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ABSTRACT For the estimation problem of multiple adjacent targets, the traditional correlation function
estimation method based on the matched filter (MF) is often limited by resolution, resulting in insufficient
estimation accuracy. Subsequently, an exponential filter (EF) with high resolution was constructed by
introducing a controllable exponent p into the frequency response function of the matched filter. In this
paper, we propose a sparse reconstruction and exponential filter-based estimation algorithm to estimate the
time delays ofmultiple targets. This algorithm uses the exponential autocorrelation function (the output of the
exponential filter) as a template and constructs a sparse overcomplete model of the time delays of the received
signal in the exponential correlation domain. An interior-point method based on l1-norm regularization is
then employed to solve the proposed overcomplete model. Notably, the proposed algorithm does not require
prior knowledge of the target number. Theoretical analysis and Simulation results demonstrate that, the
proposed algorithm can effectively reduce the coherence between adjacent targets and thus achieve high-
accuracy time-delay estimation. When the input SNR is higher than −24 dB, it has a higher estimation
accuracy for multi-target time delays (especially for adjacent targets) than the previous MF or EF based
time-delay estimation algorithms. Particularly, at high signal-to-noise ratios, the estimation error of the
proposed algorithm can approach the error bound of the time delays derived from the Cramér–Rao lower
bound; when the input SNR is higher than −4 dB, it achieves completely accurate estimation.

INDEX TERMS Sparse reconstruction, compressive sensing, time-delay estimation, exponential filter,
cross-correlation, l1-norm regularization.

I. INTRODUCTION
Time delay estimation is critical in various domains, such as
radar detection [1], sonar positioning [2], wireless communi-
cation [3], satellite communication [4], electronic equipment
and materials [5], and so on. Moreover, it has emerged
as a crucial area of research in related fields owing to
the challenges posed by complex environments in multi-
target time-delay estimation. The most traditional and effec-
tive algorithm for time-delay estimation is the correlation
function-based algorithm, which utilizes a renownedmatched
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filter (MF) [6], [7], [8], [9]. This class of algorithms has the
advantages of low computational complexity and high output
signal-to-noise ratios (SNRs). However, its target resolution
is constrained [6], [8], and the output (i.e., the correlation
function) often exhibits a broadmain peak and high sidelobes,
which can lead to peak overlap and large targets occlud-
ing small targets when adjacent multiple targets are present,
resulting in inaccurate estimates of multi-target time delays.

With the continuous advancement of information tech-
nology and the increasing demand for accuracy in
time-delay estimation, new theories and algorithms are
continuously being applied to multi-target time-delay esti-
mation problems in different environments with ideal
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effects [10], [11], [12], [13], [14], [15], [16], [17].
Among them, the more traditional methods are the max-
imum likelihood estimation method [11] and subspace
algorithm [13], [16]. As a theoretically optimal method,
maximum likelihood estimation can approach the Cramér–
Rao lower bound (CRLB) in high signal-to-noise ratio
(SNR) environments. Nevertheless, this method has high
computational complexity owing to the grid search process.
Subspace algorithms are based on array signal processing
that decomposes the receiving signal space into two orthog-
onal subspaces: a signal subspace and a noise subspace.
In the case of multiple snapshots, high-precision multi-
target time-delay estimates can be obtained by searching
for pseudo-spectral peaks. However, under the conditions
of a single snapshot and a low SNR, the performance of
the subspace algorithm deteriorates significantly. Therefore,
some researchers have proposed improved algorithms based
on the modified correlation function method. For example,
in [17], an exponential filter (EF) with a high resolution
was constructed by introducing a controllable exponent p in
the frequency response function of the MF. However, as a
mismatched filter, the improvement in the resolution of EF
still occurs at the expense of a loss in the output SNR.

Furthermore, compressed sensing, an emerging theory at
the intersection of signal processing and optimization, has
attracted significant attention from both academia and indus-
try over the past decade and has been successfully applied
in many fields, such as signal processing [18], image sci-
ence [19], machine learning [20], statistical modeling [21]
and medical data analysis [22]. Recently, scholars have
applied the principle of sparse reconstruction (SR) in com-
pressive sensing for time-delay estimation. Reference [23]
constructed an SR model of time delays of the received
signal in the frequency domain and then used the orthogonal
matching pursuit (OMP) algorithm to solve the multi-target
time-delay estimation problem under the assumption of
knowing the number of targets. However, with an increase in
the discrete time-delay grid points, the mutual coherence of
the column vectors in the observation matrix also increases,
making it prone to finding suboptimal solutions. Hence,
based on the SR model in the frequency domain, a back-
tracking selection mechanism using the OMP algorithm was
proposed to provide an unbiased estimate of multi-target time
delays [24]. However, this algorithm increases the computa-
tional complexity to achieve an improved resolution. It also
requires the knowledge of the number of targets. Subse-
quently, SR- and MF-based time-delay estimation algorithms
were constructed for linear frequency-modulated (LFM) sig-
nals [25]. The algorithm uses the output of the MF (i.e., the
autocorrelation function) as a template to construct the SR
model (in the correlation domain) for the time delays of mul-
tiple targets, and it can accurately estimate multi-target time
delays with an available number of targets and a high input
SNR. However, its output resolution is also limited owing to
the use of MF, and introducing covariance matrix iterative
computation also increases computational complexity.

