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ABSTRACT At present, workflow scheduling in cloud computing environment is still a challenging
optimization topic due to its NP-complete characteristics. In order to obtain better scheduling results,
researchers are constantly coming up with new methods. In this study, we offer a hybrid metaheuristic
for solving workflow scheduling in cloud to minimize the makespan of the workflow considering the
heterogeneity of virtual resources. This hybrid approach combines the excellent optimization properties of
Heterogeneous Earliest Finish Time (HEFT), Teaching–Learning-Based Optimization (TLBO), Opposition-
Based Learning (OBL), and genetic manipulations, which is named Hybrid TLBO (HTLBO). Firstly,
a HEFT-based method is proposed to produce the high-quality diverse initial population. Secondly, a Mixed
OBL (MOBL) model is designed, in which the boundary search information and the population historical
search information are systematically taken into account. Finally, an enhanced learner stage using genetic
operations are added to effectively help the algorithm to jump out of the local optima. Rigorous experiments
over various scientific workflows are conducted to validate HTLBO’s performance. The obtained results
are compared to HEFT and some state-of-the-art hybrid metaheuristics in terms of average makespan,
running time and non-parametric statistics. A significant improvement in schedule quality demonstrates that
HTLBO can increase population diversity and achieve a good balance between scheduling effectiveness and
efficiency.

INDEX TERMS Workflow scheduling, cloud computing, teaching–learning-based optimization, opposition-
based learning, search boundary, population information.

I. INTRODUCTION
Workflow technologies are emerging to handle complex,
data-intensive experimentations and simulations that are
run by computational scientists. Usually, such scientific
workflows are composed of a huge number of tasks which
have dependencies among each other and produce large-scale
data while executed. Apparently, the execution of a workflow
demands a lot of resources for computation, communication
and data storage of its tasks. Cloud computing systems can
provide such an infrastructure to run the workflow through
a suite of distributed virtualized resources interconnected by
high-speed networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

Workflow scheduling in cloud computing systems has
gained extensive attention in both academia and industry
because the results of scheduling can greatly influence the
performance of computing environment. Scheduling is the
process of determining the priority of the tasks and mapping
the tasks to the available virtual machines properly, so as
to minimize the total execution time of the computation.
In fact, the workflow scheduling has been proven to be an NP-
complete problem [1]. Currently, hybridization of multiple
heuristic algorithms demonstrates much power to produce
better results than a single metaheuristic or traditional list-
based heuristics [2], [3].

In this paper, we propose a hybrid algorithm, named as
Hybrid Teaching–Learning-Based Optimization (HTLBO),
which hybridizes Heterogeneous Earliest Finish Time
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(HEFT) [4], Opposition-Based Learning (OBL) [5], genetic
operations and Teaching–Learning-Based Optimization
(TLBO) [6] for workflow scheduling problem in cloud
computing systems. The major contributions of this study are
listed below.
• We develop the HTLBO algorithm, which can be
applied to a wide range of workflow applications. The
proposed algorithm can achieve a good balance between
effectiveness (makespan and convergence speed) and
efficiency (running time).

• We propose a new HEFT-based approach to generate
the initial population, which is divided into two parts,
including high-quality solutions generated by HEFT
and quality-based crossover operation, and randomly
generated solutions. A small group of high-quality
solutions can help HTLBO find better solutions faster
than it can from the population composed of pure
solutions generated randomly. On the other side, the
remaining random solutions can keep a good diversity
of the population and help HTLBO to reach part of the
feasible search space as large as possible.

• We design a Mixed Opposition-Based Learning
(MOBL) modal that combines boundary search infor-
mation and historical population search information.

• Besides the teacher phase and learner phase of the
original TLBO, we add a new phase of enhanced
learning to HTLBO, which is implemented using
genetic operations. Moreover, combining the MOBL
modal with these three stages and considering the
different characteristics of each stage, we design three
different calculation methods of opposition-based solu-
tions according to mean individual, randomly selected
individual, and best individual, respectively.

• We demonstrate the better performance of the algorithm
through comprehensive experiments and comparisons
with state-of-the-art heuristic and hybrid approaches.

The rest of the paper is organized as follows.
Section II reviews the related workflow scheduling algo-

rithms and techniques used in this study. The workflow
scheduling problem in cloud computing environment is
briefly presented in Section III. The original TLBO and
the proposed HTLBO are described in Sections IV and V,
respectively. Section VI elaborates on the experimental
results and their discussion. Finally, the conclusion and some
future works are discussed in Section VII.

II. RELATED WORK
A. OPTIMIZATION METHODS FOR SOLVING WORKFLOW
SCHEDULING IN CLOUD COMPUTING ENVIRONMENT
Number of heuristics and evolutionary algorithms have been
developed to address the workflow scheduling problems.
In this paper, we classify these algorithms into three cate-
gories: heuristic-based methods, metaheuristics, and hybrid
metaheuristics.

1) HEURISTIC-BASED METHODS
The heuristic-based algorithms mostly belong to the list
scheduling class, and the list scheduling algorithms, in fact,

