
Received 11 August 2023, accepted 7 September 2023, date of publication 13 September 2023,
date of current version 19 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3315239

ezLDA: Efficient and Scalable LDA on GPUs
SHILONG WANG 1, HANG LIU 2, (Senior Member, IEEE), ANIL GAIHRE 2,
AND HENGYONG YU 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
2Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Corresponding author: Hengyong Yu (hengyong_yu@uml.edu)

ABSTRACT Latent Dirichlet Allocation (LDA) is a statistical approach for topic modeling with a wide
range of applications. Attracted by the exceptional computing and memory throughput capabilities, this
work introduces ezLDA which achieves efficient and scalable LDA training on GPUs with the following
three contributions: First, ezLDA introduces three-branch sampling method which takes advantage of the
convergence heterogeneity of various tokens to reduce the redundant sampling task. Second, to enable
sparsity-aware format for both D and W on GPUs with fast sampling and updating, we introduce hybrid
format for W along with corresponding token partition to T and inverted index designs. Third, we design a
hierarchical workload balancing solution to address the extremely skewed workload imbalance problem on
GPU and scale ezLDA across multiple GPUs. Taken together, ezLDA achieves superior performance over
the state-of-the-art attempts with lower memory consumption.

INDEX TERMS Bayes methods, GPU, high performance computing, latent dirichlet allocation, LDA,
parallel algorithms, parallel programming, machine learning, unsupervised learning.

I. INTRODUCTION
Topic modeling is a type of statistical approach that reveals
the latent (i.e., unobserved) topics for a collection of docu-
ments (also referred to as corpus). LDA [1], which chooses
the Dirichlet distribution as the statistical model to formulate
topic distributions, is one of the most popular topic modeling
approaches that find applications in not only text analy-
sis [2], [3], but also computer vision [4], recommendation
system [5], [6] and network analysis [7] among many others.
Thanks to the practical implications, contemporary search
engines rely upon LDA to handle billions of news with 10K
of topics and 1000K of words [8].
Recently, we also observe interesting interactions between

LDA and popular deep learning models. First, Functional
and Contextual attention-based Long Short-Term Memory
(FC-LSTM) [9] uses LDA to preprocess the data and feeds
the corresponding results into LSTM model to improve the
accuracy in a recommendation system. LDA can also coop-
erate with Convolutional Neural Network (CNN) model as
a preprocessing method to deal with automobile insurance
fraud problems [10]. Second, logistic LDA [11], which is

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

a modified supervised LDA model, can achieve compara-
ble accuracy with Syntax Aware LSTM (SA-LSTM) [12]
on document classification with much shorter training time
than SA-LSTM. BPLDA [13] can achieve comparable accu-
racy on classification and regression as deep learning with
much shorter training time. Compared with recent deep
learning based natural language processing (NLP) tools,
e.g., Embeddings from Language Models (ELMo) [14]
and Bidirectional Encoder Representations from Trans-
formers (BERT) [15], [16], LDA also presents a solid
theoretical foundation which is absent for deep learning
models.

As the size of NLP problems continues to rise, it becomes
imperative for us to scale the training of LDA towards more
computing resources, as well as accommodating larger cor-
pus with more topics. Graphics Processing Units (GPUs)
exhibits remarkable performance over traditional CPU sys-
tem and are hence widely applied on compute-intensive
problems such as deep learning [17], [18], [19], [20], [21]
and graph [22]. Towards expediting LDA training, GPUs
are a tempting platform for two, if not more, reasons. First,
modern GPUs yield extraordinary computing and data deliv-
ering capabilities, both of which are crucial for LDA training.
Second, GPUs possess a thriving community with steady

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 100165

https://orcid.org/0000-0001-6232-2863
https://orcid.org/0000-0001-6323-7388
https://orcid.org/0000-0002-4892-6799
https://orcid.org/0000-0002-5852-0813
https://orcid.org/0000-0002-3360-9440

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

updates in both hardware and software support, which helps
extend the impacts of LDA.

Generally speaking, LDA encompasses three tensors and
two tasks. First, the three tensors are: the token list T - an
array of <wordId, docId, topicId> triplets, a document-topic
matrix (i.e.,D) and a word-topic matrix (i.e.,W). Second, the
two tasks are sampling and updating. Each token is initialized
with a topicId from a random distribution. During sampling,
LDA takes as input each specific token, i.e., t, and relies on
D andW to generate a new topic for this token. The intuition
of sampling is that the probability of assigning new topic t is
positively correlated to the number of tokens for each topic
of the document and word this t belongs to. During updating
stage, topicId in T, D and W are updated to reflect the new
topic generated for each token t .

A. RELATED WORK
As one of the most popular topics in machine learning,
LDA [1] has received enormous attentions. This section
restricts our discussions to the projects that are closely related
to ezLDA, that is, efficiency, scalability and GPU-based
LDA.

There mainly exist four directions to make LDA more
efficient than the original attempt [1], that is, sparsity-
aware,Metropolis-Hasting (MH) and ExpectationMaximiza-
tion (EM) approaches, as well as the hybrid of them. i).
Sparsity-aware method utilizes the sparsity of word-topic
and document-topic matrix to make the sampling time sub-
linear to number of topics K (detailed in Section II-B).
SparseLDA [23] pioneers this attempt. ii). MH [24] method
generates a complex distribution by constructing a Markov
Chain (MC) with a simple easy-to-sample distribution and
update the topic with some acceptance rates at each step.
Since MH requires frequent random memory address to
word-topic and doc-topic matrices, thus is not friendly for
sparse matrix. iii). LDA* [8] uses sparsity-aware and MH
samplers to deal with short and long documents separately.
The follow-up variations are [25], [26], [27], [28], [29], [30],
and [31]. iiii). EM [32] divides the LDA training into E-step
and M-step while the former is responsible for sampling
and the latter for updating. Comparing with standard LDA
sampling, EM can enjoy better parallelism because frequent
random memory access to update word-topic and document-
topic matrices during sampling can be avoided.

Large-scale training is another important field for LDA
considering real-world corpus often contains billions of
tokens. LightLDA [26] leads this effort. Particularly, it trains
LDAmodel with 1million topics and 1millionwords on eight
machines via data parallelism (corpus partition) and model
parallelism (word-topic matrix splitting). While LightLDA
allows both D and W to be sparse, it relies upon hash table
for fast sampling, which is a hardership for GPU because col-
lision handling in hash table remains elusive on GPUs [33].
This concern is evident by SaberLDA [28] which only stores

D in sparse format for fast sampling. cuLDA [29] further
attempts this challenge on multi-GPU but ends up with
identical strategy as SaberLDA except scaling the sampling
towards multiple GPUs. As we will evaluate in Table 1, only
allowing D to be sparse will greatly hinder the scalability of
LDA.

Last, for GPU-based LDA, which is the interest of this
work, we find very few efforts. Yan et al. [34] implements
collapsed Gibbs sampling [35] and collapsed variational
Bayesian [36] on GPU. BIDMach [30] toolkit imple-
ments Monte Carlo Expectation Maximization (MCEM) [37]
method on GPU without much GPU specific optimizations
thus ends up with moderate performance. SaberLDA [28]
proposes the PDOW (partition by document, order by word)
strategy to reduce random memory access. Warp-based
sampling is also adopted, which means using a warp to
process a token and a block to process a word, to avoid
thread-divergence and uncoalesced memory access. Further,
cuLDA [29] scales LDA tomultiple GPUs based on collapsed
Gibbs sampling with similar optimizations as SaberLDA.
In summary, the curse of GPU-based LDA is the limited
number of topics because they have to store W in dense
format - larger topics will exhaust the limited memory space
of GPUs.