Classic time-delay estimation methods based on corre-
lation function are often limited in time-delay estimation
accuracy by their target resolution. Inspired by the high res-
olution of multiple targets of EF, in this study, an SR-based
estimation algorithm in the exponential correlation domain
is constructed for the estimation of time delays of multiple
targets, in which the SRmodel is constructed using the output
of the EF (i.e., the exponential autocorrelation function) as
a template. The interior-point method [26] based on l1-norm
regularization, was employed to solve the proposed SRmodel
without knowing the number of targets in advance. Through
derivation and verification, it is shown that owing to the high
resolution of the output of EF, the corresponding observa-
tion matrix of the proposed SR model in the exponential
correlation domain has a smaller partial mutual coherence
coefficient than that of the SR model in the correlation
domain, thus providing a higher reconstruction performance
for delays in adjacent targets. However, because EF is mis-
matched, noise still affects its output. The traditional wavelet
denoising algorithm [27], [28], which is a highly effective
nonlinear denoising algorithm, has been successfully applied
to signal processing in various practical scenarios and can
effectively remove noise from smooth signals. Therefore, this
study preprocesses the EF output using the wavelet denoising
algorithm.

Based on simulation experiments, where LFM signals are
used as the reference signal, this study shows that when the
input SNR is higher than −24 dB, the proposed SR-based
estimation algorithm in the exponential correlation domain
(SR-ECD) for multi-target time delay estimation outperforms
the traditional estimation algorithms based on the correla-
tion function or exponential correlation function, and the
SR-based estimation algorithm in the correlation domain
(SR-CD). The proposed SR-ECD algorithm provides a higher
resolution for adjacent targets and significantly lower estima-
tion errors in multi-target time-delay estimation. Moreover,
the estimation errors obtained by SR-ECD are closer to the
error bound derived from the CRLB of the multi-target time-
delay estimation.

Thus, the proposed algorithm can effectively reduce
the coherence between adjacent targets and thus achieve
high-accuracy of time-delay estimation under the condition of
a low input signal-to-noise ratio.Moreover, it does not require
prior knowledge of the number of targets and is suitable for
high-dimensional data scenarios.

II. EXPONENTIAL CORRELATION FUNCTION
Assuming that the reference signal emitted by the radiation
source is r(t), the noisy received signal containing K targets
can be represented as:

x(t) =

∑K

i=1
air(t − τi) + n(t), (1)

where ai and τi represent the amplitude and time-delay of the
i-th target, respectively, i = 1,2,. . . , K , and the additive noise
n(t) is a zero-mean Gaussian white noise with variance σ 2.
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The correlation function-based time-delay estimation
method using MF [6] obtains the estimated time delays of
multiple targets by searching for the peak values of the MF
output (i.e., the cross-correlation function between the refer-
ence signal r(t) and the received signal x(t)).
Introducing a controllable exponent p ∈ [−1, 1] in the

frequency response function of the MF yields the frequency
response function of EF [17]

Hp(ω) = |R(ω)|1+pR−1(ω), (2)

where R(ω) denotes the Fourier transform of r(t). The
impulse response function hp(t) of EF is the inverse Fourier
transform of Hp(ω). The output of the reference signal r(t)
through the EF is called the exponential autocorrelation
function of r(t), and is denoted as

rp(t) = r ∗ hp(t), (3)

where ∗ represents the convolution operation. The output
of the received signal x(t) through the EF is called the
p-order exponential cross-correlation function of r (t)and
x(t), denoted as xp(t) = x ∗ hp(t), which is the output of the
received signal in the p-order exponential correlation domain.

Evidently, when p = 1, EF is reduced to the classic MF.
It was rigorously proven in [17] that for any p ∈ [−1, 1], the
p-order exponential cross-correlation function of the received
signal reaches its extreme values at the target delays, and
the exponential cross-correlation function with p < 1 has a
higher resolution than the classic cross-correlation function
(p = 1). Generally, the smaller the exponent p, the greater the
resolution of the output in the exponential correlation domain,
but the lower the output SNR.

It can be seen that the resolution and output SNR of the
received signal in the exponential correlation domain are
both determined by exponent p and there exists an inher-
ent trade-off between them. Therefore, the selection of the
optimal exponent in different signal environments is partic-
ularly important, and often needs to follow a compromise
criterion. This study used the method proposed in Ref. [17]
to determine the optimal exponent popt , that is, to maximize
the multi-target resolution ISL(p) under the premise that the
output signal-to-noise ratio SNR(p) of the received signal is
greater than a pre-determined SNR threshold S0:

popt = arg max
p∈[−1,1]

ISL(p), s.t. SNR(p) ≥ S0, (4)

where ISL(p) and SNR(p) represent the target resolution and
SNR of the output of p-order EF, given by the following
equations:

ISL (p) = 10 lg

∫
+∞

−∞

∣∣rp (t)
∣∣2 dt∣∣rp (0)

∣∣2 ,

SNR(p) = 10 lg

∣∣rp(0)∣∣2
σ

∫
+B
−B

∣∣Hp(ω)∣∣2 dω
.

