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ABSTRACT Fog computing is a decentralized computing infrastructure that extends the capabilities of cloud
computing closer to the edge of the network. In a fog computing network (FCN), computing resources, such
as processing power, storage, and networking, are distributed at various points in the network, including
edge devices, fog nodes (FNs) such as access points, gateways, and local servers. This architecture allows
resource-limited end devices to offload part of their computational tasks to nearby FNs to achieve the reduced
response delay services and energy efficiency. However, the high dynamics and complicated heterogeneity
of fog computing environment in many application scenarios result in the uncertainty of network information
that is raised as a critical challenge to design efficient computation offloading strategies. Meanwhile, existing
solutions such as centralized optimization, matching and game theory-based decentralized offloading are
inadequate to be adopted in this context because they require the perfect knowledge of system parameters.
Considering as a promising approach to deal with the information uncertainty issues, bandit learning has used
recently to develop distributed computation offloading (DCO) algorithms for the FCNs. In this paper, we aim
at reviewing such of these state-of-the-art DCO solutions and elaborate their advantages and limitations.
Additionally, we identify open research challenges and provide future directions for research in this area.
Our survey shows that bandit learning is a promising approach for efficient computation offloading in
fog computing, and we expect that future research will continue to explore its potential for improving the
performance and energy efficiency of fog computing-enabled systems.

INDEX TERMS Fog computing network, distributed computation offloading, multi-armed bandit (MAB)
learning, reinforcement learning, non-stationary bandit, contextual bandit, non-contextual bandit, resource
allocation.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
The rise of advanced technologies such as the Internet of

mobile applications that require ultra low latency, such
as real-time face recognition and augmented reality [1].
However, end devices with resource and computation lim-

Things (IoT), wireless communication, and Artificial Intelli-
gence (Al) has led to the emergence of computation-intensive
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itations are unable to meet these requirements, creating
a contradiction that requires new classes of alternative
solutions.

So far, cloud computing still has been an essential
solution to this problem because it provides powerful
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resources to support the task computation efficiently through
different on-demand services (i.e., PaaS, IaaS, SaaS) [2], [3].
However, cloud computing-based solutions are inadequate
to satisfy the expected quality of service (QoS) and quality
of experience (QoE) requirements for certain types of
latency-sensitive applications because of the long physical
distance between the end devices and the remote cloud
servers, scarce spectrum resources, and intermittent network
connectivity.

Fog computing is one such technology emerged to address
this issue by moving communication, computing, control,
and storage capabilities from the cloud to the edge of the
network to support geographically distributed, latency sensi-
tive, and QoS/QoE-aware IoT services and applications [4].
Originally, fog referred to as From cOre to edGe computing
was defined by Cisco to extend the cloud computing to
the edge of the network [5]. Technically, fog computing
is a highly virtualized platform integrated and deployed in
the edge network devices (called fog nodes (FNs)) such as
gateways, switches, and hubs providing computing, storage,
and networking services between end devices and the cloud
computing [6]. With this architecture, the resource-limited
end devices can offload part or whole computation tasks to
the nearby FNs to experience the low latency services [7]
as well as achieve the energy efficiency [8]. In addition,
fog computing networks (FCNs) formed by networking FNs
can further provide high-performance computing services
through resource sharing mechanisms and collaborative
services architecture [9]. However, deciding when and where
to offload computation tasks in fog computing environments
is a challenging problem, as it involves considering multiple
factors such as the availability and reliability of FNs, the
energy consumption of mobile devices, and the latency
requirements of applications [10].

There are a large number of centralized optimization
techniques and algorithms proposed in the literature to
provide optimal solutions to the aforementioned resource
allocation problems [11]. However, these solutions require a
centralized control to gather the global system information,
thus incurring a significant overhead and computation com-
plexity of algorithms. This complexity is further amplified
by the rapidly increase of density and heterogeneity of
FCNs [12] when dealing with combination integer program-
ming problems [13].

The aforementioned limitations of optimization have lead
to a second class of game theory based offloading solu-
tions that can avoid the cost-intensive centralized resource
management as well as substantially reduce the complexity
of algorithms [14], [15]. In this type of algorithms, task
offloading is modeled as a non-cooperative game between
task nodes (TNs that are FNs having computation needs)
and helper nodes (HNs that are FNs with spare computing
resources) POMT [16] and POST [17]. To obtain the TN-to-
HN pairing in distributed manner, each TN constructs its own
best response function taking account into the performance
objective (i.e., delay reduction) and the behaviors of other
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players using only local information. When the players (TNs)
are mutually best responding, the system reach a Nash
equilibrium (NE). Despite their potentials in terms of
efficiency and low computation complexity, these approaches
pose several limitations. First, classical game theoretical
algorithms such as best response require some information
regarding actions of other players [18]. Correspondingly,
many assumptions are introduced in the game theory based
algorithms to simplify the system models that, in some
case, are impractical. Second, most game-theoretic solutions,
for example, NE, investigate one-sided stability notions in
which equilibrium deviations are evaluated unilaterally per
player [19]. In addition, the stability must be achieved by
both sides of players (i.e., resource providers and resource
requesters) in the context of fog computing environment.