B. CONTRIBUTIONS
This paper introduces ezLDA,1 an efficient and scalable
LDA project that trains LDA across multiple GPUs. Notably,
ezLDA can train LDA on UMBC dataset within 700 seconds
while supporting the unprecedented 32,768 topics on merely
oneV100GPU [38]. This achievement is not possible without
the following contributions:

First, ezLDA introduces one more direction to make LDA
efficient, i.e., the three-branch sampling method which takes
advantage of the convergence heterogeneity of various tokens
to reduce the redundant sampling task.While the convergence
heterogeneity is promising, the caveat is that one cannot
simply avoid sampling a token because its topic remains
unchanged for a number of iterations, as detailed in Figure 3.
Inspired by our key observation that the majority of the
tokens often fall in the top popular topics, we single out
these popular topics as the third sampling branch in addition
to the traditional two branches (detailed in Section II-B).
During sampling, we introduce an algorithm to accurately
estimate whether this token will remain in the top popular
topics thus be skipped or not. Meanwhile, in order to min-
imize the overhead of three-branch sampling, we introduce
processing by both word and document strategy along with
inverted index, and top topics pair-storage. Our evaluation
shows three-branch sampling can avoid sampling over 70%
of the tokens with negligible overhead after 100 iterations on
large datasets, PubMed and UMBC.

1ezLDA, pronounced as ‘‘easy LDA’’, implies that this project achieves
efficiency and scalability without the involvement of users.

100166 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

Second, to enable sparsity-aware format for both D andW
on GPUs with fast sampling and updating upon this format,
we introduce hybrid format for W along with corresponding
token partition to T and inverted index designs. Particularly,
we storeW in sparse and dense hybrid format andD in sparse
format. During sampling, we will keep a canonical copy of
the dense format ofW, which accounts for the majority of the
tokens but with very few number of words, in GPU memory
to cache the updates. After sampling, we will update both
the sparse part of W and D. Since sparse part of W holds
very few tokens, the update is trivial. Pair-storing the row
index and value of D is also adopted for fast sampling. For
rapid update of D, we, again, leverage the inverted index
of D to navigate through the token list T for tokens of
interest. We also notice that SaberLDA [28] has attempted
sparsity aware LDA but ends up with only sparse D which
cannot solve memory exhaustion problem caused by dense
W when vocabulary and topic size become too large. Con-
sequently, ezLDA, as shown in Table 1, doubles the space
saving over SaberLDA thus supports models that SaberLDA
cannot.

Third, we improve the scalability of ezLDA across GPU
threads and GPUs. For single GPU, we introduce hierarchical
workload management to ultimately balance the workload
which consists of two optimizations. Specifically, we first use
atomic operation to dynamically decide which word should
be assigned to which GPU warp thanks to light-weighted
GPU atomic operation [39]. Further, we propose to split
the extremely large words for better workload balancing.
To efficiently combine dynamic inter-word scheduling and
large word splitting design, we introduce efficient indexing
to achieve light-weighted workload management. Towards
multi-GPU support, we propose to cache W, partitioned D
and partitioned T in GPU memory to further boost the per-
formance of ezLDA.

The novelty of this paper is that we introduce the
efficient and scalable techniques to achieve fast LDA
training. Particularly, to the best of our knowledge, our
three-branch sampling is the first successful design to
exploit the convergence heterogeneity of various tokens for
fast LDA sampling. We also shed lights on the possibil-
ity of using inverted index to achieve sparsity-aware LDA
training where both W and D are sparse. It is also impor-
tant to note that this paper strives to make sense of the
complicated mathematical designs of LDA with an intu-
itive example which will also benefit the community. The
code is open source in https://github.com/wojiushishen/tree/
master/EZLDA.

C. ORGANIZATION
The rest of the paper is organized as follows: Section II
explains the background. Section III presents the novel
three-branch sampling design. Section IV discusses sparsity-
aware LDA and scalable LDA is introduced in Section V.
Section VI evaluates this work and we conclude in
Section VII.

FIGURE 1. The running example used in this paper.

II. BACKGROUND AND CHALLENGES
A. GENERAL PURPOSE GPUS
Without loss of generality, this section uses Volta GPUs as an
example to illustrate the essential backgrounds about modern
GPUs, mainly from three aspects, that is, processor, memory
and programming primitives. For more details about GPUs,
we refer the readers to [40] and [41].

The streaming multiprocessor (SMX), which consists of
several CUDA cores, is a basic processing chip for GPUs. For
instance, Nvidia Tesla V100 GPUs [38] contain 80 SMXs,
each of which has 64 single-precision CUDA cores and
32 double-precision units and a 96 KB shared memory/L1
cache and 65,536 registers. V100 also features 6MBL2 cache
and 16 GB global memory, which is shared by all SMXs.
Similar to CPU, the memory access latency increases from
register to shared memory, further to L2 cache and global
memory.

With massive CUDA cores, GPUs can run a large number
of threads. A thread block is a programming abstraction that
represents a group of threads that can be executed serially
or in parallel, a thread block contains up to 1024 threads.
A warp is a set of 32 threads within a thread block. It is
important to mention that a warp of threads is executed in
Single Instruction Multiple Thread (SIMD) fashion, which
means all the threads in a warp execute the same instruction.
In terms of programming primitive, recent GPUs provide
several warp-level primitives such as__shfl_sync() and __bal-
lot_sync() for fast intra-warp communication.

B. LDA ALGORITHM AND THEORY
Before explaining LDA designs, Figure 1 describes how to
transform a real world natural language corpus into numerical
corpus which can be used by LDA. Particularly, for a natural
language corpus which consists of three documents with 2,
2 and 3 tokens, respectively, the preprocessing step will
extract the unique words and assign each of them a specific
wordId in mapping. This step is necessary because identi-
cal word might appear repeatedly, where each occurrence is
called a token, e.g., memory appears in both documents 1 and
2. After transformation, we arrive at the numerical corpus.

1) ALGORITHM
LDA is a three-layer Bayesian model, that is, each document
is viewed as a distribution of topics and each topic is further
deemed as a distribution of vocabulary. For a given token,

VOLUME 11, 2023 100167

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 2. Two-branch sampling of one token for the corpus in Figure 1. Better viewed in color.

a new topic can be generated based on these two distributions.
So, during training, two matrices are involved, i.e., D andW.
While detailed theory behind why LDA would work can be
found in [1], this paper focuses on the algorithm.
For each token, ESCA [42] - one of the popular LDA

version - assigns this token to topic k , i.e., p(k) through the
following equation:

p(k) ∝ (D[d][k] + α)︸ ︷︷ ︸
part1

·
W [v][k] + β

(
V∑
v=1

W [v][k] + Vβ)︸ ︷︷ ︸
part2, Ŵ [v][k]

, (1)

where α and β are two constant hyper parameters. Similarly
to [28] and [29], we adopt α = 50/K and β = 0.01 for
ezLDA, where K is the total number of topics. D[d][k] is the
number of tokens in document d that belongs to topic k in
D. Similarly, W [v][k] is the number of tokens of word v that
belongs to topic k in W.
The intuition of Equation (1) is that, for token t that belongs

to word v and document d , if more tokens from document d
and word v fall in topic k , LDA will be more likely to assign
topic k to this token t , that is, D[d][k] + α and W [d][k] +

β will be larger. Further, the total number of tokens in v -∑V
v=1W [v][k] + Vβ - is negatively correlated.
Defining part 2 of Equation (1) as Ŵ [v][k], which can be

regarded as the normalized version ofW matrix, we get:

p(k) ∝ (D[d][k] + α) · Ŵ [v][k], (2)

It is important to note that we choose to extend ESCA [42]
because ESCA is sparsity-aware, which means the time com-
plexity is sub-linear with respect to the number of topics.
ESCA achieves this sparsity-aware goal by decomposing the
part 1 of Equation (1) into two separate terms. So Equation (1)
can be rewritten in the following format:

p(k) ∝= D[d][k] · Ŵ [v][k]︸ ︷︷ ︸
ps(k)

+ α · Ŵ [v][k]︸ ︷︷ ︸
pq(k)

, (3)

Equation (3) can be further written into vector format:

p ∝ (D[d] + α) ◦ Ŵ [v] = D[d] ◦ Ŵ [v]︸ ︷︷ ︸
ps, or S tree

+ α ◦ Ŵ [v]︸ ︷︷ ︸
pq, or Q tree

, (4)

where ◦ is the Hadamard Product (HP) operator. Ŵ [v] is the
normalized v-th row ofW.D[d] is d-th row ofD. α is a vector
with all elements to be α.