are based on priority schemes. This kind of algorithms
consists of two stages. The first stage is to establish an
ordered list of tasks by the priorities calculated through
certain criteria, and the second stage is to assign each task
according to its pre-defined order on a proper resource that
can finish it as quickly as possible. Some well-known list
scheduling heuristics are Heterogeneous Earliest Finish Time
(HEFT) [4], Critical Path on Processor (CPOP) [4], Perfor-
mance Effective Task Scheduling (PETS) [7], Predict Earliest
Finish Time (PEFT) [8], Standard Deviation Based Task
Scheduling (SDBATS) [9], Heterogeneous Dynamic List
Task Scheduling (HDLTS) [10], and efficient priority and rel-
ative distance (EPRD) [11]. On the other side, some Quality-
of-Service (QoS) based heuristic algorithms for workflow
scheduling in cloud environment have been proposed in
recent years. This type of algorithms focuses on optimizing
several performance metrics or optimizing a performance
metric while satisfying some QoS constraints. Zhu and
Tang [12] developed a list-scheduling framework for schedul-
ing multi-resource workflow and proposed a deadline-
constrained scheduling algorithm based on the framework
to minimize the execution cost. Amoon et al. [13] proposed
a workflow task scheduling method, which is known as
Improved Cost Task Scheduling (ICTS) and includes three
stages: level sorting, task-prioritizing and virtual machine
selection, to minimize workflow execution time and cost.
Zhou et al. [14] developed a fuzzy dominance sort based
HEFT (FDHEFT) algorithm to jointly optimize the cost
and time of cloud workflow scheduling. Faragardi et al. [15]
proposed a greedy resource provisioning and improvedHEFT
method GRP-HEFT for the hourly-based cost model in IaaS
cloud to optimize workflow execution time under budget
constraint. Quan et al. [16] studied the scheduling problem
of energy-constrained parallel applications on heterogeneous
computing systems, and proposed a weight-basedmechanism
to pre-allocate the energy consumption of unassigned tasks to
minimize the scheduling length or maximize reliability under
the energy consumption or/and deadline constraints. The
greatest advantage of these approaches is that their complex-
ity is basically less than any other scheduling metaheuristics,
thus having good efficiency and practicability. And for small-
scale problems, namely smaller search space, they also
possess good performance, because the solutions got by them
are almost optimal or near-optimal. However, for medium
or large-scale problems whose search space increases dra-
matically, the quality of the solutions which just are feasible
in most cases declines sharply because the effectiveness
of the heuristic-based list scheduling algorithms heavily
relies on the heuristic rules used. Hence, they are not likely
to produce satisfactory results for all kinds of scheduling
situations.

2) METAHEURISTICS
As for metaheuristics, there are a lot of methodolo-
gies, mainly focusing on different evolutionary strategies,
to solve the workflow scheduling problems. Some traditional
and brand-new algorithms of these types include Genetic
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Algorithms (GAs) [17], [18], Particle Swarm Optimization
(PSO) [19], [20], Ant Colony Optimization (ACO) [21], [22],
Artificial Bee Colony (ABC) algorithm [23], [24], Cuckoo
Search (CS) algorithm [25], Chemical Reaction Optimization
(CRO) [26], Whale Optimization Algorithm (WOA) [27],
and Grey Wolf Optimizer (GWO) [28], etc. These tech-
niques start from an initial population, and then generate
next population iteratively by some individual evolutionary
operations that combine the information from previous search
results and some randomizing strategies. Metaheuristics can
generally get high quality solutions due to the abilities
of searching the problem space as widely as possible;
however, their scheduling times are inevitably much higher
than those of the heuristic-based algorithms. Additionally,
almost all metaheuristics have more or less disadvantages
related to their own characteristics, such as bad global
or local search ability, apt to fall into local optima,
slow convergence speed, complicated computation formula,
and too many control parameters to adjust for different
problems.

3) HYBRID METAHEURISTICS
Considering the merits and demerits of a single list-
based heuristic or metaheuristic, more and more researchers
have proposed hybrid metaheuristics for tackling workflow
scheduling in cloud environments.

Among the others, GAs have received more attention
for hybridization due to their widespread use in antecedent
scheduling problems, e.g., project scheduling, job/flow shop
scheduling, routine scheduling, and vehicle scheduling.
Daoud and Kharma addressed the task scheduling prob-
lem by utilization of a Longest Dynamic Critical Path
(LDCP) heuristic and a GA for scheduling (GAS), and the
combination is called Hybrid Heuristic-Genetic Scheduling
(H2GS) [29]. First the LDCP generate a high quality
schedule that will be injected into the initial population
of the GAS, and then the GAS proceeds to evolve
shorter schedules. Wang et al. [30] proposed a Hybrid Suc-
cessor Concerned Heuristic-Genetic Scheduling (HSCGS)
algorithm which incorporates a Successor Concerned List
Heuristic Scheduling (SCLS) into a GA. The SCLS gen-
erates a high quality schedule using the up-ward rank that
concerns the impact of a task’s successor, and then the
GA incorporate this schedule to produce new generations.
In [2], a resource-load balancing hybrid algorithm, named as
Hybrid Genetic Algorithm (HGA), was proposed to schedule
the workflows, where the HEFT heuristic is integrated
with a GA by the way of hybridization similar to those
of H2GS and HSCGS. Recently, another hybridization
of GA and HEFT (HEFTGA) was proposed in [31],
which was used to optimize both makespan and cost of
workflows.

Besides the GAs, PSO is another algorithm that gains
much popularity to be treated as main method while
mixed. In a QoS-based hybrid PSO scheme (GHPSO) [32],
Xue et al. introduced a GA and a hill climbing algorithm
into the PSO to improve the diversity of the population

and the local search ability. Verma and Kaushal [33]
presented a non-dominance sort based Hybrid Particle Swarm
Optimization (HPSO) algorithm to handle the workflow
scheduling problem with two conflicting objectives of
makespan and cost. Mansouri et al. [34] proposed a hybrid
task scheduling algorithm named FMPSO mixing Fuzzy
system and Modified Particle Swarm Optimization tech-
nique to enhance load balancing and cloud throughput.
By taking advantage of both PSO and GWO, Arora and
Banyal [35] proposed a hybrid PSO-GWO to reduce the
total executing cost and total execution time for workflow
scheduling.