Ultimately, managing resource allocation effectively in
such a complex fog computing environment leads to a
fundamental shift from the traditional centralized mechanism
toward distributed approaches. Recently, matching theory has
emerged as a promising technique for solving offloading
problems in the fog computing because it can alleviate
the shortcomings of game theory and optimization-based
approaches [20], [21], [22], [23]. Basically, matching theory
provides mathematically tractable solutions for the combi-
nation problem of matching players in two distinct sets,
depending on the individual information and preference
of each player. Following the deferred acceptance (DA)
procedure, the matching game between the two sides of
players achieves the stability in a distributed manner [24].
Alternatively, the matching-based approaches have potential
advantages over the optimization and game theory based
solutions owing to the distributed and low computational
complexity algorithm.

However, most of aforementioned solutions assume the
information regarding the resource states of fog computing
nodes are known a priori, which is not realistic in many
practical applications. For example, the TNs are likely
to be uncertain about the computing resources (i.e., CPU
frequency, queuing delay) of HNs at time of offloading
decision since it may be varying over time. Therefore,
to efficiently offload the tasks in an online manner, the TNs
must interact iteratively with the HNS to learn their unknown
computing resource status. To address this problem, multi-
armed bandit (MAB) learning has emerged as a promising
technique for making optimal offloading decisions in fog
computing environments. Bandit learning algorithms use
a trial-and-error approach to learn the optimal offloading
policy by iteratively exploring and exploiting the available
options [25]. This approach can handle the dynamic and
uncertain nature of fog computing environments and provide
efficient and effective offloading decisions [26]. Bandit
learning algorithms are a class of reinforcement learning (RL)
algorithms that are designed to handle decision-making
problems in which a decision-maker must repeatedly choose
among multiple options with uncertain outcomes. In dis-
tributed computation scenarios, bandit learning can be used
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to allocate computing resources among multiple tasks and
devices in an efficient manner. Bandit learning algorithms
can dynamically learn from the results of previous decisions
and adjust their resource allocation strategies accordingly,
in order to optimize the overall performance of the system.
Bandit learning has been used to develop efficient decision
making strategies in a wide range of applications, including
online advertising [27], recommender systems [28], job
market matching [29], spectrum scheduling in wireless
networks [30], task and job scheduling in autonomous
systems [31]

B. CONTRIBUTIONS
The key contributions of paper are summarized as follows:

« This paper provides a fundamental concept and architec-
ture of FCNs as well as states the generic computation
offloading problem for the FCNs, that is inadequate to
be solved by optimization based solutions with prior
knowledge of network parameters assumed.

o This paper then aims at reviewing the state-of-the-art
algorithms for DCO using bandit learning to deal with
the information uncertainty of networks. The review also
focuses on elaborating the advantages and limitations of
proposed solutions.

« Additionally, we identify the open research challenges
and future research directions, which have not been
concerned in the existing literature.

C. OUTLINE OF PAPER

The rest of this paper is organized as follows. In Section II,
we introduce the model of FCNs, typical computation
offloading models, and generic optimization problem of
computation offloading. IN Section III, we briefly introduce
the concept of bandit learning and typical algorithms to
solve the MAB problems. Section IV focuses on review-
ing and elaborating the distributed computation offloading
algorithms based on the bandit learning. Section V discus
the remaining challenges regarding the development of
bandit learning based offloading algorithms in different
scenarios. Section VI explores the open research issues.
Finally, Section VII summarizes and concludes the paper.

D. NOTATIONS

For the sake of readability, Table 1 summarizes the list of
abbreviations adopted in this paper.

Il. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

A. FOG COMPUTING NETWORK

A generic architecture of fog-based IoT systems and CPS
can be viewed as a three layer structure as shown in Fig. 1.
The lowest level of the hierarchy termed as end device
layer includes all network-connected physical devices such
as mobile phones, tablets, sensors, actuators, and vehicles.
Their primary function is to detect various events and send
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TABLE 1. List of Abbreviations.

Symbols  Definitions

IoT Internet of Thing

CPS Cyber-Physical System
FN Fog Node

FCN Fog Computing Network
VEC Vehicular Fog Computing
MEC Mobile Edge Computing
UDN Ultra-Dense Network
WSN Wireless Sensor Network
QoS Qualit of Service

QoE Quality of Experience
TN Task Node

HN Helper Node

UCB Upper Bound Confidence
TS Thompson Sampling
MAB Multi-Armed Bandit
CMAB Combinatorial MAB
BCO Bandit Convex Optimization

Cloud Layer

Fog Tier-2 Fog Tier-3
Fog Layer

Fog Tier-1

End Device Layer

Phone Surveilance Laptop Tablet Actuator Sensor Vehicle J

Vertical Fog Communication Horizon Fog Communication

<«—>» Fog- Cloud Communication <«—>» Fog- End Device Communication

FIGURE 1. An illustrative N-tier model of FCNs integrated in loT systems
and CPS.

the unprocessed data they sense to the upper layer in the
hierarchy. The second layer placed between the edge and
cloud computing layers, commonly referred to as the fog
computing layer, consists of smart devices such as routers,
gateways, switches, and access points, that have the ability
to process, calculate, and store received data temporarily.
Typically, there are multiple tier (N-tiers) of fog nodes (FNs)
structured in the fog computing layer of IoT systems and
CPSs to execute the applications [32]. FNs can connect
together through wired and wireless links to form a mesh
network, hereafter termed as fog computing network (FCN)
that enables load balancing, fault tolerance, resilience, data
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sharing, and reduces cloud communication. Architecturally,
this requires that FNs must have the capability to commu-
nicate horizontally (peer-to-peer or east-to-west) [33] and
vertically (north-to-south) within the fog hierarchy. In addi-
tion, FNs must be able to find, trust, and utilize services
provided by other nodes to maintain reliability, availability,
and serviceability (RAS) [34]. These fog computing devices
are connected to the cloud infrastructure and are tasked with
periodically transmitting data to the cloud.

