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ABSTRACT Depression and anxiety are prevalent mental illnesses that are frequently disregarded as
disorders. It is estimated that more than 5% of the population suffers from depression or anxiety. Although
there have been a number of studies in these fields, the majority of the research focuses on one or two factors
for detection purposes, whereas these factors are not mutually inclusive and vary among studies. To mitigate
these issues, we first consider all possible symptoms associated with depression and develop a multimodal
diagnosis system that may take into account any number of patient-specific factors. If multiple factors can
be addressed within a single learning model, it is advantageous for data collection and future development.
To facilitate training with missing modalities, we propose an attention-based multimodal classifier with
selective dropout and normalization, which can facilitate the training of various multimodal datasets on
one neural network. We have experimented with three multimodal datasets with varying modalities to
show the impact of combined training in one neural network and achieved an F1 score of 0.945. However,
missing modalities in the model can create uncertainty in the prediction. For uncertainty approximation,
the Monte Carlo dropout (MC dropout) and the spectral-normalized neural Gaussian process (SNGP) with
the coefficient of variation and S1-Score metrics are implemented to provide important information about
multimodal diagnosis processes. In the experiment, selective dropout with SNGP achieved a coefficient of
variation in loss of 0.384 and an S1-score of 0.9374.

INDEX TERMS Deep learning, multi-modal neural network, uncertainty approximation, ensemble.

I. INTRODUCTION
According to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5), depression is charac-
terized by the presence of one or more major depressive
episodes that last at least two weeks and include symptoms
such as a depressed mood, decreased interest in activities,
and feelings of worthlessness or guilt [1]. Depression is
also characterized as a mood disorder, with its primary
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manifestation being a state of temporary or persistent feelings
of sadness, diminished enjoyment, and diminished self-
esteem, as well as disturbances in sleep and eating patterns,
concentration difficulties, and feelings of fatigue. These
symptoms may persist over time, leading to chronic and
recurring episodes that can hamper an individual’s ability
to engage in daily activities [2]. Depression is a prevalent
mental health condition that impacts a substantial portion
of the global population, with an estimated 280 million
individuals, or approximately 5% of adults [3]. It has been
identified as a possible precursor to suicide, and the number
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of suicide-related deaths exceeds 700,000 per year [3]. A per-
son’s capacity to participate in professional, academic, and
social activities can be hampered by depression. According to
Dattini et al., depression causes a global loss or impairment
of 50 million years of work per year [4]. Even though
mental health services and treatment are not accessible to over
75% of individuals in low- and middle-income countries [3].
While the exact reason for depression still remains unknown,
social, psychological, environmental, and medical conditions
might be some factors in its development [5]. Thus, it is
a multidimensional field where psychological, medical, and
technical researchers are trying to correlate symptoms with
plausible detection systems. This would allow early detection
as well as a self-assessment system to mitigate possible
risks. However, the cause and symptoms of the condition
exhibit significant heterogeneity [1], posing challenges for
conventional questionnaires and analytical methods given
their complex characteristics.

In this regard, numerous studies have indicated that
depression can be detected by observing and collecting data
from subconscious states, which can be accomplished using a
variety of methods and tools. Psychological methods [6], [7],
[8], [9], [10] involve standardized questionnaires, interviews,
or scales to evaluate the symptoms, severity, and ramifi-
cations of depression. Nevertheless, these methodologies
exhibit certain limitations, including but not limited to
subjectivity, bias, low sensitivity, and cultural dissimilarities.
In contrast, machine learning (ML) approaches employ
computational algorithms to examine diverse modalities
such as facial expressions, speech, text, or physiological
signals [11], [12], [13], [14], [15], [16], [17]. Common
approaches for detection include feature extraction, fea-
ture selection, and classification using various algorithms.
However, they still have drawbacks like data quality and
availability, moral and privacy concerns, robustness and
generalizability, or interpretability. Neuroimaging techniques
such as electroencephalography (EEG), magnetic resonance
imaging (MRI), or positron emission tomography (PET)
are used to measure structural or functional changes in
the brain associated with depression [18], [19], provide
insights into the neurobiological mechanisms and biomark-
ers of depression. These approaches are limited by their
high computational cost, invasiveness, low accessibility,
or technical challenges. However, most of these methods
rely on a single domain or modality of data, which may
not capture the complexity and heterogeneity of depression.
Moreover, different modalities may provide complementary
or contradictory information about depression. While these
approaches have their strengths and weaknesses, combining
them inmultimodal neural networks can provide a more com-
prehensive and accurate diagnosis of depression. Methods
such as concatenation, weighting, and gating are employed
to integrate multiple modalities at the input or feature level.
The multimodal deep learning framework (MDLF), cross-
modal attention network (CMAN), deep convolutional neural

network (DCNN), and bi-directional long short term memory
(BiLISTM) are examples of these methods [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31]. Both
feature (early) and dense (late) level concatenation with
existing and custom algorithms are proposed by several
researchers. One drawback shared by all of these methods
is that they must be trained in specific modalities. If the
model is trained on text and speech features, for instance,
it may not be able to detect depression using images
or physiological features. Quantifying and incorporating
uncertainty into the classification procedure is a further
obstacle for multimodal approaches. There are numerous
sources of uncertainty, including noise, ambiguity, variability,
and insufficient data. Uncertainty can affect the confidence
and dependability of classification results, leading to misdi-
agnoses and inappropriate interventions. Thus, we propose
the use of an attention-based multimodal classifier featuring
selective dropping out in order to facilitate the training of
variousmultimodal datasets on one particular neural network.
The experimentation with classification approaches involves
the utilization of multiple datasets where the modalities are
mismatched with one another. Furthermore, the incorporation
of uncertainty approximation or confidence in the predictions
or representations has been implemented to ensure model
training with missing modalities. Matrics such as the S1-
Score and Coeffiicient of Variation are also used for
uncertainty approximation. The contributions of this paper
are the following:

• We have proposed a selective dropout layer compatible
with TensorFlow, to drop unnecessary or not given
modalities in the concatenation layer. Selective dropout,
attention and normalization are used as a block to
accommodate training with missing modalities

• A multimodal Neural network is proposed and trained
on separate datasets with absent modalities where the
model can omit specific modalities selectively during
training while still effectively utilizing the available
information.