Some other up-to-date outstanding hybrids that are used
for workflow-concerned scheduling are briefly expressed as
follows. Xu et al. [36] proposed a Hybrid Chemical Reac-
tion Optimization (HCRO), in which some novel heuristic
approaches and a new selection strategy are integrated with
the original CRO, to solve the DAG-based task scheduling
problem. Vasile et al. [37] proposed a resource-aware hybrid
scheduling algorithm for different types of application: batch
jobs and workflows, where tasks are first assigned to groups
of resources and then a classical scheduling algorithm is
used to schedule them using the allocated group resources.
Abdullahi and Ngadi [38] merged Symbiotic Organisms
Search (SOS) and SA to form a hybrid algorithm SASOS.
This approach uses SOS for covering global exploration and
SA for finding better solutions on local solution regions.With
the combination of SA and Taguchi method in Cat Swarm
Optimization (CSO), a Cloud Scalable Multi-Objective Cat
Swarm Optimization Based Simulated Annealing (CSM-
CSOSA) algorithm for scheduling tasks in cloud datacenter
for the purpose of ensuring consumers QoS expectations was
proposed by Gabi et al. [39]. Choudhary et al. [40] proposed
a GSA based hybrid algorithm for bi-objective workflow
scheduling in cloud computing that is a hybridization
of Gravitational Search Algorithm (GSA) and HEFT.
Mohammadzadeh et al. [41] developed a hybridization of
the Ant Lion Optimizer (ALO) algorithm with a Sine
Cosine Algorithm (SCA) algorithm and used it multi-
objectively to solve the problem of scheduling scientific
workflows.

These hybrid methods are able to utilize the advantages
of one or more auxiliary algorithms to make up for the
shortcomings of the main algorithm. Specifically, they can
be further divided into two categories. One class is realized
by combining a metaheuristic algorithm with some heuristic
rules, such as HEFT, SCLS, LDCP, Fuzzy system. This kind
of hybrid can achieve a good balance between scheduling
quality and scheduling efficiency, and usually introduce few
additional parameters. However, because heuristic rules are
only combined with certain stages of metaheuristic algo-
rithms, their performance improvement to hybrid algorithms
is limited. The other class is achieved by combining multiple
metaheuristics. Due to the full play of the advantages of
multiple metaheuristic algorithms, this hybridization can
obtain the best solution results, but it consumes a lot of
time and usually introduces a large number of control
parameters.
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B. TEACHING–LEARNING-BASED OPTIMIZATION AND
OPPOSITION-BASED LEARNING
Since the HTLBO proposed in this paper has incorporated the
methods of TLBO and OBL, some brief reviews of them are
addressed as below.

TLBO, proposed by Rao et al. [6], is a kind of population-
based optimization algorithm inspired by the principle
of improving students’ grades through teachers teaching
and students learning procedure. Owning to its virtues in
no needing any algorithm-specific tuning parameters with
respect to other metaheuristics, TLBO and its variants have
been broadly applied in function optimization [42], [43], [44],
flow/job shop scheduling [45], [46], [47], [48], engineering
design optimization [49], [50], thermoelectric cooler opti-
mization [51], quadratic assignment problem [52], workflow
scheduling [53] and some other fields.
OBL is a new technology proposed in the field of

computing intelligence in recent years. It is primarily used to
improve the global search ability of an algorithm. Currently,
the hybridization of OBL in TLBO is found in the following
applications. Mukhopadhyay et al. [54] integrated OBL with
TLBO to form an Opposition Teaching–Learning-Based
Optimization (OTLBO) and used it to solve the optimal
power flow problem. Shao et al. [55] proposed an extended
teaching–learning based optimization algorithm to solve the
no-wait flow shop scheduling problem, where OBL is added
in the previewing stage before class to improve the diversity
of the population. Xu et al. [56] proposed a novel TLBO vari-
ant named dynamic-opposite learning TLBO (DOLTLBO),
which employs a new Dynamic-Opposite Learning (DOL)
strategy to overcome premature convergence. Liu et al. [57]
proposed a hybrid metaheuristic teaching–learning-based
optimization (HTLBO) for the travel route optimization
problem alongside the urban railway line, where OBL is
embedded for enhancing HTLBO’s exploration ability.

Based on the above-mentioned references, it can be found
that:

(1) Many hybrids integrate HEFT to enhance the con-
vergent performance of the original algorithms by seeding
a HEFT-generated individual into the initial population.
Nevertheless, the effectiveness of this kind of hybridization
is not obvious since only one high-quality solution is added
into the initial population.

(2) The lack of good balance between global exploration
and local exploitation is still a key problem faced by TLBO
and its variants. In addition, there are only a few TLBO-based
algorithms used to solve the cloud workflow scheduling
problems. The high dimensionality in workflow scheduling
makes it easy for these methods to fall into local optima.

(3) As for OBL, most of the current researches have
employed the boundary values of the search space to calculate
the opposition individuals, which can enhance the diversity of
the population effectively, but in the later stage of evolution,
it is not conductive to the local search, thus reducing the
convergence speed and accuracy.

Hence, in this paper, we propose a new hybrid algorithm
HTLBO to solve the workflow scheduling problem in

FIGURE 1. Workflow sample.

cloud computing systems considering the heterogeneity of
virtual resources. The new method has the characteristics
of (1) absorbing the merits of TLBO, OBL and HEFT;
(2) just needing to set the values of two parameters, namely
proportion of high-quality individuals in initial population
and mutation probability in genetic operation; (3) designing a
mixed opposition-based learning model combining boundary
information and intra-population information; (4) achieving
a good balance between effectiveness and efficiency of the
scheduling.

III. PROBLEM STATEMENT
A workflow application can be represented in the form of a
Directed Acyclic Graph (DAG) [40], W = (T ,E) as shown
in Fig. 1 [4], where T = {t1, t2, . . . , tn} is the set of tasks
and E is the set of edges. An edge is denoted as a pair of
tasks (ti, tj) which illustrates the precedence restraint between
the predecessor ti and the successor tj. That is to say, task ti
must finish before task tj can start. In a DAG, a task without
any predecessor is called an entry task and a task without any
successor is called an exit task. In reality, some workflows
may have multiple entry tasks and/or multiple exit tasks.