At the topmost tier of this architecture lies the cloud
computing layer, which is comprised of numerous powerful
servers and data centers with the capacity to process and store
vast amount of data.

B. COMPUTATION OFFLOADING MODELS

There are many models introduced in the literature to
perform the computational offloading operations in FCNs.
Depending on the application scenarios, the models are
established appropriately to support the systems to achieve
a single objective or multiple objectives simultaneously such
as minimization of total energy consumption, minimization
of offloading delay, and maximization of resource utilization,
and fairness and balance of workload. Fundamentally,
an offloading model takes into account multiple factors
including the system architecture, the task properties to derive
efficient algorithms, that determine offloading locations,
times to offload, and how a task is offloaded (how data of task
is handled). In the following paragraphs, we summarize and
discuss these relevant aspects to highlight the key features of
popular offloading models in the literature.

Regarding the offloading locations, there are two major
classes of offloading models including intra-layer and inter-
layer offloading. The former refers to models that the
offloading operations take place in the same layer, whereas
the later involve multiple layers (e.g., between IoT and fog
layer, between fog and cloud). Concretely, the computational
offloading processes can take place only within a stratum
of IoT-Fog-Cloud systems where the computing devices in
the same tier (e.g., the IoT, fog, and cloud tier) can share
their available resources to handle the tasks cooperatively.
Recently, the advance of technologies can equip with modern
IoT devices more features regarding powerful resource,
computing capability to process tasks locally. In combination
with the emergence of device-to-device (D2D) communi-
cation technologies, the computational offloading between
IoT devices is pervasive in the future fog computing-enabled
systems. In the same sense, the tasks can be offloaded within
the fog layer and cloud layer, mainly to balance the workload
as well as improve the resource utilization [35]. However,
the heterogeneity of FN types exposes a challenge of
communication between them. It requires unified middleware
and protocols to enable fog-to-fog communication and
collaboration such as FRAMES developed in [33] to jointly
offloading the tasks. Otherwise, FNs can communicate via
a centralized agent such as FSP or brokers in their fog
domains.
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In most of application scenarios, the offloading processes
involve multiple layers. For example, as per [7], a task
generated by an IoT device can be processed by itself locally
or offload to a FN or the cloud finally. As demonstrated
by simulation analysis, the offloading locations for tasks
should be flexible with respect to the task type to get the
benefit of offloading operations. Concretely, the heavy tasks
should be offloaded to the cloud tier, while the medium
tasks are processed by FNs. In addition, the light tasks can
be computed locally by IoT devices if they have sufficient
resource or offloaded to FNs, otherwise. As the tasks can
be splittable, one part of task can be processed by IoT node
and the other by the fog or cloud. Finally, there exist several
application scenarios, in which the upper layers require
the lower layers to execute the task. Theses uncommon
offloading models include cloud offloading to fog/IoT and
end user devices, fog offloading to the IoT and end user
devices for specific purposes of applications [10].

The determination of times to offload tasks is an important
aspect in the offloading models. Generally, offloading is
needed when FNs are unable to process the tasks locally,
or processing them may not satisfy the QoS requirements.
Although the modern IoT devices and end user equipment
can process some types of tasks locally, the majority of
tasks (e.g., complex and heavy tasks, and sporadic tasks
emergency cases) generated in the IoT layer are offloaded
to the upper layers. However, the task offloading incurs
additional cost such as communication delay and energy
consumption. Therefore, the offloading model requires an
inclusion of mechanism to monitor the system performance,
traffic flow rates, network conditions that can support to
make the offloading decisions appropriately. For example,
the FOGPLAN framework in [36] can provide the dynamic
offloading strategies to adapt to the dynamic change of
QoS requirements. By observing and analyzing the task
processing queue of FNs constantly, tasks currently resided
in the processing queues of these FNs must be offloaded
to HNs if the predicted processing delays are no longer to
meet the deadlines of tasks. The network reliability is also
concerned in the fog networks since it directly impacts on the
communication delay of offloading processes [37].