• The method also incorporates uncertainty approxi-
mation techniques, such as Monte Carlo dropout,
and spectral-normalized neural Gaussian process,
to enhance the robustness and generalizability of
depression detection.

In this manuscript, Section II presents a review of relevant
literature. The algorithms and methodologies are described
in Section III. Section IV provides the analyses, results and
discussions. Finally, Section V summarizes the findings and
presents the conclusions with the limitations of the study.

II. RELATED WORK
Depression is a well-studied subject, both in terms of
psychological and technological perspectives. According
to DSM-V, depression can be classified into multiple
types: disruptive mood dysregulation disorder, premenstrual
dysphoric depression, persistent or major depressive disorder,
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depressive disorder, depression due to loss or grief, and
depression due to medical conditions, which spawn their own
sets of symptoms and result in more serious psychological
conditions [1]. This type of mental condition is also universal
regarding age and gender [32].

The presence of depressive symptoms and other neuropsy-
chiatric symptoms may have a negative influence on both
patients’ and caregivers’ well-being [33]. Moreover, indi-
viduals who demonstrate persistent physical and emotional
symptoms after getting therapy for depression seem to be
more susceptible to relapse than those who do not exhibit
such symptoms [34]. Humans are susceptible to their own
thoughts and tend not to express these feelings towards
diagnosis. There are several self-assessment questionnaires
like PHQ-8 [7], PHQ-9 [6], CES-D [8], GDS [9] and
HADS [10] that normally ask about the frequencies of
depressive syndromes in a specific timeframe, normally daily,
weekly, or monthly. However, the existence of human biases
in self-filled questionnaires led researchers to develop tests
that capture the subconscious thoughts of individuals.

Early detection of depression using machine learning is
vital yet challenging owing to limitations in medical tech-
nology and expertise. Researchers have investigated several
ways of identifying depression, including those based on
social media, EEG [15], acoustic testing, and virtual reality.
Lin et al. [11] have suggested social media-based depres-
sion detection systems that leverage a deep visual-textual
multimodal learning technique to expose the psychological
condition of social network users. The depression detection
process may also include collecting posted images and tweets
from users with and without depression on Twitter, extracting
deep features using CNN-based classifiers and Bert from
the text and images, combining the visual and textual
features, and classifying users with depression and normal
users using a neural network. In separate research, a hybrid
model was used to predict sadness by analyzing Reddit
user text postings. This model used BiLSTM with various
word embedding methods and metadata characteristics [12].
Socially Mediated Patient Portal (SMPP) is a programme
that uses a data-driven approach and machine learning clas-
sification algorithms to discover depression-related signals
in Facebook users [13]. Govindasamy et al. [14] utilized
machine learning algorithms to identify sadness through
social media user postings. Twitter data is given to two
distinct classifiers, Nave Bayes and NBTree, and the results
are evaluated based on the greatest accuracy value to find the
most effective algorithm for detecting depression. But these
methods may also suffer from inefficiency and bias since
people often showcase their positive sides through behaviour
or social media. In addition, EEG and eye movement
(EM) data have been frequently employed for depression
identification owing to their noninvasiveness and ease of
recording. Using EEG and EMs datasets, this study presents
a content-based ensemble approach (CBEM) to improve
depression identification accuracy [18].

Although the multimodal approach is common in depres-
sion detection, the majority of the existing research
focuses on bi-modality or tri-modality. A review study by
Arioz et al. [35] shows that of the 1095 existing studies, only
20 devised their methodology on more than two modalities.
The prevalent modalities comprise acoustic characteristics
and visual cues, primarily obtained from video recordings.
Nevertheless, conducting comprehensive literary analyses
of all existing methodologies is beyond the scope of this
research. Therefore, in this section, priority is given to
researchers who have closely examined our study or have
frequently employed the datasets used in our research. Multi-
modal methodologies pose a challenge owing to the require-
ment of incorporating joint representation, alignment, and
fusion mechanisms. Some of the solutions for these problems
involve the utilization of BiGRU, BiLSTM [36], [37], and
Hierarchical Attention Network (HAN) [28] architectures for
text analysis. Other approaches involve the application of
GPT2-medium language models to generate task-oriented
embeddings [26]. However, integratingmultiplemodalities in
feature states with convincing fusing algorithms and feature
concatenation still poses a challenge. From a tri-modal
perspective, Yang et al. [20], proposed audio, video, and text
streams with handcrafted feature descriptors in a DCNN to
acquire high-level global features and predict PHQ-8 scores.
Yazdavar et al. [25] proposed identification of depressive
symptoms from tweets utilizing statistical techniques to com-
bine heterogeneous types of characteristics collected through
the collection and analysis of visual, textual, and user-
generated data. Similarly, Shimpi et al. [24] proposed cus-
tomised ensemble methods and have subsequently expanded
their research to encompass mobile applications and cloud
development. Nonetheless, the clarity of this approach is
limited, as the custom fusion is typically described as a
series of BI-LSTM layers within the methodology. Mantri
et al. [38] proposed a system that captures a combination
of facial characteristics, speech properties, and brain waves
to predict the severity of depression. The system employs a
numeric conversion technique and a single fully connected
classifier for this purpose. The approaches discussed suffer
from a loss of multimodality due to the absence of
feature-merging techniques and reliance on a single classifier
for feature mixing. Arroz et al. [35] compared algorithms
for unimodal, automatic, and multimodal classification
conversations with LSTM and gated recurrent units (GRU).
Alternative approaches to multimodal depression detection
encompass the examination of various indicators such as the
dynamics of acoustic, facial, and head movement [27], [39],
behavioural and physiological signals [40], brain functional
abnormalities, heart rate variability, hemodynamic parame-
ters [41], and partially convergent structural features [23].