Cloud computing system comprises of a set VM =

{vm1, vm2, . . . , vmm} of m independent different types of
virtual machine (VM), namely with different processing
capacity (CPU, memory, bandwidth), fully interconnected
by a high-speed network. The computation capacity of vmk
is presented as Ccomp(vmk ). The bandwidth, namely the
data transfer rate, of the links between different VMs in a
cloud computing system may be different, too. The transfer
rate is represented by an m × m matrix, Bm×m, where
B(vmk , vml) denotes the bandwidth between VMs vmk and
vml . In addition, Ed (ti) represents the amount of data to be
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executed by task ti, and Od (ti, tj) indicates the output data
generated by ti and passed to tj.

Therefore, the computation time Tcomp(ti, pk ) of task ti
executed on VM vmk can be calculated by Eq. (1), and the
communication time Tcomm(ti(vmk ), tj(vml)) of edge (ti, tj),
which means the time consumption in transferring data from
task ti scheduled on vmk to task tj scheduled on vml , can be
obtained by Eq. (2).

Tcomp(ti, vmk ) =
Ed (ti)

Ccomp(vmk )
(1)

Tcomm(ti(vmk ), tj(vml)) =
Od (ti, tj)

B(vmk , vml)
(2)

The workflow scheduling problem is defined as the
assignment of a set of tasks T to the set of VMs VM , ensuring
that the precedence constraint is satisfied and the makespan
of the whole workflow is reduced as much as possible.

IV. ORIGINAL TLBO
TLBO searches for the optimal value of the problem by
simulating the teaching and learning process in a class,
corresponding to the two phases of teacher phase and learner
phase. In the teacher phase, the teacher imparts knowledge to
the students so as to enhance the mean grades of the whole
class, whereas in the learner phase, the students learn from
each other so that every one of the class can improve his/her
grades through interaction with others. In this section, only
the two main phases of the algorithm are addressed.

In the teacher phase, the teacher’s task is to do his/her
best to increase the average marks of the class. Here, a class
represents a population, where the best individual is the
teacher, and the rest can be the learners. Assume an objective
function f (x) needed to beminimized andwith n-dimensional
variables, the ith individual can be presented as Xi =
(xi1, xi2, . . . , xin). Based on the average level of the class, the
teacher utilizes the following formula to teach the learners.

XNew
i = Xi + ri · (XTeacher − TFXMean) (3)

TF = round(1+ rand(0, 1)) (4)

XMean =
1
N

N∑
i=1

Xi (5)

where rand (0, 1) and ri are the uniform random numbers
between 0 and 1; round(x) represents x is rounded to the
nearest integer; TF is a teaching factor that decides the value
of the mean to be changed; N is the total number of the
individuals; XTeacher is the teacher and the XMean is the mean
individual of the whole population. If the new individual
XNew
i is better than the old one Xi, Xi will be replaced.

Otherwise, Xi is not changed.
After finishing the teaching process, the learners

learn knowledge through interaction between themselves.
A learner interacts randomly with others by the means of
communications, discussions and consultations, etc. In the
learner phase, every learner enhances himself/herself by the

FIGURE 2. Example of an individual representation.

following operations:

XNew
i =

{
Xi + ri · (Xi − Xj) f (Xi) < f (Xj)
Xi + ri · (Xj − Xi) f (Xi) > f (Xj),

i ̸= j. (6)

where Xj stands for any randomly selected individual that is
different from Xi. If the new individual XNew

i is better than the
old one Xi, Xi will be accepted. Otherwise, Xi is not replaced.

V. PROPOSED ALGORITHM HTLBO
We first introduce the overall framework of the HTLBO, then
in turn details each part of it.

A. OVERALL FRAMEWORK
The overall framework of HTLBO algorithm is given in
Algorithm 1.

Algorithm 1 Hybrid Teaching–Learning-Based Optimiza-
tion (HTLBO) for Workflow Scheduling
Input: population size N , workflow application and VMs specification

in cloud computing system, max iteration T
Output: the best task-VM mapping XBest

1: HEFT-based initial population generation
2: t ← 1
3: While t <= T
4: Teacher phase with mean individual OBL
5: Learner phase with best individual OBL
6: Enhanced learner phase with random individual OBL and genetic

operations
7: t ← t + 1
8: End while
9: Find XBest with the minimum makespan
10: Return XBest

B. INDIVIDUAL REPRESENTATION AND DECODING
In the proposed algorithm, an individual is represented as a
mapping of the tasks of a given workflow to the VMs. For
a workflow having n tasks and a cloud computing system
having m VMs, the ith individual can be expressed as:

Xi = (xi1, xi2, . . . , xid , . . . , xin) (7)

where xid indicates the VM xid is assigned to the task td . It is
noteworthy that xid is an integer and lies in [1,m]. Fig. 2
illustrates an example of an individual assigning 10 tasks
on 4 VMs, in which the workflow of Fig. 1 is used.

While decoding an individual to get the corresponding
schedule, namely deciding the start and finish times of each
task, the precedence constraints between the tasks must
be satisfied. Hence, we decode an individual according to
the tasks’ descending order of upward ranks [4] which
completely satisfies the precedence constraints of the given
workflow. After decoding an individual, the makespan of it
can be obtained.
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C. MIXED OPPOSITION-BASED LEARNING MODEL
OBL is an intelligent technology proposed by Tizhoosh. The
main idea is to evaluate the current solution and its opposition
solution simultaneously and keep the better one at last, so as
to enhance the search scope and ability of the algorithm [5].
In this paper, a Mixed Opposition-Based Learning model
(MOBL) with the change of evolution is proposed, which is
defined as follows:

X = (1−
t

Tmax
) · X

B
+

t
Tmax

· X
P

(8)

where X means the mixed opposition solution (individual) of
X ; t is the current iteration number, and Tmax is the maximum
number of iterations; X

B
is the boundary opposition solution

of X calculated by the upper and lower bounds of the search
space, and X

P
is the population-based opposition solution of

X calculated using intra-population information, which can
be mean individual, random individual, the best individual,
etc. The mathematical models of X

B
and X

P
are as follows:

X
B
= LB+ UB− r1 · X (9)