The offloading models also specify how the input data of
tasks is offloaded and processed. Generally, a full offloading
method is applied for a task when its whole data is indivisible
and processed by a single HN. Conversely, as a divisibility
of task is enabled, a partial offloading scheme can be used to
offload a fractional part of task to HNs while the other part
of task is processed locally by TN. In the most of studies,
a task is assumed to be decomposed into two subtasks, thus
there needs only one HN to offload the subtask. As the
subtasks are totally independent, the task division is an
effective technique employed in the offloading models to
cope with the heterogeneity of computing device resources,
and simultaneously improve the performance of computing
operations. For example, according to the FEMTO model
in the work [38], each task is divided into two subtasks
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with different data sizes, which are then processed by the
IoT node and offloaded to the fog entity respectively. This
method contributes to minimizing the energy consumption
of task offloading while achieving the workload fair among
the fog nodes and satisfying the deadline constraints of
tasks. Similarly, the partial offloading is utilized in the task
offloading models for the heterogeneous fog networks to
reduce the task execution delay [17]. Dividing a task into
multiple (more than two) subtasks is also considered in [39]
to exploit the parallel computation of subtasks at different
FNs. As analyzed in [17], compared to the full offloading
model, the partial offloading offers more advantages in
terms of delay reduction, energy saving, resource utilization,
and workload balancing. The independence of subtasks
enabling the parallel processing of subtasks is obviously
a key to achieve these advantage. However, in practice,
some or all subtasks of a tasks can exist a data dependency
relation. For example, the output of a subtask can be
an input data for another subtask. Thus, completing the
task requires a subtask scheduling plan to with respect
to the subtak processing order. This in turn can impact
the performance of partial offloading models. For instance,
as evaluated and analyzed in [39], a number of subtasks for
a task can be optimized depending on the system context.
In addition, not all tasks should be divided because more
subtasks can probably lead to a coupling resource problem.
An offloading framework in FRATO is then introduced based
on many factors such as the FN resource status (e.g., queue
status, computing capability), task request rates, and task
properties (e.g., divisibility) to offer a dynamic offloading
policy.

As illustrated in Fig. 2, FRATO dynamically applies the
partial offloading and full offloading modes for the tasks
based on the queue status of FNs. In this way, FRATO is
able to significantly reduce the offloading delay as well as
improving the resource utilization, especially in cases of high
rate of task requests.

A similar investigation is presented in [33] that considers
three models of task processing, in which the subtasks can
be executed in sequential, parallel, and mixed processing
order.

C. OPTIMAL COMPUTATION OFFLOADING ISSUES

Denote C = {C;, Cj, Cg, ...} as the set of objective functions,
established by individual computing nodes (i.e., end devices,
FNs, or clouds) and by the system for the computational
offloading performance at a given time. Some of typical
objective functions concerned in the literature include total
consumption energy [40], average task execution delay [41],
total payment cost of resource usage [42], and fairness and
workload balancing index [43]. Moreover, there also present
objective functions of individual resources to indicate the
inherent selfishness and rational of computing nodes. These
kinds of objective functions are referred to as utility ones,
which correspond to the benefits and revenues of available
resource provision. Summarily, the generic optimization
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FIGURE 2. A dynamic computational offloading model is proposed in [39]
that integrates partial and full offloading to balance the workload in the
fog layer. The full offloading plan is used for task T3, while the subtask
Ty, of Ty, subtask T,; and T,, of T, are offloaded partially by F,, F,

and F3, respectively. T, is processed locally by F,.

problem in FCNs can be represented in the following
form:

P: min(C) &/ max(C)) &/ max(Cy) &/ ...
s.t.  Constraints. )

Depending on the application scenarios, the problem P can
be in form of single or multi-objective model. Regardless the
ultimate objectives of problems, the constraints involve the
resource competition, resource limitations, and task schedul-
ing. Concretely, a FN can receive multiple requests for
task offloading. However, only a certain number of requests
are accepted to be processed owing to the limitation of
resource such as limited buffer capacity, low residual energy.
Furthermore, scheduling the tasks in HNs is considered to
respect to the QoS requirements. From the global point of
view, the problem becomes a combinatorial problem, which
is proven to be NP-hard due to the natural presence of
coupling resource problems [44]. Therefore, achieving the
globally optimized solution is infeasible, especially in the
large-scale systems. In addition, there is an extensive cost of
overhead to collect the global information. These issues urge
the need to design the distributed algorithms to support the
computational offloading processes efficiently.

1Il. BACKGROUNDS OF BANDIT LEARNING
A. BANDIT LEARNING CONCEPT
Bandit learning is a type of reinforcement learning that
involves making decisions based on incomplete or uncertain
information [45]. It is a trial-and-error approach where an
agent learns to make decisions by exploring different options
and evaluating their outcomes. The name ‘“‘bandit” comes
from the idea of a gambler at a slot machine (known as a
“one-armed bandit™) who tries different options and learns
which one pays off the most [46].

In bandit learning, the agent selects an action based on the
information available at that time, and observes the outcome
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of that action. The agent then updates its knowledge about
the environment based on the observed outcome and selects
the next action accordingly. The goal of bandit learning is to
maximize the cumulative reward obtained by the agent over
a series of decisions.

Bandit learning has been used to develop efficient decision
making strategies in a wide range of applications, including
online advertising, recommender systems, task and job
scheduling in autonomous systems [30], [31]. In the context
of fog computing, bandit learning algorithms can be used
to make optimal offloading decisions by considering the
available options and their potential outcomes. By itera-
tively exploring and exploiting the available options, bandit
learning algorithms can provide efficient and effective
offloading decisions in dynamic and uncertain fog computing
environments [47].

B. BANDIT LEARNING ALGORITHMS
Bandit learning algorithms can be broadly categorized into
two types: contextual and non-contextual.