Despite recent progress, existing studies on the detection
of depression through multiple modes of communication still
face several limitations. A significant constraint pertains to
the inadequacy of efficient feature fusion mechanisms within
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multi-modal neural networks. The integration of information
from various modalities, including text, audio, and video,
presents a significant challenge for researchers seeking to
develop a more comprehensive understanding of a patient’s
mental condition. Furthermore, current research exhibits
rigidity with regard to themodalities employed. But themajor
constraint pertains to the level of uncertainty involved in
decision-making, which is an intrinsic aspect of predicting
mental health conditions. The absence of uncertainty esti-
mation in prior studies poses a challenge in determining
the degree of confidence in the model’s prognostications.
Hence, these limitations present noteworthy obstacles to
the advancement of dependable and precise multimodal
depression detection mechanisms.

III. METHODOLOGY
In this study, we propose a methodology for multimodal
depression classification with uncertainty approximation.
The first step is preprocessing, which involves extracting
features from different modalities. Various audio features are
extraceded, including zero crossings, spectral centroids, spec-
tral rolloff, mel-frequency cepstral coefficients (MFCC), and
chroma short-time Fourier transform (STFT). The 68 facial
landmarks are used to extract facial and image features,
and text feature extraction is performed with the BERT
encoder. A multimodal neural network is proposed that takes
in video, audio, text, and EEG features as input. The model
also incorporates multimodality with tolerance for N missing
modalities by selectively dropping out one modality so the
model can learn from missing modalities in the datasets.
Additionally, we employ unimodal ensembling to improve
the classification performance of individual modalities.
Lastly, Monte Carlo dropout and spectral-normalized neural
Gaussian process methods reduce uncertainty and biases,
and the S1-Score with coefficient of variation quantification
estimates the uncertainty in the model’s predictions. The aim
of the overall methodology is to provide better feature fusion
among various datasets and modalities.

A. PREPROCESSING AND FEATURE EXTRACTION
The preprocessing procedures entail the consolidation of
facial landmark video modalities from the Dvlog and DAIC-
WOZ datasets, as well as the generation of corresponding
eye scan paths. Additionally, audio feature extraction is
performed on the DAIC-WOZ and MODMA datasets, while
text encoding is carried out using the BERT encoder. Finally,
EEG feature extraction is conducted on theMODMA dataset.
The PHQ scales were converted into binary classifications
(PHQ>7). The subsequent segment delineates the process of
feature extraction.

1) THE VIDEO FEATURE
The facial landmark for the video feature has been designated
as a set of 68 2D points. Subsequently, the 68 points

FIGURE 1. Preprocessing and feature extraction.

are arranged in the shape of 340 ∗ 340 ∗ 2, wherein
each row contains 5 consecutive points. This encoding
results in a total of 340 rows, which is equivalent to
28.333 minutes of data. The Dvlog (Dlib) and DAIC WoZ
datasets provide video features at a rate of 1fps or one
instance of facial features consisting of 68 points per second.
The arrangement of video features is structured in a manner
that enables the utilization of convolutional operations for
the purpose of extracting features during runtime, thereby
leading to a subsequent reduction and compression of the
information.

2) EYE SCAN PATH
This study employs an estimated eye scan path due to
the absence of pupil positions in the 68 landmark dataset.
By utilising six designated points for each eye, the centre
position can be determined and subsequently plotted onto
a 256 ∗ 256 ∗ 3 image file. Nonetheless, the mean point
of the visual organ merely estimates the location of the
pupil. In future academic research endeavours pertaining
to comparable multimodal investigations, it may be advan-
tageous to utilise Facemesh, a technology developed by
Google, as it offers superior resolution capabilities and
the ability to track pupil coordinates in three dimen-
sions. Therefore, it is recommended to employ comparable
techniques such as Facemesh in forthcoming research
endeavours.
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3) AUDIO FEATURE
Since the Dvlog dataset is already provided as an Opensmile
25 feature detector, the DAIC WoZ and Modma datasets
were also analysed with Opensmile [42], while 238 low-level
descriptions (LLD) were considered for feature extraction,
ensuring that all of the datasets have an identical auditory
feature. LLD consists of mel frequency cepstral coefficients
(MFCC), zero crossing, mean crossing, energy, intensity,
linear predictive coefficient, and chroma characteristics.
LLDs are extracted for the entire conversation length of
the DAIC WoZ and Modma datasets, yielding 238 feature
vectors.

4) EEG FEATURES
The MNE [43] is utilised for completing the EEG pre-
processing and feature extraction. In the MODMA dataset,
128 channels of resting and event EEG data are provided.
This data, however, comprises noise and a broad spectrum
of frequencies. Consequently, a bandpass filter is used to
remove EEG signals between 0.5 Hz and 50 Hz. This cutoff
in low and high frequencies eliminates both signal drift
and noise. Signal-space projection (SSP) and independent
component analysis (ICA) are employed to remove any signal
artefacts from the data. Then, independent attributes such as
mean, standard deviation, moments, Fast Fourier transform,
maximum, minimum, eigenvalues, and entropy are extracted
from the EEG brainwave data usingMNE [43]. The complete
feature length is 128 ∗ 21.

5) TEXT PROCESSING
For text data in the DAIC Woz dataset, each conversation
is punctuation-cleaned. BERT (Bidirectional Encoder Rep-
resentations from Transformers) is then used to transform
textual data into numerical representations. The BERTmodel
tokenizes the text by separating it into individual words,
or tokens, and assigning (encoding) unique numbers to each
token.

