACH
We propose an approach for creating tiled maps which
involves generating four distinct layers defined earlier in
Section III-A and then combining them to create the final
map.

A. REQUIRED INPUTS
The first three layers of the map require a similar input: one
sketch per layer. Each sketch must be of equal size and must
be composed of colours predefined for a particular layer. Each
colour represents a different terrain type and is applied to
help users create a sketch. Technically, it is not required to
assign the colour blue to water or the colour yellow to sand;
however, choosing a colour corresponding to a given terrain
type (i.e. a colour typically associated with said terrain in
real life) greatly facilitates creating and understanding the
sketches.

The last layer requires a list of objects that could be placed
on the map, along with settings for each individual object
specifying how it should be placed. The settings include:
an image or images of the object, its dimensions, terrain
type it should be painted on and its density. The algorithm
will then place objects on the map in accordance with their
settings.

B. SKETCH CONVERSION
The first step of the approach is converting a sketch provided
by the user into a form suitable for further work. It is done

on the first three layers of the map. To convert a sketch into
a workable terrain grid, one needs to segment the image into
rectangles that are half the width and half the height of one
single tile. Then, the most dominant colour of pixels in each
rectangle results in the rectangle’s terrain type. Combining all
these rectangles produces a terrain grid twice the width and
twice the height of the final tile map. It is a desirable outcome,
because four terrain points on the grid will later create one
tile. Fig. 2 illustrates an example of the sketch conversion.

FIGURE 2. An example of a sketch-to-grid conversion. The input sketch is
on the left. A grid made by means of sketch conversion is shown on the
right.

C. INITIAL STAGE OF A TERRAIN GRID
Having converted the sketch into a terrain grid, we reach
the initial stage. At this point, creating a layer from the
terrain grid will result in sharp, mismatched edges (see Fig. 3)
because tiles are structured in such a way that a smooth
transition is possible only when it happens inside the tile.
When a terrain grid is in the initial stage, the constructed tile
map does not follow the rules established in Section III, as the
terrain types on the corners of the tiles are mismatched.

FIGURE 3. Visualized problem of the initial stage with the map tiles
shown on the left and the map created directly from these tiles on the
right.

D. TWO RULES ALGORITHM
In order to repair the terrain grid, we propose a Two Rules
Algorithm. It is based on the basic principles formulated
in Section III, but it quantifies them in a more meaningful
and usable manner. The Two Rules Algorithm comprises the
Double Edges Rule and the Middle Rule, which were first
presented in [2], but are once again explained in this article
for the sake of clarity.

101816 VOLUME 11, 2023



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

Algorithm 1 The Two Rules Algorithm
Data: T : Pixel grid to be fixed
Result: Fixed pixel grid

Expand T by 2 pixels in every direction by
duplicating the edges;
for i in[0, 2, 4, . . . , length(T ) − 3] do

for j in[0, 2, 4, . . . , length(T [i]) − 3] do
DoubleEdgesRule(T [i, . . . , i+ 3, j, . . . , j+
3]);
MiddleRule(T [i, . . . , i+ 3, j, . . . , j+ 3]);

end
end
Shrink T by 2 pixels for every direction by removing
an edge on each side;

1) DOUBLE EDGES RULE
If the pixels on the edge of a tile are of the same colour
pairwise, and the pixels of the adjacent edge are also of the
same colour pairwise, these four pixels must be of the same
colour. To this end, the Double Edges Rule must be applied.
Since a smooth transition from one colour to another only
occurs when the colour change is present in the middle of a
tile and tile images are placed independently of one another,
the rule prevents sharp edges from appearing in the final
image. Fig. 4 illustrates the Double Edges Rules.

FIGURE 4. Graphic representation of the Double Edges Rule. Pixels
handled by the rule are highlighted on the left. An example input is
shown in the middle. The output produced by the algorithm based on the
given input is on the right.