Non-contextual bandit learning algorithms, also known
as multi-armed bandit algorithms, involve selecting an
action based solely on the current state of the environment,
without considering any additional context or information.
These algorithms explore different actions and evaluate
their outcomes to gradually learn which actions provide
the best rewards. Examples of non-contextual bandit learn-
ing algorithms include Epsilon-Greedy, Upper Confidence
Bound (UCB), and Thompson Sampling (TS) [48].

Contextual bandit learning algorithms, on the other hand,
consider additional contextual information when selecting an
action [49], [50]. Contextual information includes features
such as user preferences, device capabilities, and network
conditions. These algorithms use this contextual information
to make more informed decisions and improve the accuracy
of their predictions.

Both non-contextual and contextual bandit learning algo-
rithms have their advantages and limitations. Non-contextual
bandit learning algorithms are simple and efficient, mak-
ing them well-suited for applications where computational
resources are limited. Contextual bandit learning algorithms,
on the other hand, can provide more accurate and personal-
ized recommendations by considering additional contextual
information. The choice of algorithm depends on the specific
application and the available resources of target systems.

IV. BANDIT LEARNING BASED DCO

ALGORITHMS IN FCNs

Generally, the DCO in the FCNs can be modeled as a
multi-armed bandit (MAB) or a multi-player MAB problem,
in which TNs and HNs serve as players and arms respectively.
This section emphasizes on summarizing and elaborating
the key bandit learning-based algorithms developed in the
literature for DCO in the FCNs. This review is divided
into two parts according to the two main types of bandit

104768

learning (i.e., non-contextual and contextual) used to design
the algorithms.

A. NON-CONTEXTUAL BANDIT LEARNING BASED
DISTRIBUTED COMPUTATION

The principle of bandit learning techniques can be used in
a family of bandit convex optimization (BCO) algorithms to
solve convex optimization problems in which the objective
functions and constraints are time varying [51], [52]. These
similar features are prevalent in the computation offloading
optimization problems of fog-based IoT systems where
the function of accumulated network delay (need to be
minimized) and long-term workload balancing constraints are
variant over time. Based on this investigation, the studies [53]
proposes a method for managing the task offloading problems
in the large-scale and dynamic IoT systems using BCO.
Concretely, a family of online bandit saddle-point (BanSaP)
schemes are developed, which adaptively adjust the online
operations based on (possibly multiple) bandit feedback
of the loss functions, and the changing environment. The
authors demonstrate the effectiveness of the proposed method
through simulations, showing that it can simultaneously
yields sublinear dynamic regret and fit in cases that the
best dynamic solutions vary slowly over time. In particular,
numerical experiments in the fog computing offloading
tasks corroborate that the proposed BanSap approach offers
competitive performance relative to existing approached
based on gradient feedback.

The main focus in [54] is on offloading computing tasks
in the context of IoT, where decision-making processes
need to be able to adapt to changing user preferences and
the unpredictable availability of resources. To address the
challenges of such human-in-the-loop systems where loss
functions are difficult to model, the authors developed a
family of bandit online saddle-point (BanSP) schemes. These
schemes adjust online operations based on bandit feedback of
the loss functions and the changing environment. The paper
evaluates the performance of BanSP by measuring dynamic
regret, which is a generalization of static regret, and fit, which
captures the cumulative amount of constraint violations.
The authors prove that BanSP can simultaneously achieve
sub-linear dynamic regret and fit, provided that the best
dynamic solutions change slowly over time. Numerical tests
on fog computing tasks demonstrate that BanSP performs
well even with limited information.

Concerning the execution of hard real-time tasks within
fixed deadlines in the IoT systems, the paper [55] introduces
a two-tiered framework to offload the tasks using the fog and
cloud computing instead of sensor nodes (SNs). To facilitate
the task processing, a directed acyclic task graph (DATG)
is formed by breaking down high-level tasks into smaller
subtasks. The tasks are initially offloaded to a nearby
FN using a greedy selection to avoid the combinatorial
optimizations at the SN, thus saving time and energy. As IoT
environments are dynamic, adaptive solutions are necessary.
An online learning scheme called e-greedy nonstationary
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MAB-based scheme (D2CIT) is proposed for task allocation
among FNs. D2CIT enables the selection of a set of FNs
for subtask distribution, parallel execution with minimum
latency, energy, and resource usage. Simulation results show
that D2CIT reduces latency by 17% and offers a speedup
of 59% compared to existing online learning-based task
offloading solutions in fog environments due to the induced
parallelism.

The paper [56] develops an online task offloading strategy
that minimizes the long-term cost that takes into account
factors such as latency, energy consumption, and switching
cost. To achieve this goal, a stochastic programming problem
is formulated, with the expectation that the system parameters
may abruptly change at unknown times. Additionally, the fact
that queried nodes can only provide feedback on processing
results after task completion is considered. To address these
challenges, an effective bandit learning algorithm called
BLOT is proposed to solve the non-stationary stochastic
programming problem under a bandit model. The research
also demonstrates the asymptotic optimality of BLOT in a
non-stationary fog-enabled network and presents numerical
experiments to justify the superior performance of proposed
algorithm compared to the baseline approaches.