B. UNIMODAL ENSEMBLE CLASSIFIER
Five deep learning models are designed for detecting depres-
sion using five different input modalities: facial landmarks,
the eye scan path as an image, feature-extracted audio, text,
and EEG data (similar to a multimodal model). The unimodal
classification method employs distinct neural networks for
each modality, namely CNN for landmarks and eye scan
paths, BiLSTM-CNN for EEG, BiLSTM network for audio,
and BilSTM with Bert Tokenizer for text. Figure 3 depicts a
network with a similar architecture to multimodal networks;
however, the characteristics of each modality are transmitted
to distinct classification-dense layers. Again, some of the
layers and neurons were modified for fine-tuning in order to
maximize the statistical results (accuracy, F1 score, andAUC)
of each network. Each model is trained on the corresponding
dataset modality. The prediction was then soft ensembled,

FIGURE 2. Illustration of selective dropout with attention.

that is, the prediction of each model on a specific modality
of the dataset was averaged to determine the final binary
depression classification probability.

C. SELECTIVE DROPOUT WITH NORMALIZATION AND
ATTENTION
Modality mismatches are the fundamental issue while
training multimodal neural networks on current datasets. For
instance, the DAICWoz dataset includes raw audio, text, and
extracted video data, while the Dvlog dataset only includes
extracted audio and video characteristics. Similarly, the
Modma dataset includes audio and ECG data. Challenges in
neural network architecture arise from training a single model
with all of the datasets. However, it is possible to resolve
this problem by building a neural network that incorporates
all of the modalities and then handling the modality that is
missing from the classification process. We propose selective
dropout with normalization and attention (fig. 2) to integrate
tolerating missing modality and training one model with
varied modality datasets. Similar to the regular dropout layer,
the selective dropout layer allows just a certain set of nodes
or each modality to be deleted by specifying a predetermined
range. Once more, if there are enough modalities available,
we can randomise by choosing to leave any of the offered
modalities.

The integration of information from various modalities is
made possible through the combination of multiple unimodal
networks in a multimodal neural network. Let the set of
N modalities is denoted by M (1),M (2), . . . ,M (N ), where
each modality is characterized by a distinct set of input
attributes. The unimodal networks are placed in isolation
for each modality, where the output of the ith unimodal
network is represented as UM (i). The process of creating
a multimodal representation UM (N+1) involves merging the
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FIGURE 3. Proposed multimodal classifier accommodating various
modalities for depression detection.

outputs of the unimodal networks through concatenation,
that is UM (N+1)

= [UM (1),UM (2), . . . ,UM (N )]. In order
to address the potential consequences of absent modalities,
a selective dropout layer has been implemented to selectively
target the combined representation UM (N+1). The dropout
layer is designed to randomly eliminate a subset of nodes
or modalities, with the specific subset being determined by
a pre-established range J1toJ1 + l as given in figure 2.
The resulting amalgamated representation is subsequently
fed into a fully connected feed-forward layer, which is
equipped with weights W and bias b. This process yields an
intermediary representationM (N+2) in eq 1.

M (N+2)
= W

∑
UM (i+1)

+ b (1)

A layer normalization (eq. 2) is placed after the dense layer
to normalise the results and lessen the impact of missing
modalities. Where M represents the input variable, and µ

and σ are the mean and variance computed over the feature
dimension of x. To prevent division by zero, the constant ϵ

is introduced as a small value. Additionally, the parameters
γ and β are incorporated as learnable scaling and shifting
factors, respectively.

Layer Normalization(M ) =
M − µ

√
σ 2 + ϵ

γ + β (2)

Let the preceding neuron’s maximum value be 5, to further
illustrate the process. The preceding layer is used to build
a weighted sum in a dense layer. We may therefore obtain
a maximum of 25 modalities from 5 modalities (if the
bias is zero and all weights are 1). However, by applying
normalization both values will be 1. Thus, this process
effectively mitigates the effect of missing modalities.

Subsequently, the Self-attention mechanism is employed
to calculate the significance of each neuron by computing
a weighted sum of values U using the similarity between
keys or modalities K and a query vector Q. Subsequent to
the self-attention process, the resulting output is subjected to

normalization via a scaling factor of 1
√
dk
, wherein dk denotes

the dimensionality of the key vectors as delineated in equation
3. The function ‘softmax’ is utilized to calculate the attention
scores or weights.

Self-Attention(U ,K ,V ) = softmax
(MKT

√
dk

)
V (3)

Following that, the attention layer inputs and the previous
normalization layer inputs are combined and subjected to
batch normalization to generate a proposed multimodal
fusion feature representation that can accommodate the
absence of modalities during runtime.

Figure 3 illustrates the comprehensivemodel incorporating
all modalities present in the dataset, utilizing the proposed
techniques of selective dropout with attention and normal-
ization. Nonetheless, this information could prove valuable
in future instances. The datasets referenced in the previous
section do not contain all of the modalities. For example, the
DAIC-WOZ dataset does not contain any EEG information,
thus it was dropped using selective dropout. The input modal-
ity is a necessary requirement for the implementation of a
neural network using TensorFlow. Thus, we have provided
a set of inputs consisting entirely of zeros. Nevertheless, this
is inconsequential as the information is discarded during the
phase of selective dropout. Implementation of the proposed
selective dropout layer is presented as a class in Appendix A.

D. PROPOSED MULTIMODAL NEURAL NETWORK
In this section, we aim to construct a deep learning model
for multimodal depression classification that incorporates
modalities like facial landmarks, eye scan paths, EEG
features, text features from the BERT tokenizer, and audio
features from OpenSmile. The model is intended to exploit
the unique characteristics of each modality in order to
improve depression classification performance (fig 4). The
model extracts features from previously mentioned modal-
ities using a combination of convolutional neural networks
(CNNs), long-short-term memory (LSTM) networks, and
attention mechanisms. The proposed multimodal neural
network comprises five input layers for each modality,
namely face, eye, EEG, text, and audio. The dimensions of the
face input layer are (340, 340, 3), eye scan path input shape
is (256, 256, 3). The input layer for EEG has a shape of (1,
128, 21), whereas the input layer for text possesses a shape
of (1200, 1) and has a shape of (238, 1).