2) MIDDLE RULE
The pixels in the middle of a given 2 × 2 tile set must be of
the same colour. TheMiddle Rule must be applied to this end.
If there are three pixels of the same colour, the fourth pixel
is changed to that colour. Otherwise, all four middle pixels
change their colour to the one that is the lowest amongst them,
i.e. the one that would be overwritten by all the other ones.
Fig. 5 presents how the algorithm works.

FIGURE 5. Graphic representation of the Middle Rule. Pixels handled by
the rule are highlighted on the left. An example input is shown in the
middle. The output produced by the algorithm based on the given input is
on the right.

E. CLIFFS LAYER
In order to properly create multilevel cliffs, it is necessary
to record their height, as it marks the level at which cliffs
can end. The transition from level zero (ground) to the
second level should take two single cliff heights, whereas the
transition from level zero to the fourth level should take four
single cliff heights. However, the transition from level two to
level four should take two cliff heights. Since input sketches
can mix and match different cliff heights, we need to take that
into account. To that end, we start from the bottom of the map
and work our way up to the top, counting and recording at
which level a given tile should be. That way, we can keep the
cliff height consistent. Fig. 6 demonstrates a map with one
cliff that has two different transitions. The red rulers count
how many tiles of height cliffs have. The left side of the cliffs
goes from level zero to level two and then from level two to
level four, while the right side goes from level zero to level
four. We exclude the top tile of a cliff from calculations, since
a cliff always requires at least two tiles to go up one level.

FIGURE 6. An example of a cliff with two different transitions. On the left
side, a transition from level zero to level two and then from level two to
level four. On the right side, a transition from level zero to level four. The
red rulers count the height of the cliff.

In order to additionally make the final product closer to
what the user might expect, heights that are too short (for
example, a fourth-level cliff that only spans one tile in height)
are extended so that they cover at least the minimum height
they should take. After that, we place the calculated tiles from
the top to the bottom of the map, from the shortest to the
tallest.

F. PATHS LAYER
Ground and cliffs have to already be created in order to make
a paths layer. Parsing input is identical to parsing the ground
layer. However, the process of transforming a terrain grid into
tile images is slightly different. Instead of simply choosing a
tile that is assigned to the combination of four terrain corners,
the tiles from the ground and cliffs layers have to be taken into
account. The combination of corner terrains constitutes the
tile combination (for example top left end of path when the

VOLUME 11, 2023 101817



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

corner terrain is on the bottom right), whereas the underlying
background establishes the tile type (for example a ladder on
a cliff or a muddy path on the grass). After calculating both
the combination and the file type, the correct tile is chosen
and placed. When creating a tileset, it is worth noting that
such tiles do not need to strictly follow the combinations
like the ground tiles and can be used with less restrictions,
for example, by having a full ladder tile regardless of the
underlying combination.

G. ADDING OBJECTS
The initial three layers need to be created first in order to
add objects to the final map. It is then possible to iterate
trough a list of objects and put them on the map when the
conditions are met. The conditions can include being able to
be added to the map only on certain top tile, only on certain
ground tile, or with a set density. When an object has been
put down, the tiles it occupies are marked as unusable for
other objects. After all objects have their designated places,
the algorithm adds their image (that can be randomly selected
from a predefined list) from the top to the bottom of the map.
Even if an object’s size is bigger than one tile, it is added to
the map in full on the row where its base is. This is how the
final map is made to appear three-dimensional, creating the
illusion that some objects are closer to the viewer than others.

H. COMBINING LAYERS TOGETHER
After all the layers are ready, the final image can be created
by simply combining them, with the new layers overwriting
the pixels of the previous ones. Since the ground layer
does not contain any transparency and other layers will
almost certainly contain some transparency, the result is
sophisticated maps with layers building atop the previous
ones. Fig. 7 illustrates the process of combining the layers
to create a map.