III. SR-BASED TIME-DELAY ESTIMATION ALGORITHM IN
THE EXPONENTIAL CORRELATION DOMAIN
A. SR MODEL IN THE EXPONENTIAL CORRELATION
DOMAIN FOR TIME-DELAY ESTIMATION
Assume that the discrete sampling signal of r(t) is r[m] =

r(m1t),m = 1, 2, . . . ,M , with a sampling interval of 1t .
According to the pre-determined output SNR threshold S0
and the optimal exponent selection criterion (4) given in Sect.
II, EF with the optimal exponent pis obtained and denoted
as Hp. The frequency response function, Hp(ω) is given by
the discrete form of (2). The discrete form of the exponential
autocorrelation function was obtained by inputting a discrete
reference signal to Hp:

rp[m] = r ∗ hp[m]

=

∑M

n=1
r[m− n]hp[n], m = 1, . . . ,M . (5)

Assume that the time-delay τi of the i-th target is at the
sampling point, i.e., τi = di1t, i = 1, 2, . . . ,K , where di is
an integer between 1 andM , the discrete form of the received
signal x(t) in (1) can be written as

x[m] =

∑K

i=1
air[m− di] + n[m], m = 1, 2, . . . ,M . (6)

The discrete form of the exponential cross-correlation
function is obtained by inputting the x[m] in (6) into Hp as
follows:

xp [m] = x ∗ hp [m] =

∑K

i=1
airp [m− di] + np [m] , (7)

m= 1, 2, . . . ,M . Here, np[m] = n ∗ hp[m] is the discrete
output of the noise n(t) of Hp, and rp is the discrete exponen-
tial cross-correlation function of r (t)given by (3).

To further eliminate the output noise of the EF, we use the
classical wavelet soft-thresholding filtering algorithm [27] to
denoise its output, and the result is denoted as x̃p[m]. The
noise after the wavelet processing is denoted as ñp[m]. There-
fore, the denoised exponential cross-correlation function can
be rewritten as

x̃p [m] =

∑K

i=1
airp [m− di] + ñp [m] , m = 1, 2, . . . ,M .

(8)

The above equation can be rewritten as the following linear
observation model:

yp = Apa+ wp, (9)

where yp =
[
x̃p[1], x̃p[2], . . . , x̃p[M ]

]T is the observation
vector, a = [a1, a2, . . . , aK ]T is the target amplitude vector,
the noise vector is wp =

[
ñp[1], ñp[2], . . . , ñp[M ]

]T . Here T
represents transpose, and the observation matrix is

Ap =


rp[1 − d1] rp[1 − d2] . . . rp[1 − dK ]
rp[2 − d1] rp[2 − d2] . . . rp[2 − dK ]

rp[M − d1] rp[M − d2] . . . rp[M − dK ]


M×K

.

(10)
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The above linear observation model was not sparse.
To extend it to an overcomplete sparse form, we set up a
N dimensional discrete delay grid d =

[
d̄1, d̄2, . . . , d̄N

]
in a certain delay range (Ta,Tb) , d̄i is an integer and i =

1, . . . ,N . We assume that all discrete values of the target time
delay are in the grid, that is, τi ∈ Ta + d (Tb − Ta) /N . Let
the zeropadding extended form of the target amplitude vector
be a = [ā1, ā2, . . . , āN ]T , and a have nonzero components
āi = ai (the true amplitude of the target) if and only if
Ta+ d̄i (Tb− Ta ) /N = τi = di1t (the true discrete values of
the target delay); otherwise, āi = 0. When the total number
of grids N is much larger than the true number of targets K , a
is a K snarse N -dimensional vector
Meanwhile, the extended form of observation matrix Ap is

denoted as

Āp

=


rp

[
1 − d̄1

]
rp

[
1 − d̄2

]
. . . rp

[
1 − d̄N

]
rp

[
2 − d̄1

]
rp

[
2 − d̄2

]
. . . rp

[
2 − d̄N

]
rp

[
M − d̄1

]
rp

[
M − d̄2

]
. . . rp

[
M − d̄N

]

M×N

(11)

In conclusion, we obtain the (overcomplete) SR model of
the multi-target time-delay estimation problem in the expo-
nential correlation domain:

yp = Āpa+ wp. (12)

Our goal is to find the sparse vector a, where the locations
of its nonzero components represent the estimated values of
the time delays.

B. THE ALGORITHM FOR SOLVING THE SR MODEL IN THE
EXPONENTIAL CORRELATION DOMAIN
In this section, we consider using an interior-point
method [26] based on l1-norm regularization to solve the
exponential domain SR model (12), which does not require
knowledge of the number of targets. In fact, (12) can be
transformed into an l1-norm regularized model:

â = argmin
a

∥∥yp − Āpa
∥∥2
2 + λ∥a∥1, (13)

where ∥•∥1 , ∥•∥2 denote the l1 and l2 norms of the vector,
respectively, and λ represents the hyperparameter.
The interior-point method first transforms regularized

model (13) into a convex quadratic optimization problemwith
linear inequality constraints:

â = argmin
a

∥∥Apa− yp
∥∥2
2 + λ

N∑
n=1

un,

s.t. − un ≤ ān ≤ un, n = 1, . . . ,N , (14)

where un represents the constraint boundary for the nth com-
ponent ai of the target amplitude vector a. Let iteration vector
u = [u1, . . . , uN ]T ∈ RN .

Starting from the initial values of a = [0, . . . , 0]T ∈ RN ,
t = 1/λ, and u = [1, . . . , 1]T ∈ RN , the iteration process

is used to approach an approximate solution â to model (14)
using a sequence of iterations for a. The iterative steps for the
approximation are as follows:
A1: The preconditioned conjugate gradient (PCG)

algorithm was used to obtain the iterative direction vectors
1aand 1u for a and u at each step:[

2 tA
T
pAp + D1 D2

D2 D1

] [
1a
1u

]
= −

[
g1
g2

]
where the intermediate variables D1,D2, g1,g2 are given in
Ref. [26].
A2: Compute the value of s = βρ to obtain the step size for

each iteration, where α and β represent predefined constants,
and ρ represents the smallest positive integer satisfying the
following inequality:

φt
(
a+βρ1a,u+βρ1u

)
≤ φt (a,u)+αβρ

[
g1
g2

]T [
1a
1u

]
,

here,

φt (a,u) = t
∥∥Apa− yp

∥∥2
2 + t

∑N

n=1
λun −

∑N

n=1
lg (un

+ ān) −

∑N

n=1
lg (un − ān) .