Finally, ESCA defines S and Q as the sum of ps and pq,
respectively, sampling process of LDA becomes as follow.
Note, we term this sampling method as two-branch because
it has S and Q two branches.

• Generating a random number u ∼ U [0, 1].

• Generating the new topic by

 ps, if u ≤
S

S + Q
;

pq, otherwise.

2) EXAMPLE
Figure 2 presents one iteration of LDA on the same corpus
as shown Figure 1 with randomly assigned topics. During
initialization (➊), one will generate the W and D matrices
from the token list T, where W and D are document-topic
and word-topic matrices, respectively. Particularly, the dotted
box in W means the document 0 has 0, 1, 1 and 0 tokens for
topics 0, 1, 2 and 3, respectively. Similarly, the dotted box in
D means that word 2 has 1, 1, 0 and 1 tokens for topics 0,
1, 2 and 3, respectively. Note, the column sum of W is also
computed, as shown belowW, whichmeans, in total, we have
2, 3, 1 and 1 tokens for topics 0, 1, 2 and 3, respectively.

LDA training encompasses two steps, i.e., sampling and
update. Further for sampling, LDA uses either Q or S tree
to conduct sampling thus is called two-branch sampling. For
the second token of the first word from the token list T -
{0, 2, 1}, we follow Equation (1) to compute the Ŵ [0] as
{ 0+β
2+4β ,

1+β
3+4β ,

1+β
1+4β ,

0+β
1+4β } (➋). Since α = 50/3 = 16.7 and

β = 0.01, we obtain Ŵ [0] ◦ α as {0.0818, 5.5477, 16.2190,
0.1603} and Ŵ [0] ◦ D[2] as {0.0049, 0.3322, 0, 0.0096}.
Conducting prefix-sum [43] of Ŵ [0] ◦ α and Ŵ [0] ◦ D[2],

100168 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 3. Percentage of tokens with unchanged topic and tokens
corresponding to the max topic.

we arrive at the ranges of {0.0818, 5.6295, 21.8485, 22.0088}
and {0.0049, 0.3371, 0.3467, 0.3467} for the Q and S tree,
respectively.

The rule of tree construction is that the parent node should
be the larger one of the two child nodes. Using the first two
pairs of Q tree as an example, 5.6295 is the parent node of
{0.0818, 5.6295} (➌). Similarly for the rest of Q tree and S
tree construction (➍). The ➎ step draws a random number
from uniform distribution U [0, 1], u = 0.51 in this case, and
compares it against S

S+Q to decide which tree to sample in
order to derive a new topic for this token. Since 0.51 is not
smaller than S

S+Q , we use Q tree to conduct the sampling by
adjusting u = (1 − u) · (S + Q) = 10.2160 and descending
the Q tree to arrive at new topic. u falls into interval (6.0988,
20.4124) and (6.0988, 19.2200) in level 1 and level 2 of Q
tree, so the new topic will be 2. Following this way, LDA will
update the topics for all the tokens T, subsequently the D and
W matrices (➏).
Since T is sorted by wordId, we only need to construct

Q tree once for all the tokens of the same word. S tree
construction, in contrast, needs to be done more frequently
because adjacent tokens often come from different docu-
ments, as shown in Figure 2.

3) EVALUATION METRIC
We use log-likelihood per token (LLPT), also known as neg-
ative logarithm of perplexity, as the parameter to evaluate the
convergence of LDA.

LLPT =
1
N

N∑
n=1

(log2
K∑
k=1

(
D[d][k] + α∑K

k=1D[d][k] + Kα
·

W [v][k] + β∑V
v=1W [v][k] + Vβ

)), (5)

where N is the total number of tokens in this corpus.
The rule is that LLPT should increase and gradually
become stable when computation proceeds
iteratively.

III. THREE-BRANCH FAST SAMPLING
This section discusses two important observations, our
three-branch sampling and implementation optimizations
that lower the overhead of three-branch
sampling.

A. OBSERVATIONS
This section makes the following two important observations
that inspire our three-branch sampling.

First, different tokens converge at dissimilar speeds.
As shown in Figure 3, when iteration proceeds, more and
more tokens experience unchanged topics. In other words,
some tokens converge earlier and some later. For instance,
at 50-th iteration, over 70% of the tokens keep their topic
unchanged in PubMed dataset.

Second, the majority of the tokens tend to converge to
the most popular topic. This observation is self-explanatory
- because a topic contains more tokens, and becomes the
most popular topic. In fact, Figure 3 quantitatively showcases
this observation. In particular, more than 60% of the tokens
converge to the most popular topic in PubMed dataset at
50-th iteration. Note, we also have tested and verified the
EZLDA convergence on other datasets such as Enron, NIPS
and KOS datasets, it shows similar convergence trend as
PubMed dataset.

The first observation implies that we can reduce the sam-
pling workload for early converged tokens. However, since
reducing the sampling task needs extra checking operations,
this might incur significant overhead. Fortunately, our second
observation further suggests that we may lower the overhead
by only focusing on the most popular topic.

B. THREE-BRANCH SAMPLING
Since traditional two-branch sampling cannot leverage
our observations in Section III-A for workload reduction,
we introduce three-branch sampling which singles out the
most popular topic as one more branch. Below we dis-
cuss the theoretical soundness and implementation details of
this design. Note, we cannot simply avoid sampling all the
tokens from the most popular topic because, as discussed in
Section IV-D, very few tokens from the most popular topic
might change their topic, though more tokens will converge
to the most popular topic.

1) THEORETICAL SOUNDNESS
Our three-branch sampling rewrites Equation (3) into the
following format:

p ∝ D[d] ◦ Ŵ ′[v]︸ ︷︷ ︸
ps

+ α ◦ Ŵ ′[v]︸ ︷︷ ︸
pq

+ (D[d] + α) ◦ Ŵ [v]m︸ ︷︷ ︸
pm

, (6)

where Ŵ ′[v] is derived by setting the maximum entry of Ŵ [v]
as 0. On the contrary, Ŵ [v]m is achieved by setting all except
the maximum entry of Ŵ [v] as 0.

Consequently, pm has only one non-zero entry which cor-
responds to the most popular topic. As shown in the left
of Figure 4(a), traditional two-branch sampling approach
conducts sampling from two branches – either S or Q tree.
Particularly, S and Q trees are constructed from ps and pq in
Equation (4), respectively. The proposed three-branch sam-
pling, as shown in the right of Figure 4(a), consists of three
branches. That is, S’ and Q’ trees which are constructed from

VOLUME 11, 2023 100169

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 4. ezLDA three-branch sampling: (a) Two-branch vs (b) ezLDA three-branch sampling, a bird view and (c) Detailed workflow of three-branch
sampling.

ps and pq in Equation (6), respectively, and the max topic
branch which is the pm in Equation (6).
Three-branch sampling is exemplified by Figure 4(b).