FIGURE 7. An example of combining layers together. From left to right:
the ground layer, the cliff layer, the paths layer, and the map created by
combining these three layers.

V. APPLIED IMPROVEMENTS
While the approach proposed in Section IV produces
satisfactory results, we can further enhance the images by
applying some techniques that do not directly modify the
core approach but insert an additional step into the process
of generating particular layers or automatically add a specific
configuration to them.

A. WAVES
The tileset we use contains a water-to-sand transition that
has waves expanding to the second water tile. Creating a

map without adding them would result in slightly sharp
edges in the water. In order to prevent this, we developed
an additional step to be executed after the ground map is
generated. It iterates through the whole map and verifies if
the currently analysed tile is a water-transition tile and if there
is an empty water space on its side. If both conditions are
fulfilled, a half-transparent water edge is inserted onto the
water. The fact that it is half-transparent is important here as it
makes it possible to combine several edges on one tile. Fig. 8
features an example of a map before and after the technique
is applied.

FIGURE 8. An example of applying wave improvement. A map before the
proposed technique is applied is shown on the left and the same map
after waves have been added is on the right. Note the unnatural, sharp
edge in the place where the sand meets the water on the left.

B. CLIFFS IN WATER
The process of creating cliffs produces cliff bases which are
unattractive when placed on deep water. In order to solve
this issue, we add objects of cliffs going into the water to
the object list while creating the last layer. When the ground
terrain is deep water and the top tile is a cliff base, a proper
image is inserted resulting in a smooth transition. Fig. 9 shows
a map before and after the watered cliff base objects are
applied.

FIGURE 9. An example of applying the improvement of cliffs in water.
A map before adding cliff transitions is shown on the left. On the right,
the same map after cliff transitions have been added. Note the smooth
cliff transition to the water on the right.

VI. EXPERIMENT
We have evaluated the similarity between handcrafted maps
and maps created using our approach. To this end, we devel-
oped an experiment utilizing a questionnaire. Interviewees
were shown maps of different origins and were tasked
determining their respective origin. The experiment we
carried out does not compare performance metrics with

101818 VOLUME 11, 2023



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

FIGURE 10. Seven maps created by hand, using only GIMP, labelled 1 to 7.

similar methods because methods that achieve similar final
results automatically given the equivalent input data do not
exist yet. The structure of the experiment comes from the lack
of baseline methods that could be used for comparison.

A. DATASET
The dataset used in the experiment contains seven maps
created utilizing the approach proposed in this paper as well
as a control group of seven maps created by hand with the
image editor GIMP [1]. All of the maps were created using
the same tileset. Fig. 10 features the maps created by hand
whereas the maps created using our approach are presented
on Fig. 11. It is noteworthy that it took significantlymore time
to createmaps by hand than using the proposes approach: four
to five hours and thirty minutes respectively.

FIGURE 11. Seven maps created using the proposed approach, labelled
8 to 14.

Each of the fourteen prepared maps is based on a different
sketch. The direct comparison of the same map made by a
human and the equivalent made by the proposed approach
was intentional. That is because, due to the use of tiles,
both maps will look almost identical if the human mapmaker
accurately depicts the sketch. The only difference between
them would be in object placement. A human would most
certainly place objects in more specific patterns than the
simple algorithm used in our approach. If we would then
use those almost similar maps in the experiment, the results
would be inaccurate since the participants would directly
compare two maps and decide which one is human-made
based on the randomness of the object placement and not
by taking the map as a whole at face value. That is why we
choose maps based on different sketches while trying to keep
them similar in form and complexity.

B. PARTICIPANTS
The participants were informed that the results of the
questionnaire will be used as a part of the research and agreed
to participate in it based on this assumption. The experiment
participants divided themselves into two groups by answering
a question about their previous contact with the Margonem
gamemaps. This distinctionwasmade in order to test whether
knowing the tileset helps to correctly determine the origin of
a map.