A3: Update a and u based on one iteration of the calcula-
tion using s and

[
1a 1u

]T as follows:[
a
u

]
=

[
a
u

]
+ s

[
1α

1u

]
.

A4: If the iterative error ξ is less than the preset threshold
εrel , the approximate solution â = a. If ξ is greater than or
equal to εrel , t is updated according to the following formula,
and returns to step A1 to continue the calculation iteration:

t :=

{
max {µmin {2N/η, t} , t} s ≥ smin

t s < smin,

where µ and smin are pre-set hyperparameters, and η is given
in [26].

C. ALGORITHM FLOW OF THE SR-BASED ESTIMATION
ALGORITHM IN THE EXPONENTIAL
CORRELATION DOMAIN
The basic procedure of SR-ECD proposed in this paper for
multi-target time-delay estimation is as follows:
Step 1: Based on the reference signal r(t), we use the opti-

mal exponent selection method in Section. II.B to select the
optimal exponent p, and construct EF denoted as Hp, with
the frequency response function Hp(ω) = |R(ω)|1+pR−1(ω).
The output of r(t)through Hp is the exponential autocorrela-
tion function rp(t).
Step 2: Input the received signal x(t) into Hp to obtain the

exponential cross-correlation function in the domain.
Step 3: The wavelet soft thresholding algorithm is applied

to denoise the aforementioned exponential cross-correlation
function.
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Step 4: Construct the SR model of the multi-target time-
delay estimation problem in the exponential correlation
domain according to (12).
Step 5: Solve the SRmodel using the interior-point method

to obtain the estimation values of the multi-target time delays.

IV. PERFORMANCE ANALYSIS OF THE
PROPOSED ALGORITHM
In this section, we provide an analysis of reconstructing
performance of the SR-ECD proposed for multi-target time-
delay estimation, by analyzing the mutual coherence of the
observation matrix of the SR model (12) in the exponential
correlation domain, and as we will show, using the expo-
nential autocorrelation function as the template for the SR
model can make the corresponding observation matrix have
a smaller partial mutual coherence coefficient, thus providing
a higher reconstructing performance of delays of adjacent
targets. We also derive the error bound of the time-delay
estimation error in the multi-target case based on the CRLB.

A. ANALYSIS OF MUTUAL COHERENCE OF THE
OBSERVATION MATRIX IN THE SR MODEL
For the SR model (12), whether the observation yp contains
sufficient information to recover the sparse vector a depends
mainly on the properties of the observation matrix Āp. Gen-
erally, the observation matrix must satisfy properties such as
Spark, Null Space Property (NSP), or Restricted Isometry
Property (RIP) to guarantee the success of SR methods for
reconstructing sparse vectors [29]. Current research shows
that as long as the observation matrix satisfies the K th-order
RIP property, a K -sparse vector can be reconstructed fromM
observations. Although RIP has perfect properties, verifying
that the RIP criterion is a combinatorial problem, so it is more
practical to verify that the observation matrix has equivalent
condition requirements, such as the mutual coherence condi-
tion [30]. Definition 1 provides the definition of the mutual
coherence coefficient.
Definition 1 [31]: Given a matrix A of size M × N , the

mutual coherence coefficient µ(A) is defined as the maxi-
mum absolute value of the inner product between any two
normalized columns of A, that is,

µ(A) = max
k,l=1,...,N ,,k ̸=l

∣∣aHk al ∣∣
∥ak∥2 ∥al∥2

. (15)

From the definition of mutual coherence, it can be seen that
the calculation of µ(A) is easy to implement, and this metric
reflects the reconstruction performance of sparse vectors by
overcomplete model (12). Regarding the mutual coherence
coefficient, the following conclusion can be drawn.
Theorem 1 [31]: Suppose that the mutual coherence coef-

ficient of matrix A is µ, and x is a K -sparse vector, K <

(1/µ+ 1)/4. Let the observations be obtained as y = Ax+ e.
Then, for B (y) =

{
w : ∥Aw− y∥2 ≤ ε

}
, the solution x̂ of

model x̂ = argmin
w∈B(y)

∥w∥1 satisfies:

∥∥x− x̂
∥∥
2 ≤

∥e∥2 + ε
√
1 − µ(4K − 1)

. (16)

From Definition 1 and Theorem 1, it can be seen that as
the mutual coherence coefficient µ of the observation matrix
decreases, the non-coherence between the column vectors of
the observation matrix becomes stronger, the upper bound of
the reconstruction error for sparse vectors becomes smaller,
and the reconstruction ability of the original signal increases.
On the other hand, as the µ decreases, the right-hand side
of the inequality K < (1/µ + 1)/4 in Theorem 1 increases,
which increases the upper bound of K and reduces the spar-
sity requirement for the x. Donoho et al. pointed out that
Theorem 1 is an analysis result under the worst-case scenario,
the reconstruction error

∥∥x− x̂
∥∥
2 is estimated to be too large,

and the actual error in practical applications is generallymuch
smaller than the estimated value in the theorem.