For each unique word, ezLDA first finds the top-2 topics in
Ŵ [v], which are K0 = 2 and K1 = 1 (➊). Here ‘‘top-2
topics’’ means these topics correspond to top-2 largest values,
0.7857 and 0.3235, in Ŵ [v]. Then given the third topic is
the most popular one, we will extract the number of tokens
from the same index in D[d], that is, 2 (➋). Consequently,
K0 = 2,K1 = 1 and C1 = 2. Afterwards, as shown
in ➌ of Figure 4(b), we can calculate M = 13.1212 and
Sest = 0.9705 and generate u ∼ U [0, 1]. Compare u against

M
M+Sest+Q′ to determine whether this token remains in the
most popular topic. If yes, this token will not involve in the
following steps and corresponding topic will be updated to
be K0. Otherwise, store M and u for this un-skipped token.
Finally, we will execute the remaining steps (➍, ➎ and ➏),
which are similar to two-branch sampling except following
two differences: First, these steps only need to be done for
the remaining un-skipped tokens. As training goes, more and
more tokens are skipped and linear time decrease will be
introduced. Second, max topic is singled out and considered
separately. So Ŵ [K0] should be set to be zero and final
sampling will include an additional M branch, as shown in
the bottom right of Figure 4(b), even after construction of S’
tree, we can still avoid the sampling if u < M

M+S ′+Q′ . Besides,
the Q’ tree and S’ tree (➍ and➎) constructions are the same
as two-branch sampling method.

2) Sest COMPUTATION
In order to skip as many tokens as possible, ezLDA needs to
make Sest as close to S’ as possible. Meanwhile, to ensure
theoretical soundness, we must also make sure tokens that
go to ‘Yes’ branch in step ➌ must belong to the left branch
in step ➏, which requires S’ not greater than Sest . We use
the following inequality to extract the Sest and calculate M.

Assuming Ŵ [v] is sorted in descending order:

Ŵ [v] = [a1, a2, . . . , an],

D[d] = [b1, b2, . . . , bn]. (7)

This means ai > aj if i > j. Thus, maximum topic branch is:

M = a1 · (b1 + α). (8)

Given

S ′
= Ŵ [v] · D[d] −M + a1 · α

= (a2 · b2 + a3 · b3 + · · · + an · bn)

<
∑
2≤i≤g

ai · bi + ag+1 ·

∑
g<i≤n

bi, (9)

we hence propose:

Sest =

∑
2≤i≤g

ai · bi + ag+1

∑
g<i≤n

bi. (10)

where g ≥ 1 controls the accuracy and cost of the estima-
tion. That is, the larger the value of g, the higher the cost,
as well as the accuracy between S’ and Sest .

3) PARAMETER TUNING
First, the choice of g is a trade-off between benefit and over-
head. ezLDA uses g = 2 because we can achieve significant
better performance than g=1 with similar overhead after our
optimization in Section III-C.

C. OPTIMIZATIONS FOR THREE-BRANCH SAMPLING
While three-branch sampling can avoid expensive S’ tree
constructions and sampling for all the skipped tokens, it also
introduces three more steps, i.e., ➊, ➋ and ➌ as shown in
Figure 4(b).
Across all the steps, the cost for steps➊ and➌ is negligible.

For step ➌, the workload is simple. For step ➊, the reason lies
in that the token list (i.e., T) is sorted by wordId, as shown in
Figure 5(a), three-branch sampling only needs to find the top

100170 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 5. Inverted index for document.

topics, that is, K1 and K2 pair in Figure 4(b) - once for all the
tokens falling to the same word v. But also because T is sorted
by wordId, step ➋ would take significant amount of time if
we want to find the corresponding C1 and C2 pair across all
documents for each v right after we find K1 and K2 pair.
In order to combat this overhead, ezLDA designs process-

ing by word and document for K1 and K2 pair, and C1 and
C2 pair, respectively. While processing by word is straight-
forward because T is sorted by word, processing by document
turns out to be challenging. In this context, we introduce an
inverted index for each document which stores the indices of
tokens belonging to each document. This inverted index idea
adopts Compressed Sparse Row (CSR) format [44], [45] to
store the indices of the tokens for each document. As shown
in Figure 5(b), indices {0, 4}, {2, 6} and {1, 3, 5} are from
documents 0, 1 and 2, respectively.

Scanning through the inverted index, we can fetch the
corresponding row of D, as well as all the tokens of the same
document easily. Note, in this processing by document design
for C1 and C2 pair, we need to first write all the K1 and
K2 pairs for all tokens into global memory and load them
back for computation. However, this cost is way lower than
we conduct processing by word for both K1 and K2 pair and
C1 and C2 pair. Particularly, processing by word for C1 and
C2 pair needs to repeatedly scan through the token list and
search for C1 and C2 for each token because tokens of the
same document are not stored together. It is also worthy
to note that we combine K1 and K2, C1 and C2 pairs into
a single value K12 and C12, where the higher half bits of
them store K1 and C1, and the lower half bits store K2 and
C2 respectively, in order to further reduce the overhead.

IV. SPARSITY-AWARE OPTIMIZATION
Reducing the sampling time is important for LDA,
so does the space consumption. This section introduces the
sparsity-aware storage format for both D and W, as well as
our newmechanisms to facilitate rapid sampling and updating
dwelling on these sparse formats.

A. OBSERVATIONS
The space problem faced by ezLDA appears for two types
of data, that is, corpus data and algorithmic data. Corpus
data is concerned with the gigantic corpus size while algo-
rithmic data is related to both corpus size and number of
topics. Below, we discuss the details surrounding these two
challenges.

The space consumption incurred by the large corpus can
be tackled by simply partitioning the corpus into multiple
chunks. This way, each GPU will need much less memory

FIGURE 6. Density of W and D on NYTimes dataset.

for corpus. Doing so, however, comes with one obvious
drawback - one needs to repeatedly load each chunk in and
out the GPU, which could introduce overhead. ezLDA uses
asynchronous kernel launching and memory transfer to hide
this cost, similar to existing work [46], [47].
In fact, curbing the space consumption of algorithmic data

(e.g. D and W) is even more imperative. Below, we unveil
the reason from column and row perspective of a matrix.
First, with the climbing of the corpus size, the diversity of
the tokens will also increase, indicating the need of a larger
number of topics (i.e., number of columns in D and W).
Second, for a corpus with abundant documents or unique
words, the number of rows in both D andW will also soar.

The good news is that both D andW are often very sparse
because very few, if any, of the words or documents will
occupy all the topics. As shown in Figure 6, the density of D
and W decreases rapidly along with the increase of number
of topics for the NYTimes dataset.

B. SPARSITY-AWARE REPRESENTATION
We introduce compressed CSR format to store the sparse W
and D matrices. While the traditional CSR contains three
major components: row offset, column indices and values,
we further compress column indices along with values in
order to save space and improve performance. Inspired by the
pair-storage in Section III-C, we compress the column indices
and values of CSR into and a single integer, where the higher
and lower half bits are for column index and corresponding
value, respectively.

Storing the entire W in sparse format might not always
save space. Particularly, despite sparse format will save mem-
ory space for sparse rows in W, words with large number
of topics (i.e. dense rows) will, unfortunately, suffer from
extra space consumption because CSR requires to store the
column indices. In contrast, dense format only needs to store
the values since the position of the value can automatically
indicate its column location.

We thus advocate to storeW in hybrid format. That is, the
rows with large volume of nonzero columns (i.e., topics) will
be stored in dense format while the remaining rows in sparse
format. ezLDA comes up with a light-weighted heuristic to
estimates the upper bound of W in order to decide whether
we store a corresponding row in sparse or dense format. That
is, the maximum number of topics one word can possess will
not go beyond the number of tokens this word has in the

VOLUME 11, 2023 100171

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

entire corpus. With this rule, one can assign the words with
tokens that is larger than the assumed number of topics (i.e.
K) as dense row and the remaining rows to be the same as
the number of tokens. For example, if K = 1000, then a word
which has a total of 999 tokens in the corpus will be assigned
to at most 999 topics and thus can be stored in sparse format.
Similarly, a word which has a total of 1001 tokens will be
stored in dense format.