C. PROCEDURE
The order the maps were shown to the interviewees
was established using random.org [10]. We used its list
randomizer tool to arrange the maps in a truly random order.
Eachmapwas accompanied by a scale which the interviewees
used to determine their certainty about the origin of the map.
The scale was as follows:

1) ‘‘I am certain this map was created by the algorithm’’
2) ‘‘I think this map was created by the algorithm’’
3) ‘‘I cannot determine the map’s origin’’
4) ‘‘I think this map was created by hand’’
5) ‘‘I am certain this map was created by hand’’

VII. RESULTS
The questionnaires were completed by 31 interviewees. 25 of
them stated that they had previously seen theMargonemgame
maps, while six (6) of them stated they did not. We used two
metrics that were calculated from the answers, both related
to the similarity between the handcrafted maps and the maps
created using our approach. The first metric is the percentage
of correct answers (details are given in the next subsection)
and the second one is the percentage of answers which a
particular interviewee was certain about.

A. ACCURACY OF THE APPROACH
In our experiment we assumed the accuracy of the approach
as a degree to which interviewees chose the correct answer.
It was considered a correct answer is an answer when the
interviewee properly identified the origin of the map and
selected ‘‘I think’’, or ‘‘I am certain’’ for that origin. The
accuracy is presented on Fig. 12. The average accuracy of
the approach was 48% for all of the interviewees, with 52%
for the interviewees who had seen the game maps previously,
and 35% for the interviewees who had not.

B. CERTAINTY OF THE ANSWERS
In order to determine the certainty of the answers based on the
results, we first calculated the number of the ‘‘I am certain’’
answers and then calculated how many of them were correct.
Fig. 13 presents the results. The average certainty was at 38%,
i.e. the interviewees answered ‘‘I am certain’’ to 38% of the
questions. 59% of those answers were correct, which means
22%of the answers were both certain and correct. If we divide
the interviewees into two groups, one that had seen the game
maps and a second one that had not, the first group’s certainty

VOLUME 11, 2023 101819



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

FIGURE 12. The percentage of users who correctly identified the origin of the map. Maps from 1 to 7 were handcrafted, whereas
maps from 8 to 14 were created using our approach.

was at 39%with 63% correct answers, which means that 25%
of the answers were both certain and correct. The second
group’s certainty was at 36% with 28% of their answers
correct, which means that 10% of the answers were both
certain and correct.

C. DISCUSSION
The extracted average results are presented in Table 1. The
experiment results show a similarity between the handcrafted
maps and the maps created using our approach. The accuracy
of answers is close to 50%, meaning that the interviewees
were as likely to correctly identify a map’s origin as they were
to identify it incorrectly or to not be able to identify it at all.
KnowingMargonem helped, since the interviewees whowere
not familiar with the game had a significantly lower chance
of identifying the map’s origin correctly.

The interviewees who had seen maps from the game before
showed a similar level of certainty in their answers as the
ones who had never been acquainted with them. However,
the former were correct in their assumptions twice as often.
Nonetheless, only 25% of the answers given by the group
familiar with the maps from Margonem were both certain
and correct, which is low number, statistically. Therefore,
we conclude that it is within reason to state that the approach
proposed in this paper is successful in creating maps that do
not differ from handcrafted maps to any significant degree.

When analysing the obtained results, we noted that map 2
is an outlier in the percentage of correct identifications and
has the highest incorrect ‘‘I am certain’’ response ratio.
While looking at the map in question, it indeed can look
blocky and geometric — attributes usually associated with

TABLE 1. Average combined results of the questionnaires.

automatically generated maps, which might explain the
incorrect identification. Themap 5 was another outlier, which
had a high correct identifications rate and was the only map
that had no incorrect ‘‘I am certain’’ responses. This map
contains a really thin path that looks like it might be hard to
replicate with an algorithm, which would explain no ‘‘I am
certain this map was created by the algorithm’’ responses.