In this study, we derive that for the SR model (12) of
the received signal in the exponential correlation domain,
the partial mutual coherence coefficient of the observa-
tion matrix (i.e., the mutual coherence coefficient of its
M -dimensional sub-matrix) decreases as exponent p
decreases. Consequently, the sparsity requirement and upper
bound of the reconstruction error for the corresponding
time-delay vector also decrease. In other words, we conclude
the following.
Theorem 2: For the SR model (12) with observation

matrix Āp, the mutual coherence coefficient of any speci-
fied submatrix consisting of M column vectors is defined as
its partial mutual coherence coefficient µ̃

(
Ap

)
. Then, there

exists a real number δZ ∈ (−1, 1) such that when p ∈

[−1, δZ] , µ̃
(
Ap

)
Proof: The observation matrix Ap of the SR model (12)

can be regarded as obtained by selecting a specified M row
from cyclic matrix Ap, where

Ap =


rp

[
d̄1

]
rp

[
d̄2

]
. . . rp

[
d̄N

]
rp

[
d̄2

]
rp

[
d̄3

]
. . . rp

[
d̄1

]
rp

[
d̄N

]
rp

[
d̄1

]
. . . rp

[
d̄N−1

]


N×N

Based on linear algebra and the construction method of
exponential correlation functions, the cyclic matrix Ap can
be represented as

Ap =
1
N
F · diag[zp+1

1 , · · · , zp+1
N ] · FH ,

where F is the N × N Fourier matrix, with its k-th row and
l-th column element being exp [−j2π (k − 1) (l − 1) /N ],
and j =

√
−1 is the imaginary unit. Let f 1, . . . , f N be

the row vector of F, and zi = |gi| (i = 1, 2, . . . ,N ) be
the absolute value of the Fourier frequency coefficient, i.e.,[
g1 · · · gN

]T
= F

[
r
[
d̄1

]
, · · · , r[d̄N ]

]T
.
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Obviously, zi > 0, i = 1, 2, . . . ,N . Without loss of
generality, assume that the mean value of z1, . . . , zN is 1;
otherwise, the reference signal can be simply divided by its
mean. Therefore, Ap can be rewritten as

Ap =
1
N
FZFH + IN×N ,

where IN×N is the N -dimensional identity matrix, Z =

diag[zp+1
1 − 1, · · · , zp+1

N − 1] is a diagonal matrix.
Let Ap be the submatrix obtained by selecting the

N1,N2, . . . ,NM rows of Ap, and the i-th column vector of Ap
be ap(i), i = 1, . . . ,N . Now we consider the partial mutual
coherence coefficient of Ap, that is, the maximum absolute
value of the cosine of the angle between the N1,N2, . . . ,NM
columns of Ap:

µ̃(Ap) = max
k ̸=l(k,l=1,...,M )

∣∣∣aHp(Nk )ap(Nl )∣∣∣∥∥ap(Nk )∥∥2 ∥∥ap(Nl )∥∥2 . (17)

As the structure of Ap implies that ap(Nk ) = zp(Nk ) + εNk
for any k = 1, 2, . . . ,M , where εNk is anM -dimensional unit
column vector with the Nk -th element being 1 and all others
being 0, zp(Nk ) is given by the following equation:

zp(Nk ) =
1
N

[
f N1

, . . . , f NM
]T Z · f HNk .

AsF/
√
N is a unitary matrix, it follows that the l2 norms of

any row and any column of F/
√
N are both equal to 1, so we

have∥∥zp(Nk )∥∥2 ≤ Zmax
def
= max

{∣∣∣zp+1
1 − 1

∣∣∣ , . . . , ∣∣∣zp+1
N − 1

∣∣∣}.

For a fixed z1, z2, . . . , zN , Zmax is a continuous function
with respect to p. And in the EF, as p decreases, Zmax mono-
tonically decreases. Moreover, when the exponent p → −1,
then Zmax → 0. Therefore, there exists a δZ ∈ (−1, 1), when
p ∈ [−1, δZ], then 0 ≤ Zmax < 1.
Therefore, when p [−1, δZ ], the partial mutual coherence

coefficient µ̃
(
Ap

)
satisfies the following constraints accord-

ing to the Schwarz inequality:

µ̃
(
Ap

)
= max

k ̸=l(k,l=1,...,M )

∣∣∣aHp(Nk )ap(Nl )∣∣∣∥∥ap(Nk )∥∥2 ∥∥ap(Nl )∥∥2
= max

k ̸=l(k,l=1,...,M )

∣∣∣(zp(Nk ) + εNk
)H (

zp(Nl ) + εNl
)∣∣∣∥∥ap(Nk )∥∥2 ∥∥ap(Nl )∥∥2

≤
2Zmax + Z2

max

|1 − Zmax|
2

def
= Y (Zmax) .

According to the derivative of Y (Zmax) with respect to
Zmax, it can be seen that Y (Zmax) monotonically decreased
to 0 as Zmax decreased.