To enjoy the space saving from the hybrid format, we pro-
pose to group dense words together in token list T. Toward
that end, the word identities (IDs) are relabeled based upon
their token counts. Basically, words with larger number of
tokens hold smaller IDs. Further, words with token count
more than the topic number are stored in dense format inW.
Subsequently, in each chunk from the token list, we remap
the word IDs from the token list into Tdense and Tsparse,
respectively, which represent the dense and sparse parts of
T, respectively.

In summary, this hybrid approach comeswith the following
two advantages. First, comparing to the dense or sparse alone
approach, the proposed method will yield the most space sav-
ing. Second, storing dense rows into dense format explicitly
will reduce the overhead of Ŵ [v] ◦ D[d].

C. SPARSITY-AWARE COMPUTATION
Once storingW and D in sparse format is resolved, conduct-
ing updating and sampling atop the sparse W and D become
a ground challenge for two reasons. First, during sampling,
we need to do element-wise product of Ŵ [v] ◦ D[d]. Given
the elements from the same storage index of sparse Ŵ [v] and
D[d] are most likely not from the same column, we will need
to match their columns. Second, to update an element in
sparse matrix, we must first find the correct row and column
to write the update. So unlike dense matrix, it is impossible to
updateW once after a new topic is known in sampling kernel.
The update of W can only be done by reconstructing from T
after sampling, which will consume much more time.

A naive design could easily combine sampling with updat-
ing via keeping a canonical copy of W. During sampling,
this design will compute the S’ and Q’, thus the ratio t1 =

S ′

S ′+Q′+M and t2 =
Q′

S ′+Q′+M . Based upon the generated
randomnumber u, this design could determine to sample from
either S’ or Q’ tree. After arriving at the updated topic for a
token, we can immediately update the canonical copy.

However, this naive design also faces two challenges. First,
keeping extra canonical copies for W will consume more
space. Second, it is hard to predict, for a random token, where
to update the canonical copies of W providing they are in
the sparse format. Third, given LDA is memory intensive,
reading W twice (one for sampling, the other for updating)
will hamper the performance.

We only keep a canonical copy forWdense and reconstruct
Wsparse as well as the entire D from T after sampling. Below,
we discuss the details. ezLDA keeps a canonical copy of
Wdense for update because the words in the dense rows often

FIGURE 7. Token distribution of PubMed dataset.

contain exceeding number of tokens which span across multi-
ple chunks. In that context, we would need to transfer a large
number of chunks if we choose to reconstruct Wdense from
T. In contrast, with a canonical copy of Wdense, the update
to Wdense can be done quickly because Wdense is in dense
format, as well as in memory during sampling.

ForWsparse, we only need to read in the Tsparse part of the
token list. Since more than 80% tokens contribute toWdense,
Tsparse will be relatively small. Thus reconstructing Wsparse
will be very fast.

Since a majority of the tokens belong to Wdense which is
updated during sampling, the update of the entire W usually
consumes very short time.

The update of D is aided by the inverted index which is
discussed in Figure 5(b). In order to discuss the update to
D, we need to understand how ezLDA partitions and pre-
processes the corpus. Particularly, each document is solely
assigned to one chunk, and all the tokens in each chunk are
sorted by wordId. Here, assuming this chunk contains three
documents of a corpus. This way, we can reconstruct three
rows of D with this chunk. Inside of each chunk, the tokens
are sorted by wordId for ease of update of Wsparse. Towards
updating D, we resort to the inverted index in Figure 5(b).
Particularly, one can scan through the CSR to decide which
tokens are needed to update rows 0, 1 and 2 of D.

With the updating process being taken care of, sampling
becomes the immediate bottleneck. To facilitate a fast S’
tree construction, which involves the HP between two CSR
rows of W and D, we reconstruct the entire row of W into
dense format in shared memory. Afterwards, HP is done by
scanning through the specific row of D and use the column
index to access that of the denseW. Note, this sharedmemory
will be repeatedly used for all rows ofW.

D. DISCUSSION
This section shares a failed trial. Inspired by the traditional
iterative graph computing algorithms, such as, delta-step
Pagerank [48] and Single Source Shortest Path [49], [50],
we falsely assume the tokens that already converged will
no longer change their topics. Therefore, our naive design
introduces a tracker array to indicate whether the topic of
a token remains unchanged for several iterations. If so, this
naive dropping method will not sample this token in the
following iterations.

However, the naive dropping strategy fails to work mainly
because it betrays the nature of LDA. Particularly, the core of

100172 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 8. Perplexity of naive dropping strategy on PubMed.

LDA, i.e., Bayes model, is that the sampling process of LDA
is a non-deterministic process. That is, even if the topic of a
token remains unchanged for several iterations, which means
the probability of assigning this specific token to the same
topic is very close to 1, this token still has a chance to change
topics because the random number generated from U [0, 1]
might fall in other topics whose probabilities are low.

Figure 8 shows the failure of the naive dropping strategy.
In this test, the dropping starts at iteration 72. At iteration 90,
all dropped tokens are re-included in the training to check
whether this strategy works. Clearly, the results are not good.
At the point of re-including, perplexity becomes even smaller
than the value before dropping and severely deviates from the
correct convergence point.

V. SCALABLE ezLDA ON GPUs
This section discusses novel techniques we exploit to better
scale ezLDA across GPU threads, as well as GPUs.

A. INTRA-GPU WORKLOAD BALANCING
For a corpus, the number of tokens per word often follows
power law, that is, a few high frequent words occupy majority
of tokens, as shown in Figure 7. The workloads associated
with various words are hence largely unbalanced. However,
the contemporary LDA projects [28] typically assign a block
to a word, regardless of the associated workload, leading
to severe workload imbalance issue in LDA training. This
section thus introduces two methods to overcome the work-
load imbalance problem, that is, dynamic workload balancing
for small words and workload splitting for large words.

1) SMALL WORD
Given various words come with different number of tokens,
we adopt the dynamic workload balance strategy from a
recent work [39] to address the inter-word workload imbal-
ance issue. Note, instead of processing the words by each
block in a pre-determined manner, this approach will use
atomicAdd() to, on-the-fly, determine which word will be
processed by the available thread block.

2) LARGE WORD
While applying the dynamic workload balance strategy can
largely address the inter-word workload imbalance problem
faced by small words, it will not work for large words
which govern too many tokens. In this context, the block

FIGURE 9. Hierarchical workload balancing. Note, v , |W [v]|, r and M are
the word index, number of tokens for word v , region index, and maximum
number of token processed by each index increment, respectively.

that processes the extremely large words will become the
straggler. For instance, assuming one corpus has 128 tokens
and the most frequent word holds 50 tokens, we use 8 blocks
for training. Then, each block should process 16 tokens
in workload balanced setting. However, with the dynamic
workload balance strategy, the block that processes the word
with 50 tokens will be responsible for this entire word alone,
leading to workload imbalance.

In order to solve this problem, we introduce large word
dissection, i.e, very high frequency words are partitioned and
processed by multiple thread blocks. Particularly, we can
quickly derive the maximum number of tokens a block can
process through dividing the total amount of workloads by
the number of thread blocks. If the token number of a specific
word is larger than this maximum value, we will partition this
word into several parts and assign them to multiple blocks. In
this work, we use 10,000 as the threshold for ezLDA.

It is important to note that applying dynamic small word
workload balancing and large word dissection together will
pose challenges for word assignment. For instance, we need
to decide which word and what portion of that word are the
next workload. ezLDA introduces a two-level index strategy
to deal with this challenge.

Figure 9 shows the design of our two-level index strategy.
Word index v determines the word to be processed and region
index r determines which region of tokens in that word should
be processed. Apparently, the increment of v and r are corre-
lated andmust be executed atomically. Considering an atomic
function can only be used for a single operation, we propose
to use critical section to fulfill that goal. To remedy the absent
of critical section support on GPU, ezLDA relies on atomic
operations to build a critical section [51].