The paper [57] proposes a learning-based approach for task
offloading in fog networks with the goal of reducing latency
for delay-sensitive applications. The approach integrates
Combinatorial MAB (CMAB) which is a generalization of
the classical multi-armed bandit (MAB) problem to find the
best set of arms to pull together, rather than finding the best
single arm to pull [58]. Initially, the algorithm being sug-
gested acquires knowledge of the shared computing resources
of fog nodes, with minimal computational expenses. Next,
the objective is to reduce the time taken for task offloading
by simultaneously refining the task allocation decision and
spectrum scheduling. Ultimately, simulation outcomes reveal
that the proposed approach surpasses the conventional UCB
algorithm with regards to delay performance and maintains
extremely low offloading delays in a dynamically evolving
system.

The authors in [59] also tackle the task offloading issues
but consider the case of vehicular fog computing (VFC). The
VEC environment with diverse modes of mobility introduces
unpredictability with regards to the availability of resources
and their demand, which create unavoidable obstacles in
making optimal decisions for offloading. Moreover, these
uncertainties pose additional challenges for task offloading
in the face of an oblivious adversary attack and the risks
associated with data privacy. The authors then have developed
a novel algorithm for adversarial online learning with bandit
feedback that leverages the principles of the adversarial MAB
theory. This algorithm is designed to facilitate efficient and
simple decision making for offloading by optimizing the
selection of FNs, with the goal of minimizing costs associated
with offloading services such as delay and energy usage.
Fundamentally, the proposed approach involves implicitly
adjusting the exploration bonus during selection, and incor-
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porating assessment rules that account for the volatile
nature of resource supply and demand. Theoretically, the
input-size dependent selection rule allows for the selection
of an appropriate FN without the need to explore sub-
optimal actions. Additionally, the appropriate score patching
rule facilitates quick adaptation to changing circumstances,
reducing variance and bias, and ultimately achieving a better
balance between exploitation and exploration. Simulation
results demonstrate the effectiveness and robustness of the
proposed algorithm.

The authors in [60] consider the task offloading in the
fog computing network with time-varying stochastic time of
arrival tasks and channel conditions. Due to the unavailability
of global knowledge of all fog nodes in practice, the problem
is modeled as a combinatorial multi-armed bandit (CMAB)
problem, without prior information about channel conditions
and stochastic task arrival characteristics. To address this
problem, the paper proposes the WFCUCB algorithm, which
extends the classical CMAB problem to include one i.i.d.
variable and one non-stationary random variable. The paper’s
numerical results demonstrate that the WFCUCB algorithm
is capable of fast learning and achieves superior performance
compared to other possible strategies.

Due to the highly dynamic environment of the vehicular
network, it is challenging to ensure that task offloading
delay is minimized. To address this issue, task replication is
introduced into the VEC system as proposed in the study [61],
where multiple replicas of a task are offloaded simultaneously
to several vehicles, and the task is considered completed once
the first response among the replicas is received. The impact
of the number of task replicas on the offloading delay is
examined, and the optimal number of task replicas is deter-
mined through a closed-form approximation. Using these
findings, a learning-based task replication algorithm (LTRA)
is developed using CMAB theory. The LTRA algorithm is
designed to operate in a distributed manner and can adapt
automatically to the VEC system’s dynamics. The proposed
algorithm’s delay performance is evaluated using a realistic
traffic scenario. The results show that, under the simulation
settings, the optimized LTRA algorithm with a specific
number of task replicas can decrease the average offloading
delay by more than 30% compared to the benchmark without
task replication while also improving the task completion
ratio from 97% to 99.6%.

The authors [62] also study the task offloading in the VFC
systems with uneven workload distribution and the reliability
of the communication between the FNs. In the work, they
utilized the concept of CMAB to facilitate the selection
of task offloading destinations in a distributed manner,
without overburdening system resources. This is achieved
by replicating tasks across multiple destination nodes and
selecting the optimal number of replicating nodes to ensure
reliability and minimize delay in a vehicular resource-sharing
environment. This approach also reduces overall system
residence time and enhances task delivery ratio by reducing
task failures. Additionally, redundant tasks are eliminated
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from node queues after receiving the first response from
candidate nodes in the surrounding area. They compared their
solution with other baseline approaches based on several
performance metrics, such as task residence time, end-to-
end delays, delivery rate, and utilization ratio. The simulation
results demonstrate that the proposed learning-based task
offloading solution effectively utilizes resources and ensures
its effectiveness over other approaches compared to the
algorithms presented in [61].

In the work [63], the authors present a new online
algorithm that formulates vehicular task offloading as a
mortal multi-armed bandit problem, enabling distributed
decision making on node selection. The algorithm leverages
contextual information of edge nodes and transforms the
exploration space from infinite to finite. Theoretical analysis
shows that the proposed algorithm has sublinear learning
regret, and simulation results confirm its efficacy.