X
P
= 2R− r2 · X (10)

where LB = (lb1, lb2, . . . , lbn) represents the lower bound
vector, and apparently, in workflow scheduling, lb1 =
lb2, . . . ,= lbn = 1; UB = (ub1, ub2, . . . , ubn) represents
the upper bound vector, and ub1 = ub2, . . . ,= ubn = m; R
is a reference individual, which denotes the intra-population
information and can be mean individual, random individual,
best individual, etc.; r1 and r2 are two random vectors lying in
[0, 1], which are used to control the contraction of the original
X .
It can be seen from Eq. (8) that in the early stage of the

algorithm, t is small, so the coefficient (1 − t/Tmax) before
X
B
is large, and X

B
plays a leading role. At this time, the

mixed opposition solution generated is not easily affected by
the population history search information, which is conducive
to the global search of the algorithm and facilitates the
finding of more local optimal solutions. However, in the
anaphase of evolution, as the value of t increases, so does the
value of t/Tmax, which tends to be 1. At this point, X

P
plays

a leading role, and the mixed opposition solution obtained is
mainly affected by the population history search information,
which is in flavor of enhancing the local search ability of
the algorithm and facilitating the further excavation near the
existing local optimal solutions, thus improving the search
accuracy and speed of the algorithm.

In view of this, the MOBL model proposed in this paper
takes into account both the global exploration at the early
stage and the local exploitation at the later stage, which
not only ensures the wide search range of the algorithm
(jumping out of the local optima), but also guarantees the
fine search at the small area (getting closer to the global
optimum).

VI. PHASES OF HTLBO
First, a new enhanced learner phase is added into the
HTLBO. Then, according to the learning characteristics

of different phases of HTLBO, the reference points for
calculating opposition solutions in different stages are set.
Finally, multiple opposition learning strategies based on
MOBL model are designed to improve the search capacity
of HTLBO. The specific implementation of each stage is
described as follows.

A. HEFT-BASED INITIAL POPULATION GENERATION
We use a HEFT-based method to generate an initial
population. The steps of this method are described
as Algorithm 2.

Algorithm 2 HEFT-Based Initial Population Generation
Input: population size N , high-quality individual proportion α, workflow

application and VMs specification in cloud computing system
Output: Initial population Pop
1: Set Pop = 8, num = 0
2: Generate an individual λHEFT by using HEFT algorithm and get its

makespan lλHEFT . Put λHEFT into Pop
3: While num < ⌊N ∗ α⌋ − 1 do
4: Randomly generate an individual λrand, and calculate its

makespan lλrand
5: If lλrand > lλHEFT then
6: Calculate the quality-based replacement rate

c =
lλrand−lλHEFT

lλrand
7: For each element p in λrand do
8: Generate a uniform random number r between 0 and 1
9: If r < c then
10: Set p = q, where q is the element of λHEFT that has the same

position as p
11: End if
12: End for
13: End if
14: Put λrand into Pop
15: Set num = num+ 1
16: End while
17: Set num = 0
18: While num < N − (⌊N ∗ α⌋ − 1) do
19: Randomly generate an individual λrand, and calculate its

makespan lλrand . Put λrand into Pop
20: Set num = num+ 1
21: End while
22: Return Pop

At line 6 of Algorithm 2, the quality-based replacement
rate c indicates the schedule length improvement of λHEFT
while comparing to λrand. That is to say, in order to enhance
the quality of λrand, about ⌊c × n⌋ elements in λrand should
be replaced with the elements that have the same positions as
them in λHEFT.

B. TEACHER PHASE WITH MEAN INDIVIDUAL
OPPOSITION-BASED LEARNING
Analyzing the Eq. (1), it can be observed that the teacher
phase of TLBO is to search for the best individual by
improving the average score of the class. Therefore, the mean
individual is chosen as the reference point of opposition
learning, that is, in Eqs. (9) and (10), letting X = XBest
and R = XMean. In this way, the teacher phase based on the
mean individual opposition learning is constructed, and its
operation steps are shown in Algorithm 3.
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Algorithm 3 Teacher Phase With Mean Individual OBL
Input: Population Pop
Output: New population PopNew

1: For each individual Xi in Pop do
2: Calculate the new solution XNew

i according to Eq. (3)
3: Decode XNew

i , and get the makespan lXNew
i

4: If lXNew
i

< lXi then

5: Xi ← XNew
i

6: End if
7: End for
8: Calculate the mean individual XMean of the population
9: Set R = XMean and X = XBest in Eqs. (9) and (10)
10: Calculate the opposition solution XBest of the individual XBest according
to Eq. (8)
11: Decode XBest, and get the makespan lXBest
12: If lXBest < lXBest then
13: XBest ← XBest
14: End if
15: Return PopNew

C. LEARNER PHASE WITH BEST INDIVIDUAL
OPPOSITION-BASED LEARNING
As can be seen from Eq. (4), in the learner stage of TLBO,
individuals improve themselves by learning from randomly
selected individuals, while this may make it difficult for the
worst individual in the population to improve. Hence, in this
stage, OBL is applied to improve the worst individual by
learning the best in the opposite direction.

The best individual XBest is chosen as the reference point of
opposition learning here, namely, in Eqs. (9) and (10), letting
X = XWorst and R = XBest. The operation steps of the learner
phase combined with the best individual opposition learning
are described in Algorithm 4.

Algorithm 4 Learner Phase With Best Individual OBL
Input: Population Pop
Output: New population PopNew

1: For each individual Xi in Pop do
2: Calculate the new solution XNew

i according to Eq. (6)
3: Decode XNew

i , and get the makespan lXNew
i

4: If lXNew
i

< lXi then

5: Xi ← XNew
i

6: End if
7: End for
8: Set R = XBest and X = XWorst in Eqs. (9) and (10)
9: Calculate the opposition solution XWorst of the individual XWorst
according to Eq. (8)
10: Decode XWorst, and get the makespan lXWorst
11: If lXWorst

< lXWorst then
12: XWorst ← XWorst
13: End if
14: Return PopNew

D. ENHANCED LEARNER PHASE WITH RANDOM
INDIVIDUAL OPPOSITION-BASED LEARNING AND
GENETIC OPERATIONS
In order to further enhance the diversity of the population
in the later stage of evolution, an enhanced learner phase is
added to the HTLBO, and its implementation is shown in
Algorithms 5–7.