Residual-inception-style convolution blocks are utilized
for the purpose of image feature extraction. The convolutional
blocks are composed of three parallel blocks of convolutional
layers that are responsible for extracting features. The first
(leftmost) part comprises two convolutional layers with a
filter size ofFl, 3×3 kernel, and a rectified linear unit (ReLU)
activation function, followed by a max-pooling layer with a
pool size of 2*2 and a dropout layer with a rate of 0.25 to
remove some inputs to avoid overfitting. The second part is
composed of convolutional layer with kernel sizes of 1*1 and
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FIGURE 4. Proposed multimodal neural network.

3*3, then concatenated in a max-pooling layer with a pool
size of 2*2. The third part comprises a convolutional layer
with a kernel size of 3*3, followed by a two-dimensional
max-pooling layer. The add layer is used to aggregate the
output of each block, which is subsequently passed as input
to the succeeding block.

The first modality is a convolutional network that receives
facial inputs with the shape (340, 340, 3) and implements
a series of convolution operations, which were previously
referred to as a convolution block. Following this, five
convolutional blocks with filter sizes of 32, 64, 128, 256,
and 512 are applied. Then, a global average pooling layer
is applied, which reduces the output’s spatial dimensions,
followed by a dense layer with a size of 128 and a ReLU
activation function applied to the output.

The second modality is similar to the first modality,
although with the distinction of receiving eye scan path
inputs with dimensions of (256, 256, 3). This modality
comprises four convolutional blocks that incorporate filter
sizes of 32, 64, 128, and 256, respectively, in addition to
a global average pooling layer. The resultant of the global
average pooling layer is passed through a dense layer that
has a dimension of 128 and is activated by the Rectified
Linear Unit (ReLU) function. The third modality comprises

time-distributed convolutional layers, which are used to
process electroencephalogram (EEG) inputs with a shape of
(1, 128, 21). The aforementioned layer implements a filter
of 3, utilizing a kernel size of 32, a ReLU activation function,
and a stride value of 2. Subsequently, two convolutional
layers that are temporally distributed are used, accompanied
by batch normalization with axis value −1. The output is
processed by a flattened layer followed by two LSTM layers,
each with a size of 128 and utilizing a GELU activation
function. The output is subjected to a ReLU activation
function and a dense layer of 128 units.

The fourth modality comprises of Long Short-Term
Memory (LSTM) layers, which are used to process textual
inputs with a shape of (1200, 1). The architecture of the layer
consists of two LSTM layers with dimensions of 128 and 256,
respectively. Additionally, the layer incorporates a dropout
rate of 0.1. The output is subjected to a ReLU activation
function and a dense layer of 128 units. The produced output
is sent to batch normalization, followed by dropout with a rate
of 0.25, and subsequently, another dense layer with a size of
128 and a ReLU activation function.

The fifth modality also uses LSTM layers that are similar
to those used to process sequential data but with audio inputs
that have the shape (73, 1) instead. The neural network
architecture comprises three LSTM layers, each with a size of
128 and 256 and a dropout rate of 0.1. The output is subjected
to batch normalization, dropout regularization with a rate of
0.25, a fully connected layer with a dimension of 128 and a
rectified linear unit activation function.

The resultant output of each modality is merged together
and subsequently subjected to selective dropout, multiple
dense layers, layer normalization, and attention mechanisms.
The utilization of the attention mechanism will facilitate
the model in selectively directing its focus towards the
most pertinent characteristics across various modalities. The
technique of selective dropout is employed to handle missing
modalities through the selective removal of features. The
output dense layer has a sigmoid activation function for
binary classification. The training of the model is conducted
by utilizing the binary cross-entropy loss function with the
Adam optimizer. The learning rate is 0.001, and 80 percent
of the data is used for training and 20 percent for testing.

E. UNCERTAINTY
Monte Carlo Dropout (MC Dropout) and Sparse Gaussian
Process (SGNP) are frequently employed methodologies in
the field of machine learning to enhance model resilience and
approximate uncertainty. These methods can be applied to
the previously developed classification model for multimodal
depression in order to gain a deeper understanding of the
model’s predictions and possibly enhance its accuracy. The
advantage of these methods is that they can provide insight
into the significance of any out-of-distribution data and the
position of a prediction within a distribution.

The fundamental concept of SNGP is to enhance the
distance understanding of a deep learning classifier through
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the implementation of uncomplicated modifications to the
model. The distance understanding of a neural network refers
to its ability to accurately estimate the probability of an
outcome based on the distance within the training and testing
data. As described by Liu et al. [44], spectral normalization
can be applied to the last epoch of training in any neural
network to reduce the covariance shift. For incorporating
SNGP into the existing multimodal neural network described
in the previous section, instead of batch normalization,
spectral normalization is used with successive Gaussian
processes (GP) in the dense layer after the concatenation.
More formally, spectral normalization [45] controls the
Lipschitz Constantin in multimodal neural network f by
limiting the spectral values of each layer x : Min → Mout .
Where σ (x) is the spectral norm of previous layer as matrix
X (L2 normalization of X ) given in equation 4

σ (x) = max
M :M ̸=0

∥XM∥2

∥M∥2
= max

∥M∥2≤1
∥XM∥2 (4)

For the expected output probability E(p(x)), Monte Carlo
sampling as in equation 5 can be used. However, according
to Lu et al. [46] it is latency-prone thus we have also used the
mean-variance method as described in equation 6. In both of
these equations Logitm(X ) is the posterior mean of layer X .