B. MULTI-GPU ezLDA
As the size of corpus and number of topics continue to grow,
the training time of LDA also prolongs, which leads to our
support of multi-GPU ezLDA. When extending to multiple
GPUs, ezLDA is concernedwith two essential data structures,
that is, data (i.e., T) and algorithmic data (i.e., D andW), and
the correlated workload partition, and communication.

The good news is that T and D are well partitioned in
the single GPU-based design, as discussed in Section IV.
Particularly, each chunk is responsible for similar number

VOLUME 11, 2023 100173

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

TABLE 1. ezLDA vs cuLDA/SaberLDA memory consumption on PubMed
dataset. The corpus is partitioned into 8 chunks during computation.

of documents. This partition of T leads to evenly partitioned
D across GPUs. And each chunk actually contains a similar
number of tokens. Using UMBC dataset on four GPUs as an
example, the maximum and minimum workload chunks only
have a difference of 5% in terms of the number of tokens.

For word topic matrix, i.e., W, unlike the single GPU ver-
sion, we keep an in-memory canonical copy for both Wdense
and Wsparse. After all chunks are processed, we can update
bothWdense andWsparse by summing up the canonical copies
across all GPUs and broadcasting the result back to all of
them.

VI. EXPERIMENTS
We implement ezLDA with ∼4,000 lines of C++/CUDA
code and compile the source code with Nvidia CUDA
9.2 toolkit and -O3 optimization compilation flag. We use
two platforms to evaluate ezLDA. For comparison with state-
of-the-art SaberLDA, we use an Nvidia GTX 1080 GPU
- identical platform used in SaberLDA - on an Alien-
ware with 24 GB memory and Intel(R) Core(TM) i7-8700
(3.20Hz) CPU. For ezLDA internal study, we use a cus-
tomized server which installs a dual-socket Xeon processor
with 24 cores, and four Nvidia V100 GPUs. Note, each
reported result is an average of five runs, where the differ-
ences across various executions are very small (< 1%).
Dataset: We evaluate ezLDA with two popular datasets

that are also studied by cuLDA [29] and SaberLDA [28]:
• PubMed [52]: 8,200,000 documents, 141,043 unique
words and 738M tokens.

• NYTimes [52]: 299,752 documents, 101,636 unique
words and 100M tokens.

To better study the scalability and real-world impacts,
we further prepare the following dataset by text splitting, stop
words removing and non-frequent words stemming:

• UMBC: 40,000,000 documents, 200,000 unique words
and 1.33 billion tokens. This dataset is obtained from
UMBC webbase corpus [53].

A. ezLDA vs. STATE-OF-THE-ART
Table 1, Figures 10 and 11 compare ezLDA against the state-
of-the-art, i.e., SaberLDA and cuLDA for space complexity,
convergence speed and throughput (number of tokens per
second), respectively.

1) SPACE
As shown in Table 1, ezLDA consumes 33% more space for
small K = 1,000 compared with SaberLDA and cuLDA. But

FIGURE 10. (a) The convergence of ezLDA vs SaberLDA with 1,000 topics
on NYTimes dataset on GTX 1080. (b) The convergence of ezLDA vs
SaberLDA with 1,000 topics on Pubmed dataset on GTX 1080. (c)
Throughput of ezLDA vs SaberLDA for first 100 iterations on NYTimes on
GTX 1080.

FIGURE 11. number of tokens per second for ezLDA vs. cuLDA on
V100:(a) NYTimes, (b) Pubmed, (c)LLPT on Nytimes.

we save 47% and 78% space when K is large, e.g., 10,000
and 32,768. Particularly, ezLDA require more space than
SaberLDA and cuLDA for T because we need to allocate
space in T for K1/K2 pair (Section III-C) andM (Equation 8).
However, ezLDAmanages to save much more memory onW
thanks to sparsity aware representation.

2) ezLDA vs SaberLDA
Figure 10 compares ezLDA against SaberLDA on conver-
gence speed and throughput, i.e, number of tokens per second.
Since SaberLDA is not open source, we cite the performance
numbers from their manuscript and run ezLDA on identi-
cal GPU for fair comparison. As shown in Figures 10(a)
and 10(b), ezLDA climbs to higher perplexity with shorter
training time. For throughput, as shown in Figure 10(c),
ezLDA achieves 1.5× speedup, on average, for the first
100 iterations on NYTimes. Note, since SaberLDA does not
include the number of tokens per second statistics, we follow
cuLDA to derive this number for NYTimes according to
Figure 9 in SaberLDA [28].

3) ezLDA vs cuLDA
Though cuLDA outperforms SaberLDA, ezLDA, as shown in
Figure 11(a), still manages to convergence faster than cuLDA
on NYTimes (cuLDA does not include LLPT for PubMed).
Thanks to cuLDA which includes number of tokens per sec-
ond for both datasets, we report the comparison of this metric
in Figure 11(b). Particularly, ezLDA achieves an average
throughput of 905 and 770 million tokens/second for the

100174 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 12. (a) ezLDA for large K, i.e., 32,768. (b) The percentage of
tokens skipped by three-branch sampling for K = 1,000, where g is the
parameter from Equation 10.

FIGURE 13. ezLDA hybrid representation vs. dense-only and sparse-only
representations for topic = 1,000: (a) throughput and (b) space
complexity for UMBC dataset.

first 100 iterations and retains over 1000 million tokens/sec
after 100 iterations on NYTimes and PubMed, respectively.
This outperforms cuLDA that retains 633 and 686 million
tokens/second, on average, for the first 100 iterations on
NYTimes and PubMed, respectively.

B. ezLDA PERFORMANCE STUDY
1) LARGE NUMBER OF TOPICS
As shown in Figure 12(a), ezLDA can handle all the datasets
with 32,768 topics on a single GPU. This is an important
capability for real-world scale corpus [8].

2) THREE-BRANCH SAMPLING
Figure 12(b) profiles the impact of three-branch sampling.
In general, we find thismethod ismore effectivewhen dealing
with larger dataset. Particularly, NYTimes enjoys skipping
60% of the tokens during the final sampling and nearly 50%
tokens skip the S construction at iteration 100. For PubMed,
87% tokens skip the final sampling and nearly 74% tokens
skip the S construction at iteration 100. For UMBC, 93%
tokens skip final sampling and nearly 89% tokens skip the
S’ construction at iteration 100. We also study different g
in Equation 10. As expected, more tokens are skipping S’
construction for larger g, because larger g makes Sest closer
to S’.

3) HYBRID STORAGE OF W
Figure 13 profiles the impact of dense/sparse hybrid repre-
sentations. The key conclusion is that our hyrbid optimization

FIGURE 14. The performance impacts of pairStorage on V100 GPU for K =

1000.

FIGURE 15. Profiling the impacts of intra-GPU workload balancing:
(a) number of tokens per second for first 300 iteration (b)
achieve_occupancy.

can both improve performance and save space (at least for the
large K case). As shown in Figure 13(a), on average, hybrid
format is 1.34× and 1.47× faster than the dense and sparse
only formats, respectively. Compared with ezLDA, sparse
format needs to update W after all chunks are processed,
which means all chunks need to be transferred back to GPU
a second time to finish the update. For dense format, much
time will be wasted on updating rows ofW corresponding to
small words. Further, the hybrid format consumes 17.8% and
47.8% less space than sparse format and dense format for K
= 10,000, respectively.
Pair K1/K2, C1/C2 andD storage, as shown in Figure 14,

yields 1.12×, 1.19× and 1.22× speedup on NYTimes,
PubMed and UMBC datasets, respectively. The speedup is
achieved because LDA training is memory-bound [54] and
pair-storage significantly reduces the global memory traffic
in three-branch sampling.