Algorithm 5 Enhanced Learner PhaseWith Random Individ-
ual OBL and Genetic Operations
Input: Population Pop
Output: New population PopNew

1: Set X = XBest in Eqs. (9) and (10)
2: For each individual Xi in Pop do
3: Randomly choose an individual XRand
4: Set R = XRand in Eq. (10)
5: Calculate the opposition solution XBest of the
individual XBest according to Eq. (8)
6: If choice = crossover then
7: Apply two-point crossover operation on Xi and XBest

to produce a new individual XNew
i

8: Else
9: Apply mutation operation on Xi to produce a new

individual XNew
i

10: End if
11: Decode XNew

i , and get the makespan lXNew
i

12: If lXNew
i

< lXi then

13: Xi ← XNew
i

14: End if
15: End for
16: Return PopNew

Algorithm 6 Two-Point Crossover
Input: Xi and XBest
Output: XNew

i
1: Randomly generate two crossover positions pos1 and pos2 (pos1 ̸= pos2)
2: XNew

i ← Xi
3: For each element p whose position is between pos1 and pos2 in XNew

i
4: Set p = q, where q is the element of XBest that has the same

position as p
5: End for
6: Return XNew

i

To balance the population diversity and convergence
accuracy, the best individual and randomly chosen individual
are used for calculating the opposition solution at this stage,
namely, setting R = XRand and X = XBest. Obviously,
for each Xi, the opposition solution XBest is different due
to randomly chosen reference point XRand, so the offspring
obtained from the crossover of Xi and XBest is conducive to
maintaining the diversity of the population. Furthermore, the
mutation with small probability done on Xi is helpful for the
algorithm to jump out of the local optima.

VII. TIME COMPLEXITY ANALYSIS
The time complexity of the algorithm is calculated by
summation of the time complexity of the most time-
consuming operations in HTLBO. Suppose the size of the
population is N , the maximum number of iterations is T .
α is the high-quality individual proportion of the initial
population. The computational complexity of decoding an
individual, namely generating a schedule and obtaining its
makespan, is set to be O(f ). HTLBO has three individual
updating methods, which are real number operation in full
dimensions, crossover operation in partial dimensions and
mutation operation in a small number of dimensions. For
the sake of simplicity, their time complexities are set to
O(g), O(h) and O(k), respectively. In the initialization stage,
the time complexity of producing an initial population is
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Algorithm 7Mutation
Input: Xi and mutation probability β

Output: XNew
i

1: XNew
i ← Xi

2: For each element p in XNew
i

3: Generate a uniform random number r between 0 and 1
4: If r < β

5: Randomly choose a VM whose number is q
6: Set p = q
7: End if
8: End for
9: Return XNew

i

O(Ng), and the time complexity of transforming Nα ordinary
individuals into high-quality individuals is O(Nαh). Hence,
the total time complexity of initialization stage is O(Ng +
Nαh + Nf ). Each iteration of HTLBO consists of three
search stages. The teacher and learner phases use real number
operation to update the individuals, so the time complexity
of both is O(Ng + Nf ). The enhanced leaner phase uses
crossover and mutation to update individuals with equal
probability, so the time complexity can be presented as
O( 12Nh +

1
2Nk + Nf ). To sum up, the total time complexity

of HTLBO is:

OHTLBO(Ng+ Nαh+ Nf + (2Ng+
1
2
Nh+

1
2
Nk + 3Nf )T )

(11)

Furthermore, since all algorithms in this study use max
number of generated schedules (maxGS) to terminate the
algorithms, we also providemaxGS-based time complexity of
HTLBO. Apparently, N + 3NT = maxGS, while N is much
less than 3NT , so 3NT = maxGS can be obtained. Replacing
T with maxGS

3N , the time complexity of HTLBO can finally be:

OHTLBO(Ng+ Nαh+ Nf + (
2
3
g+

1
6
h+

1
6
k + f )maxGS)

(12)

Using the similar method, the time complexity of the
original TLBO can be expressed as:

OTLBO(Ng+ Nf + (g+ f )maxGS) (13)

Since O(g) > O(h) > O(k), the complexity of HTLBO in
Eq. (12) can be reduced to Eq. (14) as follows:

OHTLBO(Ng+ Nf + (
2
3
g+ f )maxGS) (14)

Therefore, the time complexity of HTLBO is slightly less
than that of TLBO,which is proved by the actual running time
comparison in the following experiment.

VIII. AN ILLUSTRATION
We illustrate the HTLBO process using the workflow in
Fig. 1, which has the same structure as the reference [4].
In the diagram, the number in a task node represents the
computational amount of the task, in million instructions
(MI). And the data next to the edge represents the data traffic
between nodes, in MB. The experimental environment is set
up as described in the next section.

FIGURE 3. Individual λHEFT computed by HEFT.

FIGURE 4. Random individual λrand.

FIGURE 5. Implementation of improved λrand.

FIGURE 6. Implementation of XBest using the mean individual as
reference.

In the population initialization phase, an individual λHEFT
for the given workflow is computed using HEFT, which is
shown in Fig. 3 in a simplified mode. The task scheduling
order is (t1, t4, t2, t5, t3, t6, t9, t7, t8, t10). Thus, the makespan
of λHEFT can be calculated to be 60.14. For a random
individual λrand shown in Fig. 4 with the makespan of
91.02, the quality-based replacement rate c is calculated
to be 0.3393. An improved λrand can be obtained using
Algorithm 2, and its implementation is shown in Fig. 5, where
r is random numbers lying [0, 1]. Apparently, by replacing
some of the elements in λrand with the corresponding values
in λHEFT, the quality of λrand is significantly improved, and
its makespan is reduced to 73.33.