E(p(x)) =

M∑
m=1

softmax(Logitm(x)) (5)

E(p(x)) ≈ softmax

(
Logitm(x)√
1 + λσ 2(x)

)
(6)

Monte Carlo Dropout has also been employed during
the inference stage to approximate the model’s level of
uncertainty. The application of dropout to the input layer and
the execution of multiple forward passes through the network
with distinct dropout masks can lead to the attainment of
the desired outcome. Subsequent to the network’s output,
an averaging process is conducted across the various runs,
thereby providing an improved approximation of the model’s
uncertainty as equation 7.Where p(xi) is the predicted output,
D is the training data, θ is the neural network parameters and
p(θ |D) is the posterior distribution over the weights.

p(xi) =

∫
p(xi, θ)p(θ |D)dθ (7)

However, the complete layered equation with previously
proposed selective dropout incorporates both resilience for
missing modalities and uncertainty. The output of these
processes is summarized in the equation 8.

Mi+1
= Mi

+ LNorm(SA(SNGP(SD(xi)))) (8)

where Mi is the unimodal features, extracted from each
modalities, Mi+1 is the concatenated state, SNGP is the
spectral normalized Gaussian process layer, SD is the
selective dropout, SA is the self-attention layer, and LNorm
is the normalization layer.

IV. EXPERIMENTS AND EVALUATION
A. EXPERIMENTAL SETUP
The experiment was carried out on several machines,
including a system comprises of both dual NVidia T4 GPU
and RTX 4090 GPU. The Keras framework, using the
TensorFlow library as its backend, is implemented using
the Python programming language. Subsequently, the neural
network stated in the methodology has been implemented
correspondingly. The optimization of multiple parameters
and layers was carried out to attain optimal classification
performance.

B. DATASET
There are numerous datasets for the detection of depression
using different modalities, including text, EEG, video,
and audio. To show the effectiveness of the proposed
system three openly available datasets were taken into
account.

1) D-vlog DATASET
D-vlog [47] is a multimodal vlog dataset composed
of 961 YouTube vlogs. The entire duration of the dataset
is approximately 160 hours, with an output label of
‘‘depressed’’ or ‘‘not depressed’’. There are a total of
555 depressed data points and 406 non-depressed data points,
with average durations of 640 seconds and 536 seconds,
respectively. 25 acoustic features (OpenSmile [42] LLD
features) and 136 visual features (68 facial landmarks) are
recorded in the feature-extracted dataset for each second (1
FPS) of the vlog. The acoustic characteristics include zero
crossing, the sum of the auditory spectrum, Mel-Frequency
Cepstral Coefficients (MFCC), Root Mean Square (RMS),
spectral roll-off, and spectral flux, among others.

2) DAIC-WOZ
The Distress Analysis Interview Corpus: Wizard of Oz
(DAIC-WOZ) [48], [49] dataset consists of text, video, and
acoustic conversations between participants and an auto-
mated interviewer. The interview queries are derived from
depression’s medical symptoms. Until now, two versions of
this dataset have been made available, and for the purposes
of this study, either the extended DAIC-WOZ is used. The
dataset contains a total of 189 sessions; however, due to
technical issues (mentioned in the dataset documentation),
seven sessions have been removed, resulting in a duration
of 182 sessions, with 88 depressed sessions and 94 non-
depressed sessions. The dataset includes 68 facial landmarks
as video features with 2D and 3D points, unprocessed
audio files, audio features converted using the Collaborative
Voice Analysis Repository (COVAREP), and text of variable
duration.

3) MODMA
TheMulti-modal Open Dataset forMental-Disorder Analysis
(MODMA) [50] is a dataset that has been labelled using
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the PHQ-9 scale. There are 24 participants with depression
diagnoses and 29 participants in good mental health. Major
depressive disorder (MDD) patients were chosen from
Lanzhou University Second Hospital in Gansu, China, based
on the direction of at least one psychiatrist. The dataset
includes an aligned electroencephalogram (EEG) obtained
from 128 channels of recording, alongwith the corresponding
raw audio data.

C. EVALUATION METRICS
Performance measures adopted for this work are accuracy,
precision, recall and F1 score. These measures ultimately
prove the performance reliability of the proposed multimodal
technique. A brief explanation of the evaluation metrics used
for this work are as follows:

1) PRECISION
Precision is the fraction of correct prediction (TP) in all
positive predictions.

Precision =
TP

TP+ FP
(9)

TP and FP in equation 9 are True Positive and False
Positive respectively.

2) RECALL
Recall is the fraction of correct prediction (TP) in all relevant
predictions.

Recall =
TP

TP+ FN
(10)

TP and FN in equation 10 are True Positive and False
Negative respectively.

3) F1-SCORE
F1-score is the weighted average of Precision and Recall (eq
11. The overall performance of the proposed architecture can
be evaluated better by the F1-score as found in the course of
study of this work.

F1-score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

(11)

4) S1-SCORE
Given a model m, uncertainty quantifier m and test set I
as defined by Weiss et al. [51], the S1Score is defined as
equation 12.

S1(m, u, I ) =
2

obj+−obj−

obj(Im)−obj−
∗ 1(I )−1

(12)

where obj− and obj+ are the lower and upper bounds used
for normalizing the objective function. It also measures the
supervisors’ acceptance rate.

5) COEFFICIENT OF VARIATION
The use of the coefficient of variation (CV) is beneficial
in estimating uncertainty in neural networks as it offers a
means to quantify the relative variability of the anticipated
values in relation to their mean. Stated differently, the method
quantifies the level of unpredictability in the forecast through
the computation of the proportion between the predicted
values’ standard deviation and their average. An elevated
coefficient of variation (CV) is indicative of an increased
degree of unpredictability or fluctuation in the predicted,
whereas a reduced CV suggests a more assured or consistent
prediction.