C. SCALABLE ezLDA
1) HIERARCHICAL WORKLOAD BALANCING
Using three-branch sampling without workload balance as
baseline, as shown in Figure 15(a), on average, our hierar-
chical workload balancing technique yields 1.1×, 1.7× and
1.2× speedup on NYTimes, PubMed and UMBC, respec-
tively, for number of tokens per second. The speedup on
PubMed dataset is higher because this dataset presents
higher workload imbalance. The speedup is resulted from
that workload balancing can improve the GPU occu-
pancy [55]. As shown in Figure 15(b), we improve the
achieved_occupancy ratio by 27% across the datasets. Note,
achieved_occupancy means the ratio of active warps over
maximum number of supported warps on the multiprocessor.

VOLUME 11, 2023 100175

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

FIGURE 16. The performance impacts of scalable ezLDA.

FIGURE 17. Profiling ezLDA: (a) kernel time breakdown (b) Hardware
counter.

FIGURE 18. Throughput impacts of GTX 1080 vs. Volta V100. (a) NYTimes
(b) Pubmed (c) UMBC.

2) MULTI-GPU SCALABILITY
Figure 16 shows that ezLDA can scale to four V100
GPUs with 3.44×, 3.34× and 3.36× speedup on NYTimes,
PubMed and UMBC dataset, respectively. While this result
indicates that ezLDA is scalable, we also notice that ezLDA
cannot achieve linear scalability. The reason lies in the need of
communicatingW and the slight workload imbalance across
partitions.

D. PERFORMANCE COUNTER AND GPU GENERATION
IMPACTS
Figure 17(a) studies the time consumption breakdown in
three-branch optimization. Though three-branch can skip
tremendous tokens, it also introduces two noticeable over-
heads, i.e., steps ➋ and ➌ in Figure 4(c). On average, these
two steps consume 8% and 12% of the total runtime, respec-
tively. Figure 17(b) further profiles the microarchitectural
impacts of three-branch optimization. Particularly, we profile
the inst_executed [55] and find that three-branch optimization
can reduce the executed instructions by 49%, on average,
across the three datasets.

FIGURE 19. Convergence speed impacts of GTX 1080 vs. Volta V100.
(a) NYTimes (b) Pubmed (c) UMBC.

Figures 18 and 19 study the GPU generation impacts on
number of tokens per second and convergence speed for
ezLDA, respectively. Since the bandwidths of GTX 1080 [56]
and V100 [38] are 320 GB/s and 900 GB/s, respectively,
we expect the performance impacts would also be around
3×. As shown in Figures 18, ezLDA can achieve an average
of 991, 945 and 1007 million tokens/sec on V100 GPU and
250, 311 and 363 million tokens/sec on GTX 1080 GPU
on NYTimes, Pubmed and UMBC datasets respectively.
As shown in Figure 19, ezLDA also converges significantly
faster on V100 than GTX 1080.

VII. CONCLUSION
In this paper, we present ezLDA that achieves superior perfor-
mance over the state-of-the-art attempts with lower memory
consumption. Particularly, we find that majority of tokens
tend to converge to the most popular topic with training
process and thus introduce a novel three-branch sampling
method which takes advantage of this convergence hetero-
geneity of various tokens to reduce the redundant sampling
task. Further, to enable sparsity-aware format for both D and
W on GPUs with fast sampling and updating, we introduce
hybrid format for W along with corresponding token parti-
tion to T and inverted index designs. Last but not the least,
we design strategies to balance workload across GPU threads
and scale ezLDA across multiple GPUs.

In the future, we will utilize the convergence heterogeneity
of LDA and apply it on some advanced LDA models such as
correlated topic model [57] and hierarchical LDAmodel [58].

APPENDIX
Algorithm 1 shows pseudocode of ezLDA. Before training,
Tdense and Tsparse are transferred from CPU to GPU (line 3) to
generateWdense (line 4) andWsparse (line 5),MPT_Generate
kernel (line 6) is run to get most and second most popu-
lar topic K0, K1 and Q for each word. Once the training
started, ezLDA transfers Tdense and Tsparse from CPU to GPU
(line 10). Then D are updated based on the token list and C0,
which isK ′

1s value in row ofD, is also acquired for each token
(line 11). After that, we have C0, K0, K1, Wdense and Q, run
MPT_Calculate kernel to filter the skipped tokens and assign
most popular topic to these tokens. Meanwhile, for every
un-skipped token, get the most popular topic K ′

0s estimated
probability M and random float u(line 12). Now we have

100176 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

Tdense,Wdense, M, u andD in GPUs, we will run Sampling(D)
kernel to update Tdense and W ′

dense (line 13). When Tsparse,
Wsparse, M, Sest and D are ready, we opt to Sampling(S)
kernel to only update Tsparse (line 14). Upon finishing of this
iteration, we copy Tdense and Tsparse back to GPU (line 15).
After all chunks are done, update Wdense via copying W ′

dense
to Wdense (line 22). It is important to note that we will copy
Tsparse from CPU to GPU (line 18) to updateWsparse (line19)
because Tsparse is very small compared with Tdense and the
time cost for transferring Tsparse from CPU to GPU is negli-
gible. Now Wsparse and Wdense are updated, MPT_Generate
kernel (line 23) will be run to get K0, K1 and Q for next
iteration. ezLDA will repeat this process for next iteration.

Algorithm 1 ezLDA
1: GPUMemSet(WdenseandWsparse, 0)
2: for chunkId =1 to num_chunks do
3: DataTransfer(TsparseandTdense,CPU → GPU)
4: Wsparse = Wsparse_Update(Tsparse)
5: Wdense = Wdense_Generate(Tdense)
6: end for
7: for iter=1 to num_iterations do
8: MPT_Generate(W iter

dense,W
iter
sparse,K

iter
1 ,K iter

2)
9: for chunkId =1 to num_chunks do
10: DataTransfer(T itersparseandT

iter
dense,CPU → GPU)

11: C iter
0 = D_Update(T itersparse,T

iter
dense,D

iter)
12: M iter

= MPT_Calculate(T iter+1
dense ,T iter+1

sparse ,
K iter
0 ,K iter

1 ,C iter
0 , uiter)

13: if unskippedTokenFlag = true then
14: T iter+1

dense = Sampling(D)(T iterdense,W
iter
dense,

Diter , uiter ,M iter ,W
′ iter+1
dense)

15: T iter+1
sparse = Sampling(S)(T itersparse,W

iter
sparse,

Diter , uiter ,M iter)
16: end if
17: DataTransfer(T iter+1

sparse andT
iter+1
dense ,GPU → CPU)

18: end for
19: for chunkId =1 to num_chunks do
20: DataTransfer(T iter+1

sparse ,CPU → GPU)
21: W iter+1

sparse = Wsparse_Update(T itersparse)
22: end for
23: GPUMemSet(W iter+1

sparse , 0)

24: Copy(W iter+1
dense ,W

′ iter+1
dense)

25: MPT_Generate(W iter+1
dense ,W iter+1

sparse ,K iter+1
0 ,K iter+1

1)
26: end for

Algorithm 2 shows the pseudo-code of our three-branch
sampling. First, dense vector Ŵ [v] needs to be generated by
SparseToDense kernel if W is Wsparse (line 2). Set Ŵ [v][K1]
to be 0 (line 3) to exclude the most popular topic K1 (line 3).
Q tree needs to be generated and then shared by tokens of
same word (line 4). Second, for each un-skipped token, three-
branch sampling will generate a new topic by following steps:
1) Build S’ tree to get S[i] (line 6). 2) FetchM[i] frommemory
for each token and calculate corresponding thresholds, t1 and
t2 (line 6-7). 3) Fetch u[i] and compare it with t1 and t2. If u[i]
falls into the range of most popular topic K1, new topic will
be K1 (line 9-10). Otherwise, sampling from S’ or Q’ tree
(line 11-15) to get a new topic.