In the teacher phase, suppose that the mean individual
obtained in a certain iteration is XMean, and set it as the
reference individual R. For the current best individual XBest,
calculate its opposition solution XBest, whose implementation
is illustrated in Fig. 6. The makespan of XBest is 59.76,
but the makespan of XBest is 75.67, so XBest is not used to
replace XBest.
In the learner phase, XBest is set to be the reference

individual R. For a given worst individual XWorst, the
implementation of its opposition solution XWorst is described
as follows. The makespan of XWorst is 73.72, and the
makespan of XWorst is 62.19. Since the improvement of XWorst
is obvious, it can be used to replace XWorst.
In the enhanced learner phase, an individual XRand is

randomly chosen and used as the reference point to calculate
the opposition solution XBest of XBest. An example is shown
in Fig. 8.

Individuals can be improved by crossing with XBest or
mutating themselves. Examples of crossover andmutation are
shown in Figs. 9 and 10, respectively. After crossover, the
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FIGURE 7. Implementation of XWorst using the best individual as
reference.

FIGURE 8. Implementation of XBest using a randomly selected individual
as reference.

FIGURE 9. Two-point crossover of X and XBest.

FIGURE 10. Mutation of X .

TABLE 1. Mian iterations of HTLBO.

FIGURE 11. Resultant schedule of the workflow sample.

makespan of XNew is shortened from the original 64.47 to
63.44. Mutation can sometimes improve the quality of an
individual, as shown in Fig. 10, where the makespan of XNew

is reduced from 60.96 to 60.09.
Table 1 shows the details of the best individual identified

in main iterations with respect to the makespan. The resultant
schedule is presented in Fig. 11.

TABLE 2. Size of the workflow based on the number of tasks.

TABLE 3. Workflow scheduling simulation parameters.

IX. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the simulation results and discus-
sion of the proposed algorithm from the perspectives of
control parameter settings, algorithm comparison and non-
parametric statistics.

A. EXPERIMENTAL SETUP
The WorkflowSim Framework based on CloudSim [31] is
chosen to carry out the experiments. HTLBO is evaluated
on various scientific workflows obtained from the Pega-
sus workflow repository [58]. These real-work workflows
include CyberShake, Epigenomics, Inspiral, Montage, and
Sipht. We divide them into three sizes based on the number
of tasks in the workflow [40], which is shown in Table 2.
Moreover, the workflow scheduling simulation parameters
are listed in Table 3, where MIPS, BW and Pes number
represent million instructions per second, bandwidth, and
number of CPUs, respectively. It should be noted that in this
study, in order to better reflect the authenticity of the cloud
computing environment, the heterogeneity factor is set for
each VM resource, whose value is a random number of (0.8,
1.2). For the four VMs in this study, the heterogeneity factors
are set as (0.8140, 0.9647, 1.1832, 1.0196), so the true MIPS
and BW for each VM are obtained by multiplying the basic
MIPS and BW by the corresponding heterogeneity factor.

In order to verify the comprehensive performance of
HTLBO, some outstanding workflow scheduling algorithms
are chosen and benchmarked for comparison. They are
original TLBO [6], HEFT [4], HEFTGA [31], HGA [2],
and HGSA [40]. Among these algorithms, HEFT is a
popular heuristic algorithm for solving workflow scheduling;
TLBO is a metaheuristic; and HEFTGA, HGA, HGSA and
HTLBO are hybrid metaheuristics integrated with HEFT. The
settings for all algorithms compared are identical to those
recommended in their original works. Table 4 shows the
parameter settings for algorithms involved.

All algorithms were implemented using Java coding
environment on a Core i7 processor running at 2.4GHz and
equipped with 16GB of main memory. The max number
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FIGURE 12. Comparison of small-size workflows.

TABLE 4. Parameter settings for algorithms involved.

of generated schedules (maxGS), which are obtained after
individual decoding, is used as the criterion for terminating
each algorithm, with a maximum of 10000 schedules. The
population size of each algorithm is set as 50. All results
are recorded and compared based on the algorithms’ average
performance over 30 independent runs.

B. SETTINGS OF HIGH-QUALITY INDIVIDUAL
PROPORTION α AND MUTATION PROBABILITY β

The high-quality individual proportion α is applied to control
the proportion of HEFT-based individuals in the initial
population. Apparently, a larger α increases the number of
high-quality individuals in the population, thus speeding up
the convergence of the algorithm. However, this situation
reduces the diversity of the population, making the algorithm
easy to fall into local optima early and difficult to continue to
progress in the late iterations. Therefore, the value of α should
not be set too large. In this study, α ranges from the set {0.1,
0.2, 0.3, 0.4, 0.5}.

The mutation probability β is used to help the algorithm
jump out of the local optima and increase the probability that
the algorithm can still find some better solutions in the later
iterations. Generally, a small number of mutation operations

can significantly increase the diversity of the population, so β

should be set to a small value. In this study, β takes values
from {0.05, 0.10, 0.15, 0.20}.

We select five different types of medium-size workflows as
representatives to test the scheduling performance (average
makespan) of HTLBO under different combinations of α and
β. And the Friedman test is utilized to determine the best
combination. The results are presented in Table 5, where
makespan is measured in seconds.

As can be seen from the table, when α = 0.3 and β = 0.05,
the mean rank is the smallest. Hence, the thresholds of α and
β in HTLBO are set to 0.3 and 0.05, respectively.