CV(ytrue, ypred) =

√
variance|(ytrue − ypred |)

mean(|ytrue − ypred |)
(13)

The variables ytrue and ypred represent the actual and
predicted values, respectively. The aforementioned function
partitions the subtraction of those variables into their respec-
tive mean and variance components along the second axis.
The computation of the standard deviation involves taking
the square root of the variance. Ultimately, the coefficient of
variation is determined by dividing the standard deviation by
the absolute mean. The output of the process is the average
coefficient of variation across the batch as given in equation
13. Appendix B presents the Python program for the metrics.

D. EXPERIMENTS AND COMPARISONS
1) EPOCH-WISE RESULTS OF THE PROPOSED METHOD
WITH SNGP
In this section, we demonstrate the improved performance
of the proposed model 5, SNPG + Selected Dropout and
Attention (SD), on three distinct datasets: dvlog, DAICWoz,
and modma. Each dataset’s epoch-wise loss and F1 Score
are represented as line graphs in six figures illustrating the
experimental findings.

Figure 5a depicts the test-train loss for the dvlog dataset,
while Figure 5b depicts the test-train F1-Score. The loss
and F1 Score values are comparatively high in the initial
epochs, indicating suboptimal performance. Nonetheless,
as the training continues, we observe a substantial increase in
bothmetrics. By the 100th epoch, the loss has been reduced to
0.0029 and the F1 Score has reached 0.9496, demonstrating
the efficacy of the proposed model. Figure 5c depicts the
test-train loss and Figure 5d depicts the test-train F1 Score
for the modma dataset. Over the training epochs, we observe
a gradual decline in the loss and an increase in the F1 Score.
At the 100th epoch, the loss is minimized to 0.1305 and the
F1 Score is maximized at 0.9468, implying that the proposed
SNPG + Selected Dropout and Attention model is effective.
Figure 5e depicts the test-train loss, while Figure 5f depicts

the test-train F1 Score for the DAICWoz dataset. Similar to
the dvlog dataset, we observe a progressive decrease in loss
and an increase in F1 Score during the training procedure.
Notably, by the 100th epoch, the loss has been reduced to
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0.0052 and the F1 Score has increased to 0.9455, indicating
a significant advance over the initial epochs.

2) COMPARISION OF UNIMODAL AND MULTIMODAL
CLASSIFICATION
The presented table showcases the effects of selective
dropout (SD) with attention in comparison to unimodal
and multimodal methodologies across three distinct datasets,
Dvlog, DAIC WOZ, and MODMA. The evaluation of
each model’s test performance is based on several metrics,
including accuracy, recall, precision, F1 score, S1 score, and
CV.

In Dvlog dataset, the unimodal ensemble approach yields
a testing accuracy of 80.19%, F1 score of 84.26%, and
S1 score of 79.56%. Meanwhile, the multimodal individual
training approach achieves an accuracy of 81.02%, F1
score of 84.23%, and S1 score of 81.97%. Since the
multimodal approaches incorporate prior training in all
datasets, it achieves better results than other methods

On the other hand, in DAIC WOZ dataset, the unimodal
ensemble approach achieves an testing accuracy of 80.54%,
recall of 78.13%, precision of 80.96%, F1 score of 79.52%,
and S1 score of 79.91%. The multimodal individual training
approach attains an accuracy of 81.99%, recall of 81.22%,
precision of 82.01%, F1 score of 81.61%, and S1 score
of 80.99%. The aforementioned outcome suggests that the
utilization of variousmodalities can considerably enhance the
efficacy of the model concerning this particular dataset.

On theMODMA dataset, the unimodal ensemble approach
achieves an testing accuracy of 79.15%, recall of 81.52%,
precision of 80.11%, F1 score of 80.81%, and S1 score of
78.82% while the multimodal individual training approach
attains an accuracy rate of 82.79%, recall rate of 84.79%,
precision rate of 83.75%, F1 score of 84.27%, and S1 score
of 97.69%. Multiple evaluation metrics, including accuracy,
recall, precision, F1 score, and S1 score, demonstrate
that the multimodal approach outperforms the unimodal
ensemble approach. The findings signify that the use of
multiple modalities can significantly improve the model’s
performance by combining knowledge of datasets.

The multimodal approach is enhanced through incorporat-
ing selective dropout and transfer learning techniques. This
approach tested on the Dvlog dataset results in an accuracy
of 89.37%, recall of 86.77%, precision of 88.58%, F1 score
of 87.67%, and S1 score of 89.78%. The approach applied on
the DAICWOZ dataset yields an accuracy of 87.55%, a recall
of 89.17%, a precision of 89.26%, an F1 score of 89.21%,
and an S1 score of 87.87%. Finally, the approach using the
MODMA dataset attains an accuracy of 88.68%, recall of
87.59%, precision of 89.47%, F1 score of 88.52%, and S1
score of 88.54%. Thus, incorporating selective dropout and
transfer learning into the multimodal approach may improve
the model’s performance on the aforementioned datasets.
Utilizing amultimodal approach in conjunctionwith selective
dropout and transfer learning produces the best results across

all three datasets, highlighting the importance of the proposed
methodology.

E. COMPARISON OF SNGP AND MC DROPOUT ON THREE
DATASETS WITH UNCERTAINTY APPROXIMATION METRICS
Table 1 displays the use of selective dropout (SD) alongside
MC dropout and SNGP in themultimodal model with transfer
learning. The impact of these techniques can be observed by
comparing the results to the data-discussed previous models.
The S1 Score is a metric that assesses the precision of the
model’s predictions regarding theminority class. CV assesses
the variation in the model’s predictions. The lower the CV,
the more consistent the model’s predictions will be. When
SD is combined with MC dropout in the multimodal model
with transfer learning, the S1 Score and CV of the model are
improved across all three datasets. On the DIAC WOZ data
set, for instance, the S1 Score for multimodal model without
SD rises from 0.8786 to 0.9299 when SD is combined with
MCdropout in themultimodalmodel. In a similar fashion, the
CV falls from 0.0751 to 0.0589. These enhancements suggest
that the model is now more capable of consistently predicting
the minority class. When SD is combined with SNGP in a
multimodal model with transfer learning, the S1 Score and
CV of the model is improved further when SD and MC
dropout are used. On theDAICWOZdataset, for instance, the
S1 Score rises from 0.9299 to 0.9257, while the CV falls from
0.0589 to 0.0484. The SNGPmethod improves the estimation
of uncertainty in model predictions. Consequently, the model
is able to predict the minority class with greater precision.