B. CONTEXTUAL BANDIT LEARNING BASED
DISTRIBUTED COMPUTATION
The study presented in [64] addresses the problem of data
offloading in heterogeneous and dynamic fog computing-
enabled wireless sensor networks. The authors model the
data offloading problem as a contextual MAB problem that
uses the heterogeneity of sensor nodes (SNs) as contextual
information. The proposed algorithm for dynamic node
movement in urban environments has been enhanced to
ensure stable performance of the collaborative system despite
the complexities and changes of the urban environment.
By analyzing and simulating human movement data in such
settings, the proposed approach can effectively minimize
offloading delay and increase the success rate of offloading.
The work [65] studies the optimal computation offloading
problem in the mobile edge computing (MEC) integrated
ultra-dense networks (UDNs). proposes a new algorithm
for task offloading in ultra-dense networks. The typical
approaches for distributing tasks among multiple users
involve a central node that makes decisions regarding which
server to use and how to allocate resources. However, as the
number of users increases, this method becomes excessively
complicated, requiring significant communication overhead
and intricate global optimization procedures. This paper
introduces a new approach for distributing tasks among
users in a UDN by allowing them to make local task
offloading decisions independently. The goal is to minimize
the average delay of tasks among all users, which is achieved
by formulating an optimization problem. To accomplish
this, a novel algorithm called Calibrated Contextual Bandit
Learning (CCBL) is developed. This algorithm enables
users to learn the computational delay functions of micro
base stations and predict the task offloading decisions of
other users in a decentralized manner. The convergence of
the algorithm is verified using the approachability theory.
Additionally, a user-oriented version of the algorithm is
proposed to decrease computational complexity and increase
the convergence rate. Simulation results demonstrate that
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the proposed algorithm outperforms existing decentralized
algorithms and approaches the performance of centralized
methods.

V. CHALLENGES OF BANDIT LEARNING APPLICATIONS
FOR DISTRIBUTED COMPUTATION IN FOG COMPUTING
The overviewed studies in the literature show the effective-
ness of using the principle of bandit learning to design the
distributed computation algorithms in the fog computing.
However, there are still existing many challenges needed to
be tackled in variety of fog computing scenarios.

A. UNCERTAINTY

Inherently, fog computing environments are highly dynamic
and uncertain, which makes it challenging to predict the
resource availability and reliability of FNs. This uncertainty
can affect the accuracy of bandit learning algorithms and
make it difficult to make optimal offloading decisions.
In addition, uncertainty is caused from multiple sources such
as mobility of FNs, communication reliability between FNs,
operational reliability of FNs. However, there are no works
presented in the literature capturing the all dimensions of
uncertainty to design the efficient algorithms.

B. RESOURCE CONSTRAINTS

Fog nodes have limited computational and storage resources,
which can affect the performance and efficiency of bandit
learning algorithms. Therefore, it is important to design ban-
dit learning algorithms that can handle these constraints while
still providing accurate and efficient offloading decisions.

C. COMMUNICATION OVERHEAD

Offloading involves exchanging data and information
between mobile devices and fog nodes, which can result
in significant communication overhead. This overhead
can affect the performance and efficiency of offloading,
especially in large-scale fog computing environments.

D. HETEROGENEITY

Fog computing environments are highly diverse and het-
erogeneous, with different types of devices, sensors, and
fog nodes. This heterogeneity can affect the accuracy and
efficiency of bandit learning algorithms, as different devices
and nodes may have different capabilities and characteristics.

E. SECURITY AND PRIVACY
Offloading involves sharing sensitive data and information
across different devices and fog nodes, which can raise
security and privacy concerns. Therefore, it is important
to design bandit learning algorithms that can handle these
concerns and ensure secure and private offloading.
Addressing these challenges requires developing new
and innovative bandit learning algorithms that can handle
the dynamic and heterogeneous nature of fog computing
environments while still providing accurate and efficient
offloading decisions. Additionally, interdisciplinary research
is needed to address the security, privacy, and communication
challenges associated with offloading. Overall, overcoming
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TABLE 2. Summarization of bandit learing-based DCO algorithms in the FCNs.

Study Key Features of Algorithms Results Pros(+) & Cons(-)
. . - ) . (+) Competitive performance relative to existing approach
(53], [54] * Online bandit saddle-point (BanSaP) . igg:lﬁzs;gr}{(nzzltc regret and fit (+) Lower computation complexity
’ » Adaptively adjusting online offloading « Reduced latenc § (-) Best performance if dynamic environment vary slowly
y (-) Small network size
« Latency reduction 15% (+) Low computation complexity
(55] « Parallel computation for DATG tasks * Improved speedup 59% (+) Large network size
« e-greedy to select FNs for offloading * Energy efficiency (-) Network environment is static and unchangable
* Resource usage reduction (-) Resource conflict issues dot not be solved
« Stochastic modeling of network * Long-term cost reduction (+) Considering dynamic of network environment
[56] « Dicounted UCB for online learnin * Latency reduction (+) Regret bounded
g * Energy efficiency (-) Small network size (1 TN and 9 HNs)
* CMAB . . (+) Considering high dynamic change of environments
« Stochastic modeling of network . . RS
[57] . L . Offloading latency minimization (+) Better performance that UCB
« Joinly optimization of task allocation (-) Small network size
and spectrum scheduling
* Adversarial online learning with « Offloading delay minimization (+) Considering dynamic of environment
(9] bandit feedback * Offloading energy minimization (+) Scalable & low complexity
(-) No considering system-level regret-optimal aspect
* CMAB with UCB  Low latency compared to random, E:; Eg&szﬁnnnlge )((ii}t/nir?fl O(frﬁit;lvork environment
[60]  Vayrant of tasks and channel condition fixed offloading (+) Large netSV ork Zize &
* Learning fast * Near optimal performance (-) Resource con ﬂi;: ts do not be solved
(+) Consider information uncertainty of system
* CMAB with discounted UCB * Low residence time (+) Low complexity
[62] * Replicating tasks across multiple HNs « Enhance task delivery ratio (+) Fast convergence
(-) More overhead due to task replication
(-) Small network size
* Mortal MAB . . (+) Considering the change of arms (HNs)
« Incorporating contextual information . . .
. . * Sublinear learning regret (+) Low complexity
[63] into candidate arm * Low offloading latenc (-) Small network size
« Transform the infinite exploration & y S .
- (-) No considering the resource conflict
space to a finite one
(+) Considering high dynamics of networks
. (+) Low complexity
C.O ntextual MAB . . * Minimize offloading delay (+) Large network size
[64] * Linear contextual bandit data offloading ) = . P, . .
X . « Increase the success rate of offloading  (-) Reward distribution of arms (HNs) known
algorithm (LCBOD) based on the LinUCB () More overhead due to more
control information exchanged
(+) Considering high dynamics of networks
(+) Low complexity
[65] » Context MAB * Minimize long-term offloading delay (+) Large network size