The above derivation shows that when exponent p ∈

[−1, δZ ], the upper bound Y (Zmax) of the partial mutual
coherence coefficient µ̃(Ap) monotonically decreases to 0 as
exponent p decreases. It can be seen that the smaller the
exponent p, the closer matrix Z is to the zero matrix

(Z → 0N×N when p → −1), the more dominant the diagonal
of the cyclic matrix Ap, and the more the adjacent columns of

Ap are orthogonal, the smaller the partial mutual coherence
coefficient. □
We present the curve of the partial mutual coherence coef-

ficient µ̃(Ap) of the observation matrix Ap with respect to
exponent p by numerical simulations. In the simulations,
the reference signal r(t) was chosen as an LFM signal with
a bandwidth of 10 MHz and starting carrier frequency of
3000 kHz, and the sampling size was M = 100 with a grid
number of N = 200. We constructed corresponding observa-
tion matrices for different p values and calculated their partial
mutual coherence coefficients. As shown in Figure 1, the
partial mutual coherence coefficient shows a decreasing trend
as exponent p decreases, which is in complete agreement with
the conclusion of Theorem 2 that we derived. In particular,
when p decreased to a certain range, the partial mutual coher-
ence coefficient decreased significantly. Specifically, when
p = 1, the partial mutual coherence coefficient µ̃(Ap) is the
partial mutual coherence coefficient of the observationmatrix
of SR-CD.

In summary, the observation matrix of the proposed
SR-ECD in this study has a lower partial mutual coherence
than the observationmatrix of the SR-CD based on traditional
MF. Therefore, for adjacent targets, the reconstruction perfor-
mance of SR-ECD in the exponential correlation domain was
better than that of SR-CD.Moreover, the lower the value of p,
the higher the reconstruction performance for multiple target
time delays.

B. THE ERROR LOWER BOUND FOR MULTI-TARGET
TIME-DELAY ESTIMATION
The received signal in the time domain for multi-target is
given by (6), and its discrete Fourier transform is:

X̂ (m1ω) =

∑K

i=1
aiR (m1ω) e−jτim1ω

+ N̂ (m1ω) ,

(18)

m = 1, 2, . . . ,M . Here, let X̂ (ω),R(ω) and N̂ (ω) be the
Fourier transforms of received signal x(t), the reference sig-
nal r(t), and the noise n(t), respectively. Denote X̂ (m1ω) =

X [m], N̂ (m1ω) = N [m],m = 1, 2, . . . ,M , then Eq.(18) can
be written as

S = A (τ ) a+ N, (19)

where the observation vector, target amplitude vector, and
noise vector are S = [X [1],X [2], . . . ,X [M ]]T , a =

[a1, a2, . . . , aK ]T ,N = [N [1] ,N [2] , . . . ,N [M ]]T ,
respectively.

The observation matrix as shown in the equation at the
bottom of the next page.

Obviously, the matrix A (τ ) [A (τ1) , · · · ,A (τK ) ] has
more rows than columns (M > K ) and the column vectors
are linearly independent. N is a random vector with a Gaus-
sian distribution and E[NNH ] = Mσ 2I . The log-likelihood
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FIGURE 1. Partial mutual coherence of SR model (12) in the exponential
correlation domain over exponent p.

function can be derived from Equation (19):

lnL = const − 2M ln σ

−
1

Mσ 2 [S
H

− aHAH (τ )] · [S− A(τ )a]. (20)

Then, we derive the partial derivative of the log-likelihood
function ln L with respect to σ 2, Re(a) (i.e., the real part of
a), and Im(a)(i.e., the imaginary part of a), respectively:

∂ lnL
∂σ 2 = −

M
σ 2 +

M
σ 4N

HN;

∂ lnL
∂Re(a)

=
1

Mσ 2

[
AH (τ )N + AT (τ )NH

]
=

2
Mσ 2Re

[
AH (τ )N

]
;

∂ lnL
∂Im(a)

=
1

Mσ 2

[
−jAH (τ )N + jAT (τ )N∗

]
=

2
Mσ 2 Im

[
AH (τ )N

]
;

∂ lnL
∂τk

=
2

Mσ 2Re
[
X∗[k]dH (τk)N

]
.

Here, d (τk) = dA (τk) /dτk . Because the knowledge of
linear algebra, note that E[NNT ] = 0, further leads to

E

[(
∂ lnL

∂Im(a)

) (
∂ lnL
∂τ

)T
]

=
2

Mσ 2 Im
[
AH (τ )Dα

]
,

E

[(
∂ lnL

∂Re(a)

) (
∂ lnL

∂Im(a)

)T
]

= −
2

Mσ 2 Im
[
AH (τ )A(τ )

]
,

E

[(
∂ lnL

∂Re(a)

) (
∂ lnL
∂τ

)T
]

=
2

Mσ 2Re
[
AH (τ )Dα

]
,

E

[(
∂ lnL

∂Im(a)

) (
∂ lnL

∂Im(a)

)T
]

=
2

Mσ 2Re
[
AH (τ )A(τ )

]
,

E

[(
∂ lnL

∂Re(a)

) (
∂ lnL

∂Re(a)

)T
]

=
2

Mσ 2Re
[
A∗(τ )A(τ )

]
,

E

[(
∂ lnL
∂τ

) (
∂ lnL
∂τ

)T
]

=
2

Mσ 2Re
[
αHDHDα

]
,

here, α = diag[a1, . . . , aK ], D is a complex matrix with
dimensionsM × K ,D(m,k) = −jm1ωe−jmτk1ωR[m].

According to [32], the CRLBmatrix for time delay estima-
tion errors can be written as follows:

CRB(τ ) =
Mσ 2

2

{
Re

[
αHDH

(
I − A(τ )(

AH (τ)A(τ )
)−1

AH (τ )
)
Dα

]}−1

.