VIII. TIME ASPECT
One of the key aspects of the approach presented in this paper
that was not tested by the questionnaire is howmuch time can
be saved when creating maps using the approach as compared
to creating maps manually. This factor is hard to measure,
since it is significantly more time-consuming to create a more
detailed map by hand than a simpler one. In addition, the
time spent depends on what software is used, as map-making
software can provide various means to expedite map creation.
However, it is noteworthy that it took substantially less time
to make the maps for the experiment employing the proposed
approach than to make them by hand in an image editor.
It took four minutes to create the most complex map for
the questionnaire using our approach (see Fig. 11, map 8).

101820 VOLUME 11, 2023



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

FIGURE 13. The percentage of users who responded that they were sure of the map’s origin. Maps from 1 to 7 were handcrafted,
whereas maps from 8 to 14 were created using our approach.

On the other hand, the most complex hand-made map (see
Fig. 10, map 6) took more than thirty minutes to complete.
For the least complex maps, the least complex hand-made
map (see Fig. 10, map 1) took five minutes to create, while
the least complex map created using the presented approach
(see Fig. 11, map 14) took about thirty seconds.
The other interesting observation made when creating the

maps for the questionnaire was that in the process of creating
maps by hand, the layout of the map was often visualized
with a sketch before the tiles were actually put on the map.
A similar sketch could be used to create a map using the
presented approach, saving the time that would otherwise be
spent placing the tiles by hand. What is more, our approach
makes it possible to quickly iterate on ideas as the actual time
needed to generate a map is negligible and consistently below
five seconds for reasonably sized maps, like the ones used for
the questionnaire.

IX. CONCLUSION
This paper presented an approach for creating ground level
maps in two-dimensional, top-down digital role playing
games. Maps are divided into four layers, each with its own
input. Each layer is treated as separate before all of them
are merged to create the final map. The first three layers use
rough colour sketches provided by the user as input. They are
then converted into terrain grids which are modified using
the developed algorithms. The last layer uses a simple list
of objects and conditions for adding them. All of the layers
are merged to create the final map. We determined that the
resulting maps do not differ from handcrafted maps to any
significant degree.

The presented novel approach is based on a sketch given by
a user and works in real time, which allows game developers
to save time by expediting the process of map creation in a
way that was not possible before. It is especially useful for
map prototyping and quickly creating a base map to work on,
features that we found lacking in the existing solutions. There
are no similar methods for tiled map creation that have been
developed so far.

In the future, more extensive tests of the proposed method
using objective evaluations to measure its robustness, speed,
and performance of generated maps are assumed. The
tests will include cooperation with both players and map
developers in order to confirm the effectiveness of the method
at different stages of the typical RPG map lifecycle (its
creation and then usage by players). Additionally, we are
planning to develop a solution that would make it possible
to create a non-linear colour height map. Currently, terrain
colours can have borders with no more than two other
colours. Hypothetically, an ideal solution would remove this
constraint without having to deal with the terrain permutation
problem, explained earlier in Section III-C.

REFERENCES
[1] (Dec. 30, 2022). GIMP—GNU Image Manipulation Program. [Online].

Available: https://www.gimp.org/
[2] K. Kaczmarzyk and D. Frejlichowski, ‘‘An algorithm for automatic

creation of ground level maps in two-dimensional top-down digital role
playing games,’’ in Computer Vision and Graphics, L. J. Chmielewski and
A. Orłowski, Eds. Cham, Switzerland: Springer, 2023, pp. 213–222.