C. COMPARISON OF HTLBO WITH OTHER ALGORITHMS
The performance of HTLBO is estimated against HEFT,
TLBO, HEFTGA, HGA, and HGSA with respect to normal-
ized average makespan. For the sake of easy comparison and
visualization of the overall quality of the results, the max-
normalization is used to normalize the average makespan as
calculated in Eq. (15).

avgMSNori =
avgMSi

max
j=1 to J

(avgMSj)
(15)

where avgMSNori is the normalized value for average
makespan avgMSi obtained by algorithm i. Figs. 12–14 show
the bar charts for the normalized average makespan, so as to
demonstrate the effectiveness of HTLBO compared to other
algorithms. It should be noted that in order to compare the
optimization characteristics of various algorithmsmore fairly,
we also added HEFT to the original TLBO for generating the
initial population. In other words, TLBO is a hybrid algorithm
mixed with HEFT in this study.

From the figures, it can be observed that HTLBO obtains
the best results in 31 out of 35 workflow instances. To be spe-
cific, for the small-size workflows, HTLBO performs better
than or equal to other algorithms except for Inspiral_50. This
means that HTLBO has good local exploitation ability, that
is, in the workflow scheduling problems with small search
space, it can mine the solutions with higher accuracy than
the competitors. And for medium-size workflows, HTLBO
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FIGURE 13. Comparison of medium-size workflows.

TABLE 5. Combination tests of different α and β.

still maintains the performance advantage and outperforms
the comparison algorithms in the vast majority of cases except
for Epigenomics_100 and Inspiral_100. Moreover, with the
increase of workflow size, the performance advantage of
HTLBO becomes more obvious, as shown in the scheduling
results of large-scale workflows. In particular, when solving
workflows Montage and Sipht with complex structure and
large scale, the results obtained by HTLBO are significantly
better than those of other algorithms. However, other hybrid
metaheuristics can hardly get better results than those got

by HEFT because of the huge problem search space. Thus,
HTLBO also possesses good global exploration ability.
It can find more excellent solutions than other algorithms
when encountering large search space. To be concluded, the
proposed HTLBO achieves a good balance between global
exploration and local exploitation.

Furthermore, the running times of compared algorithms
on various types of workflows are given in Table 6, where
the reported times are the average running times of the
workflows.
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FIGURE 14. Comparison of large-size workflows.

TABLE 6. Running times of compared algorithms.

As can be seen from the table, HTLBO ranks fourth
among all algorithms regardless of the workflow size. The
consuming time of HTLBO is slightly less than that of TLBO,
which confirms the above time complexity analysis. HEFT
is the least time-consuming algorithm of all, because as a
heuristic, it produces only one schedule. The running times
of HEFTGA and HGA are less than that of HTLBO, because
both are hybrid metaheuristic algorithms based on GA, which
use partial-dimension updates to generate new individuals.
HGSA has the longest running time among all algorithms,
as it generates new individuals using full-dimension updates

TABLE 7. Non-parametric statistical tests.

and computes a large number of Euclidean distances in each
iteration.

All in all, HTLBO maintains good execution efficiency
under the condition of obtaining outstanding scheduling
results, and its running time is completely acceptable. Thus,
HTLBO achieves a good balance between effectiveness and
efficiency.

D. NON-PARAMETRIC STATISTICAL TESTS
Wilcoxon signed rank test and Friedman test [59] were used
to further verify the effectiveness and superiority of the
proposed algorithm HTLBO from the perspective of non-
parametric statistical analysis. The significance levels of the
tests are set to 0.05, and the test results are shown in Table 7.
The symbols ‘‘+, −, =’’ indicate the times that HTLBO
is superior, inferior, or equal to the compared algorithms,
respectively, which are obtained by Wilcoxon signed rank
test. For example, the result of ‘‘24/11/0’’ represents that
HTLBO outperforms HEFTGA on 24 of 35 cases, is equal
to it on 11 cases, and is inferior to it on 0 case. The mean
ranks are calculated using Friedman test.

As can be seen in the table, in the Wilcoxon signed rank
test, HTLBO is not inferior to the comparison algorithms
in any case, and the performance advantages are significant.
In the Friedman test, HTLBO obtains the smallest mean
rank. Therefore, it can be demonstrated that HTLBO has a
prominent advantage in non-parametric statistics compared
with other algorithms.
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X. CONCLUSION AND FUTURE WORK
In this study, a hybrid metaheuristic HTLBO for real-
world scientific workflow scheduling in heterogeneous cloud
environment is proposed. As a solution of this problem, the
proposed algorithm integrates HEFT, OBL and genetic oper-
ations into the original TLBO to achieve a minimal makespan
of theworkflow scheduling. AHEFT-basedmethod is applied
to generate a high-quality initial population for enhancing the
convergence accuracy and speed of the algorithm. Based on
the principle of balancing the global exploration and local
exploitation of the algorithm as much as possible, a mixed
OBL model combining the boundary search information and
the population history search information is designed to
generate some opposition-based solutions for expanding the
search range in each stage. In order to improve the diversity
of the population and avoid falling into local optima too
early, an enhanced learner phase implemented using genetic
operations is also added to the algorithm. Experiments on
real-world workflows as CyberShake, Epigenomics, Inspiral,
Montage, and Sipht with various task sizes demonstrate that
HTLBO has outperformed HEFT, original TLBO and some
state-of-the-art hybrid metaheuristics including HEFTGA,
HGA, HGSA in terms of average makespan while achieving
acceptable running times. Furthermore, the non-parametric
statistics also show that the difference between HTLBO
and these comparison algorithms is significant. Therefore,
the proposed HTLBO can achieve a good balance between
scheduling effectiveness and efficiency.

It should be noted that HTLBO aims to shorten the
workflow makespan as much as possible when considering
the sharing and heterogeneity of cloud resources. However,
in practical applications, some scenarios about task deadline,
multi-objective optimization, workflow budget constraints,
and cloud resource reliability constraints are not taken into
account in HTLBO.

Hence, in future work, we plan to use HTLBO for
tackling the problems of multi-objective optimization with
multiple constraints when scheduling workflows in cloud
environment. Another work ahead is to further improve
HTLBO by introducing a dual encoding method with
complete search space, which consists of a discrete coding
part based on task permutation and a continuous coding part
based on resource allocation.
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