(21)

Therefore, the lower bound of the time-delay estimation
error CRB(τi) for the i-th target is given by the i-th diagonal
element of the CRLB matrix CRB(τ ), that is, CRB(τi) =

CRB(τ )[i, i]. In this study, we define the total error bound of
the time-delay estimation for multi-target as the sum of the
CRLB of the time-delay estimation error for each target:

CRBτ =

∑K

i=1
CRB(τi) = trace(CRB(τ )). (22)

V. SIMULATION EXPERIMENT
To validate the effectiveness of the proposed SR-ECD for
multi-target time-delay estimation, we used LFM signals as
reference signals and conducted Monte Carlo experiments to
compare the output results of the SR-ECD (the SR-based esti-
mation algorithm in the exponential correlation domain) with
the SR-CD (the SR-based estimation algorithm in the corre-
lation domain), as well as the classic MF-based estimation
algorithm and the EF-based estimation algorithm. We also
calculated the root mean squared errors (RMSE) of these
estimation algorithms for multi-target time-delay estimation
under different input SNR conditions and compared them
with the error bound derived in (22).
The input SNR was calculated as SNRinput =

10 lg (
∑M

m=1 r
2 [m]/(Mσ 2)). The RMSE of the time-delay

estimation for multi-target is defined as:

RMSEτ =

√
1
J

∑J

j=1

∥∥∥d̂ j − d
∥∥∥2
2

(23)

where J is the number of Monte Carlo experiments. To facil-
itate error measurement, we assume that the true delay vector
is a row vector d̄ of dimension M , where d̄(m) = 1 if and

A(τ) =


e−jτ11ωR[1] e−jτ21ωR[1] . . . e−jτK1ωR[1]
e−j2τ11ωR[2] e−j2τ21ωR[2] . . . e−j2τK1ωR[2]

e−jMτ11ωR[M ] e−jMτ21ωR[M ] . . . e−jMτK1ωR[M ]


M×K

.
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FIGURE 2. The output of the multi-target signal. (a) in correlation domain.
(b) in exponential correlation domain. (c) the output in exponential
correlation domain after wavelet soft threshold processing.

only if m = di, i = 1, 2, . . . ,K , and all other d̄(m) = 0. The
estimated delay vector given by the j-th Monte Carlo exper-
iment for a corresponding algorithm is denoted by d̂ j, j =

1, 2, . . . , J .
Experiment 1: The reference signal was an LFM signal

with a bandwidth of 10MHz and a starting carrier frequency
of 3000kHz. The total number of samples for the received
signal containing the four targets was L = 2000, and the
input SNRwas−3dB. The true time-delays of the four targets
were d1 = 10, d2 = 14, d3 = 19, d4 = 30 (in units of
sample points). We set the EF output SNR threshold S0 as
α (0 < α ≤ 1) times the peak value of the MF output SNR,
that is, the SNR threshold in the optimal exponent selection
method is S0 = αmax(SNR(p)). When α = 0.95, the optimal
exponent provided by themethodwas popt = −0.05. Figure 2
shows the normalized output of the received signal after
passing through the MF, EF with popt = −0.05, and EF with
popt = −0.05 followed by wavelet soft-threshold denoising.
It can be seen that the output of the EF in the exponential
correlation domain (i.e., the exponential cross-correlation
function) provides stronger resolution for multiple targets
and has good noise immunity, resulting in more accurate
time-delay estimation for multiple targets. In addition, the
time delay estimation method based on theMUSIC algorithm
is not suitable for this low SNR and adjacent target scenario
and cannot provide an effective output for the four targets.
Therefore, the proposed algorithm was not compared to the
MUSIC algorithm in this study.

After performing J = 500 independent Monte Carlo exper-
iments, the mean values of the estimated time-delays using
SR-ECD (popt = −0.05) and SR-CD are presented in
Figure 3. Combining Figure 2 and 3, it can be seen that
compared to SR-CD (in the correlation domain), the SR-ECD
(in the exponential correlation domain) proposed in this study
has fewer spurious peaks and better resolution for multi-
target. Therefore, the estimated time-delays using SR-ECD
will be more accurate.

FIGURE 3. Multi-target time-delay estimation of SR-CD and SR-ECD.

Experiment 2: Using the same received signal, reference
signal, sampling rate, and grid number as in Simulation 1,
we performed J = 500 independentMonte Carlo experiments
to evaluate the RMSEs of the proposed SR-ECD, SR-CD, and
classic MF- and EF- based time delay estimation algorithms
at different input SNRs, as shown in Figure 4. Overall, the
estimation accuracy of SR-ECD is significantly better than
that of the MF- and EF- based time-delay estimation algo-
rithms. Under the condition of an input SNR greater than
−24dB, the proposed SR-ECD has a higher multi-target time-
delay estimation accuracy than that of the SR-CD. This is
because, for adjacent targets, the partial mutual coherence
coefficient of the observationmatrix in the proposed SR-ECD
is lower, and the coherence between adjacent columns in
the observation matrix is smaller, thereby improving the
reconstruction performance of the delays of adjacent targets.
Moreover, the estimation errors obtained by SR-ECD are
closer to the error bound derived in (22) of the multi-target
time-delay estimation. In addition, the corresponding RMSE
curve of the proposed SR-ECD disappears on the right side
when the input SNR is higher than −4dB. This is because at
these input SNRs, the proposed SR-ECD directly solves for
the exact time-delay estimate, and the logarithm of the error,
which is zero, cannot be displayed. However, the results of
SR-CD, and classic MF-based time delay estimation algo-
rithms differ somuch from the CRB. This is because the given
targets are too close to each other, the resolution of these two
algorithms is not sufficient to distinguish the corresponding
targets.
Experiment 3: We used the same received and reference

signals, sampling rate, and grid number as in simulation 1.
We continue to analyze the effects of different parameters
on the SR-ECD time delay estimation error. First, we set
the grid number N to different values and the input SNR
to 2.5dB, −3dB, and −15dB, respectively. We performed
J = 500 independent Monte Carlo experiments to calculate
the RMSEs of the time delay estimation for the proposed
SR-ECD and SR-CD, as shown in Figure 5.
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FIGURE 4. Estimation errors of four algorithms over the input SNR.