[3] (Feb. 14, 2023). Make Your Own Game With RPG Maker. [Online].
Available: https://www.rpgmakerweb.com/

[4] (Dec. 12, 2022). MapForge—Battlemap Creation Software for Windows
and MAC. [Online]. Available: https://www.mapforge-software.com/

VOLUME 11, 2023 101821



K. Kaczmarzyk, D. Frejlichowski: Automatic Creation of Tiled Maps in Two-Dimensional Top-Down DRPGs

[5] (Dec. 30, 2022). Margonem MMORPG. [Online]. Available:
https://www.margonem.pl/

[6] (Dec. 30, 2022). Nasze Mapki 2—Forum—Margonem MMORPG.
[Online]. Available: https://forum.margonem.pl/?task=forum&show=
posts&id=493129

[7] (Feb. 14, 2023). Oxford Advanced Learner’s Dictionary. [Online]. Avail-
able: https://www.oxfordlearnersdictionaries.com/definition/english/role-
playing-game?q=role+playing+games

[8] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, ‘‘Semantic image synthesis
with spatially-adaptive normalization,’’ 2019, arXiv:1903.07291.

[9] M. Prachyabrued, T. E. Roden, and R. G. Benton, ‘‘Procedural
generation of stylized 2D maps,’’ in Proc. Int. Conf. Adv. Comput.
Entertainment Technol., New York, NY, USA, 2007, pp. 147–150, doi:
10.1145/1255047.1255077.

[10] (Dec. 30, 2022). Random. org—List Randomizer. [Online]. Available:
https://www.random.org/lists/

[11] (Dec. 30, 2022). Steam Store. [Online]. Available: https://store.
steampowered.com/

[12] (Dec. 30, 2022). Tiled | Flexible Level Editor. [Online]. Available: https:
//www.mapeditor.org/

[13] E. J. Toy, J. V. H. H. Kummaragunta, and J. S. Yoo, ‘‘Large-scale
cross-country analysis of steam popularity,’’ in Proc. Int. Conf.
Comput. Sci. Comput. Intell. (CSCI), 2018, pp. 1054–1058, doi:
10.1109/CSCI46756.2018.00205.

KRZYSZTOF KACZMARZYK received the B.Eng.
degree in computer science from theWest Pomera-
nian University of Technology, Szczecin, in 2023.
His current research interests include tiled maps
and image generation.

DARIUSZ FREJLICHOWSKI received the M.Sc. degree in engineering and
the first Ph.D. degree in computer science from the Szczecin University
of Technology, Poland, in 2001 and 2005, respectively, and the second
Ph.D. degree in computer science from the West Pomeranian University
of Technology, Szczecin, Poland, in 2012. He was a Ph.D. Student
(2001–2005), a Research Assistant (2005–2006), and an Assistant Professor
(2006–2008) with the Faculty of Computer Science and Information
Technology, Szczecin University of Technology. From 2009 to 2019, he was
anAssistant Professor with the Faculty of Computer Science and Information
Technology, West Pomeranian University of Technology, where he has
been an Associate Professor, since 2019. From 2008 to 2012, he was
the Head of the Department of Internet Technology. From 2012 to 2016,
he was the Deputy Dean for Science and Development. From 2016 to 2019,
he was the Head of the Department of Medical Informatics. He is the
author of three books and more than 120 articles. His research interests
include image analysis and processing and recognition in many topics
and applications, e.g., shape description and recognition, fusion of various
features representing an object of interest, content based image retrieval,
computer games, applications of image extraction and recognition methods
in erythrocyte recognition, trademark recognition and retrieval, airplane
silhouettes recognition, ear biometrics, binary images compression, 3-D
shapes, localization of vehicles, license plates recognition, and color and
shape fusion for CBIR. Since 2016, he has been a member of the Governing
Board of the Association for Image Processing (Polish Member Society
of the IAPR—International Association for Pattern Recognition). In 2018,
he received the Bronze Cross of Merit for his achievements in scientific
works. He was the Editor-in-Chief of the Journal of Theoretical and Applied
Computer Science (Polish Academy of Sciences).

101822 VOLUME 11, 2023

http://dx.doi.org/10.1145/1255047.1255077
http://dx.doi.org/10.1109/CSCI46756.2018.00205