« Calibrated learning

* Increase the success rate of offloading

(+) Fast converge rate
(-) More overhead due to more
control information exchanged

these challenges is essential for realizing the potential bene-
fits of distributed computation offloading in fog computing

using bandit learning.

VI. OPEN RESEARCH ISSUES

A. THOMPSON SAMPLING FOR BANDIT LEARNING

theory and TS-based bandit learning can improve the
fog-based system performance in terms of response delay

compared to the e-greedy and UCB algorithms.

Learning

+ Competition = Model

Generally, the empirical results demonstrates that the
TS-based bandit learning algorithm is better than e-greedy
and UCB algorithm in a long run [66]. However, there is no
existing work in the literature investigating the power of TS
technique in the bandit learning algorithm in the context of
fog computing.

B. BANDIT LEARNING WITH TWO-SIDED MATCHING

Matching theory has been investigated to be design the
efficient distributed algorithm for task computation in the fog
networks [21], [22], [23]. In addition, the matching theory
can be used to handle the resource conflict problems, where
multiple players attempt to pull an arm in the multi-player
MAB problems (see Fig. 3). The primary simulation results
as presented in [67] show that the combination of matching
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TNs learn preferences of HNs
while competing

FIGURE 3. Bandit learning based two-sided matching.

An emerging line of research is dedicated to the problem
of one-to-one matching markets with bandits, where the
preference of one side is unknown and thus we need to match
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while learning the preference through multiple rounds of
interaction [29]. However, in many real-world applications
of fog computing scenarios, a FN can serve multiple tasks
requested from other FNs, which motivates the study of the
many-to-one matching problem. For example, the TS-based
bandit learning can be used in many-to-one matching problem
in the matching market [68], [69].

C. ROBUSTNESS AND SCALABILITY

Bandit learning algorithms need to be robust and scalable
to handle the dynamic and heterogeneous nature of fog
computing environments. This requires developing new
algorithms that can handle large-scale and complex decision-
making problems while maintaining high accuracy.

D. SECURITY AND PRIVACY

Computation offloading involves sharing sensitive data
and information across different devices and fog nodes.
Therefore, it is essential to develop bandit learning algorithms
that can handle security and privacy concerns, such as
protecting sensitive data and ensuring secure communication
between devices and nodes.

E. HETEROGENEITY AND DIVERSITY

Fog computing environments are highly diverse and het-
erogeneous, with different types of devices, sensors, and
fog nodes. Therefore, bandit learning algorithms need to be
designed to handle this diversity and heterogeneity to make
optimal offloading decisions.

F. TRADE-OFF BETWEEN ACCURACY AND

RESOURCE CONSUMPTION

Bandit learning algorithms require significant computational
resources to make accurate decisions. Therefore, there is a
trade-off between accuracy and resource consumption that
needs to be addressed.

G. REAL-TIME DECISION-MAKING

In fog computing environments, decisions need to be made
quickly to ensure timely and efficient offloading. Therefore,
bandit learning algorithms need to be designed to handle real-
time decision-making to minimize delays and maximize the
efficiency of offloading.

VII. CONCLUSION

In conclusion, this survey paper has provided a comprehen-
sive overview of the use of bandit learning methods to develop
the distributed computation offloading algorithms for the fog
computing networks. We have reviewed the state-of-the-art
techniques for computation offloading decision-making and
highlighted the advantages and limitations of using bandit
learning in this context. Our survey has shown that bandit
learning algorithms can effectively address the dynamic
and heterogeneous nature of fog computing environments,
leading to improved performance and energy efficiency of
mobile devices. However, we have also identified several
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open research challenges, such as the need for more robust
and scalable bandit learning algorithms and the integration
of security and privacy considerations in offloading deci-
sions. Overall, the potential benefits of bandit learning for
distributed computation offloading in fog computing are
significant, and we believe that future research in this area
will continue to advance the state-of-the-art and enable the
development of more efficient and effective fog computing
systems.
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