FIGURE 5. Under different input SNRs, estimation errors of SR-CD and
SR-ECD over grid number.

It can be observed that under all three input SNR con-
ditions, the time-delay estimation accuracy of the proposed
SR-ECD is significantly higher than that of the SR-CD.
Furthermore, as the SNR decreases, the estimation error
increases considerably with an increase in grid number
because of the increased partial mutual coherence coeffi-
cient of the observation matrix, as the number of column
vectors in the observation matrix increases with an increase
in grid number. However, when the SNR is relatively high,
the algorithm has a stronger sparse reconstruction ability
and is less sensitive to changes in the grid number within a
certain range. At the same time, we also plotted the CRBwith
SNR = 2.5dB, where the CRB is a constant line under given
noise variance, signal strength, and number of targets. It can
be seen that, the estimation error of the proposed SR-ECDfits
well with this CRB.

Next, for different sampling lengths L and input SNRs of
2.5 dB, −3 dB, and −15 dB, we performed J = 500 inde-
pendent Monte Carlo experiments to calculate the RMSEs of
the proposed SR-ECD and SR-CD for time-delay estimation,
as shown in Figure 6. It can be observed that the RMSEs of

FIGURE 6. Under different input SNRs, estimation errors of SR-CD and
SR-ECD over sampling length.

FIGURE 7. Estimation errors of SR-CD and SR-ECD over output SNR
threshold α. (a) input SNR is 2.5dB. (b) input SNR is −3dB. (c) input SNR is
−15dB.

both algorithms decrease as the sampling length L increases,
with the error of SR-ECD showing a significantly faster
reduction rate than that of SR-CD. When the sampling length
L exceeds 2000, the estimation error of SR-ECD approaches
a stable value. The estimation error of the proposed SR-
ECD (with SNR = 2.5dB) also gradually approaches its
corresponding CRB as the sampling length increases.

Finally, we investigate the effect of the proportion coeffi-
cient in the output SNR threshold α (0.5∼1) on the time-delay
estimation error of SR-ECD and SR-CD. The input SNRs
were set to 2.5dB, −3dB, and −15dB, and the RMSE of the
time delay estimation was calculated through J = 500 inde-
pendent Monte Carlo experiments, as shown in Figure 7.

It can be observed that when α is less than a certain value,
the time-delay estimation error curve of the SR-ECD does
not show significant fluctuations. This is because when α

is small, that is, the output SNR requirement is low, the
controllable parameter p of EF can be set to its minimum
value p = −1. Moreover, it can be observed that the range
of achieving the minimum error decreased as the input SNR
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decreased. Because the output SNR threshold is not set in
SR-CD, its time-delay estimation error curve does not show
fluctuations.

VI. CONCLUSION
In scenarios where multiple targets are closely spaced, the
traditional time delay estimation algorithm based on the MF
often suffers from the problem of main-lobe and side-lobe
interference between targets, making it difficult to estimate
the time delays of all targets accurately. The improved
algorithm based on EF has a high resolution and can dis-
tinguish the time delays of different targets more accurately.
However, EF is still susceptible to noise interference in low
SNR scenarios, leading to inadequate accuracy in the time
delay estimation.

Based on the output of EF (i.e., the exponential correlation
function), this study constructed an SR model of the received
signal in the exponential correlation domain. As shown,
owing to the high resolution of the output of EF, the cor-
responding observation matrix of the proposed SR model
has a smaller partial mutual coherence coefficient, which
represents a higher reconstruction performance of the delays
of adjacent targets. The interior-point method [26] is used to
solve the proposed SR model. On the one hand, the method
does not require prior knowledge of the number of targets
and is suitable for high-dimensional data scenarios; on the
other hand, it can remove the solution components below
a certain threshold, which helps to filter out the noise and
clutter to some extent and improves the estimation accuracy
and stability of the algorithm in low SNR environments. The
simulation results show that when the input SNR is higher
than −24 dB, the proposed SR-ECD has a higher estimation
accuracy for multi-target time delays (especially for adjacent
targets) thanMF, EF, and SR-CD. Particularly, when the input
SNR is higher than −14 dB, the estimation error of SR-ECD
is less than 1/3 of that of SR-CD and less than 1/5 of that
of the traditional MF-based time-delay estimation algorithm,
and its error is very close to the error bound of the multi-
target time-delay estimation error. Moreover, when the input
SNR is higher than −4 dB, it achieves completely accurate
estimation.

In order to further improve the accuracy of time delay
estimation of multiple targets, future research directions
or potential challenges of the proposed algorithm may be
algorithms using fewer observation data andmore prior infor-
mation, or algorithms combined with deep learning methods.
Moreover, to have a wider scope of application, the proposed
algorithm for joint estimation of time delay and direction of
arrival parameters will be studied and compared with other
algorithms.
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