The results demonstrate that the use of selective dropout
in conjunction with either MC dropout or SNGP can
enhance the performance of the multimodal model with
transfer learning. Particularly, the SNGP technique can
further improve the model’s performance by enhancing the
estimation of uncertainty in the model’s predictions. Overall,
the enhancements to the S1 Score and CV metrics indicate
that the models are now able to predict the minority class with
greater consistency, a crucial factor in a variety of practical
applications.

F. DISCUSSION
Table 2 compares the performance of the various modalities
in the DAIC WOZ dataset (Text, Audio, Eye Scan Path, and
Facial Landmark). With an accuracy of 0.9643, F1-Score of
0.9430, and S1 Score of 0.9499, the findings show that the
combination of Text and Eye Scan Path with Facial Landmark
(T + E + F) produces the greatest overall performance.
In contrast to integrating audio with facial landmarks (A
+ F), which has lower accuracy and precision values, this
combination demonstrates that the integration of eye scan
data with face landmarks improves the model’s ability to
identify depression. Interestingly, the T+ E+ F combination
outperforms the T + A + E + F combination, indicating that
adding Audio may have a detrimental effect on the results.

On the other hand, Table 3 represents a comparison of
Recall, Precision, and F1 Score with existing studies on
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FIGURE 5. Epoch-wise F1Score and cross-entropy loss in D-VLog, MODMA and DAIC-WOZ datasets.

DAIC WOZ and MODMA datasets. The proposed approach
acquires an accuracy of 0.9286, a recall of 0.9535, and an
F1 score of 0.9409 on the DAIC-WOZ dataset. It should
be noted that Du et al. [52] method achieves an F1 score
of 0.746, which is due to the prediction of PHQ scale.
However, F1 scores of 0.931 and 0.920, respectively, were
achieved by Zhao et al. [53] and Niu et al. [54], which are
equivalent to the proposed approach. Both Lam et al. [55]

and Zhao et al. [56] obtained F1 scores of 0.8895 and 0.916,
which are comparable to the performance of the proposed
method. Again, the proposed approach performs equivalent
to the existing approaches on the MODMA dataset, with a
precision of 0.9578, recall of 0.9564, and F1 score of 0.9453.
Zhang et al. [58] obtained an F1 score of 0.9157, which is
lower than the output of the proposed models. On the other
hand, Zhao et al. [53] outperformed the proposed approach
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TABLE 1. Model performance on various datasets.

TABLE 2. Performance comparison of different modalities [Text (T), Audio
(A), Eye Scan Path (E), and Facial Landmark (F)] in the DAIC WOZ dataset.

TABLE 3. Comparison of proposed model with existing methods on
DAIC-WOZ and MODMA Datasets.

in this particular dataset with a high F1 score of 0.977. This
fluctuation in performance can be further explained by two
factors. Firstly, many of the state-of-the-art methods treat
depression detection as a PHQ predictor problem. However,
to simplify and show the impact of multimodal learning
with selective dropout, we have converted to the problem
of binary classification, where a PHQ score > 7 is treated
as 1, otherwise 0. This reduction in output class overall
simplifies the problem for the models as well as improves
their accuracy. Since each model is first trained on three
datasets and tested all together in the end, this transfer of
learning impacts the model’s overall performance. The model
is sequentially trained on each dataset, with the weights
saved after each training. Then, the saved model is used
as a starting point for training on the next dataset. This

way, the model accumulates knowledge from all datasets,
and during testing, it leverages this collective knowledge
for improved performance on individual datasets. This
improvement could improve the overall performance of the
experiments; however, this approach may cause uncertainty
and overfit. Thus, we have put more emphasis on learning
about the uncertainty of transfer learning with different input
sets. However, this process is common in the literature to
use a pre-trained model for completely new input types or
even modalities like brain tumours, lung cancer, anomaly
detection, etc. By incorporating uncertainty reduction and
measuring techniques, a pre-trained model with a similar
feature convergence technique might improve classification
in other fields of study.

V. CONCLUSION
The proposed methodology focuses on the detection of
multimodal depression using multiple datasets. Depres-
sion is a prevalent mental illness that has a significant
impact on the lives of individuals and on society as a
whole. Depression symptoms can manifest differentially
across various modalities, including text, EEG, audio, and
visual signals, highlighting the significance of multimodality
in detecting depression. However, when using multiple
multimodal datasets to train a single neural network,
the prevalence of absent modalities may hamper training
and impact the model’s overall performance. In order to
resolve this difficulty, we present a novel strategy that
incorporates selective dropout, attention mechanisms, and
normalization techniques. The proposed method permits
the training of multimodal datasets with absent modalities
by selectively omitting specific modalities during training
while still effectively utilizing the available information. This
method increases the model’s performance by enhancing its
capacity to capture complex relationships between different
modalities. In addition, we employ SNGP and MC (Monte
Carlo) dropout algorithms to reduce uncertainty during
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the training procedure. By approximating the uncertainty
associated with the missing data, these techniques enable
the model to manage missing modalities more robustly.
As demonstrated by the experimental findings, reducing
uncertainty improves the model’s precision, F1 score, and
S1 score. This research contributes to the advancement of
multimodal deep-learning methods and has the potential
to improve depression detection and assessment of mental
health in practical applications.

APPENDIX. SUPPLEMENTARY PYTHON CODES
A. SELECTIVE DROPOUT

Listing. 1. Python example of selective dropout.

B. COEFFICIENT OF VARIATION

Listing. 2. Python example of coefficient of variation.
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