Algorithm 3 shows the pseudo-code of MPT Generate
Kernel. For each word, we get most and second most popular

Algorithm 2 Sampling
1: function SamplingKernel(W ,D,T ,M , u,K1, α, β)
2: Ŵ [v] = SparseToDense(W [v])
3: Ŵ [v][K1] = 0
4: Q′

= BuildTreeQ(Ŵ [v], α,Tree(pq))
5: for i = 0 to num_unskippedtokens do
6: S ′[i] = BuildTreeS(Ŵ [v],D[d], β,Tree(ps[i]))
7: t1 = M [i]/(S ′[i] + Q′

+M [i])
8: t2 = (M [i] + Q′)/(S[i] + Q′

+M [i])
9: if (u[i] < t1) then
10: newtopic = K1

11: else if (t1 < u[i] < t2) then
12: newtopic = Sampling(Tree(ps[i]), (u[i] − t1)/(t2 − t1))
13: else
14: newtopic = Sampling(Tree(pq), (u[i] − t1 − t2)/(1 − t1 − t2))
15: end if
16: T [i] = newtopic
17: end for
18: end function

topic K1 and K2 in vector Ŵv. The cost for MPT Generate
Kernel is trivial because we only need NW iterations, where
NW is vocabulary size.

Algorithm 3MPT Generate Kernel
1: functionMPTGKernel(K1,K2, Ŵv)
2: K1 = argMax(Ŵv)
3: K2 = argSecMax(Ŵv)
4: end function

Algorithm 4 shows the pseudo-code of D update kernel,
as shown in Algorithm 4. First, Dv is got by AtomicAdd
1 in corresponding topic position for each token from same
document. Then we convert Dv into sparse vector D

sparse
v and

update D. We can reuse Dv to get C1. We use one warp to
process one document and one thread to process one token
for this kernel.

Algorithm 4 Update Kernel(D)
1: function UpdateKernel(T ,Dsparsev ,C1,K1,W)
2: for i = 0 to num_tokens do
3: AtomicAdd(Dv[T [i]], 1)
4: end for
5: Block_sync
6: for i = 0 to num_tokens do
7: Dsparsev = DenseToSparse(Dv)
8: C1[i] = GetMaxParameter(Dv,K1)
9: end for
10: end function

Algorithm 5 shows the pseudo-code of MPT Calculate
Kernel. M is calculated with corresponding formula. Here
Drowsum is the row sum of D and easy to be calculated from
row offset. We use one warp to process one word and one
thread to process one token for this kernel.

We apply hierarchical workload balancing strategy on all
kernels. As illustrated above, we also design different work-
load distribution strategies for different kernels, some are
warp-thread based, while some are block-warp based. For
three-branch sampling, Dv is reused in D update kernel for

VOLUME 11, 2023 100177

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

Algorithm 5MPT Calculate Kernel
1: functionMPTCKernel(C1,K1,K2,D,Q′, α, Ŵv)
2: for i = 0 to num_tokens do
3: m = (C1[i] + α) ∗ (Ŵv[K1])
4: Sest = (Drowsum − C1[i]) ∗ (Ŵv[K1])
5: t = RandomGenerate(0, 1)
6: if (t < m/(m+ Sest + Q′)) then
7: newtopic = K1

8: else
9: num_unskippedtokens+ +

10: u[i] = t
11: M [i] = m
12: end if
13: end for
14: returnM , u
15: end function

speedup. Memory of C1 is reused by M to reduce GPU
memory usage.

ACKNOWLEDGMENT
(Shilong Wang and Hang Liu contributed equally to this
work.)

REFERENCES
[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’

J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.
[2] J. L. Boyd-Graber, D. M. Blei, and X. Zhu, ‘‘A topic model for word sense

disambiguation,’’ in Proc. EMNLP-CoNLL, 2007, pp. 1–12.
[3] F. Zhang, J. Zhai, X. Shen, O.Mutlu, andW.Chen, ‘‘Zwift: A programming

framework for high performance text analytics on compressed data,’’ in
Proc. Int. Conf. Supercomputing, 2018, pp. 195–206.

[4] L. Cao and L. Fei-Fei, ‘‘Spatially coherent latent topic model for concur-
rent segmentation and classification of objects and scenes,’’ in Proc. IEEE
11th Int. Conf. Comput. Vis., 2007, pp. 1–8.

[5] W.-Y. Chen, J.-C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang,
‘‘Collaborative filtering for Orkut communities: Discovery of user latent
behavior,’’ in Proc. WWW, 2009, pp. 681–690.

[6] R. Krestel, P. Fankhauser, andW.Nejdl, ‘‘Latent Dirichlet allocation for tag
recommendation,’’ in Proc. 3rd ACMConf. Recommender Syst., Oct. 2009,
pp. 61–68.

[7] J. Chang and D. M. Blei, ‘‘Relational topic models for document net-
works,’’ in Proc. Artif. Intell. Statist., 2009, pp. 81–88.

[8] L. Yut, C. Zhang, Y. Shao, and B. Cui, ‘‘LDA*: A robust and large-
scale topic modeling system,’’ Proc. VLDB Endowment, vol. 10, no. 11,
pp. 1406–1417, Aug. 2017.

[9] M. Shi, Y. Tang, and J. Liu, ‘‘Functional and contextual attention-based
LSTM for service recommendation in mashup creation,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 5, pp. 1077–1090, May 2019.

[10] Y. Wang and W. Xu, ‘‘Leveraging deep learning with LDA-based text
analytics to detect automobile insurance fraud,’’ Decis. Support Syst.,
vol. 105, pp. 87–95, Jan. 2018.

[11] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen, ‘‘Efficient document
analytics on compressed data: Method, challenges, algorithms, insights,’’
Proc. VLDB Endowment, vol. 11, no. 11, pp. 1522–1535, Jul. 2018.

[12] F. Qian, L. Sha, B. Chang, L.-C. Liu, andM. Zhang, ‘‘Syntax aware LSTM
model for Chinese semantic role labeling,’’ 2017, arXiv:1704.00405.

[13] J. Chen, J. He, Y. Shen, L. Xiao, X. He, J. Gao, X. Song, and L. Deng,
‘‘End-to-end learning of LDA by mirror-descent back propagation over
a deep architecture,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 1765–1773.

[14] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018,
arXiv:1802.05365.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[16] S. Shen, Z. Dong, J. Ye, L. Ma, Z. Yao, A. Gholami, M. W. Mahoney, and
K. Keutzer, ‘‘Q-BERT: Hessian based ultra low precision quantization of
BERT,’’ 2019, arXiv:1909.05840.

[17] Y. Ueno and R. Yokota, ‘‘Exhaustive study of hierarchical AllReduce
patterns for large messages between GPUs,’’ in Proc. 19th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2019, pp. 430–439.

[18] A. Svyatkovskiy, J. Kates-Harbeck, and W. Tang, ‘‘Training distributed
deep recurrent neural networks with mixed precision on GPU clusters,’’ in
Proc. Mach. Learn. HPC Environments. New York, NY, USA: Association
for Computing Machinery, Nov. 2017, pp. 1–8.

[19] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R.
Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, ‘‘Deep speech:
Scaling up end-to-end speech recognition,’’ 2014, arXiv:1412.5567.

[20] T. Akiba, K. Fukuda, and S. Suzuki, ‘‘ChainerMN: Scalable distributed
deep learning framework,’’ 2017, arXiv:1710.11351.

[21] N. Dryden, N.Maruyama, T.Moon, T. Benson, A. Yoo,M. Snir, and B. Van
Essen, ‘‘Aluminum: An asynchronous, GPU-aware communication library
optimized for large-scale training of deep neural networks on HPC sys-
tems,’’ in Proc. IEEE/ACM Mach. Learn. HPC Environments (MLHPC),
Nov. 2018, pp. 1–13.

[22] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, ‘‘Gun-
rock: A high-performance graph processing library on the GPU,’’ in Proc.
20th ACM SIGPLAN Symp. Princ. Pract. Parallel Program., Jan. 2015,
pp. 1–12.

[23] L. Yao, D. Mimno, and A. McCallum, ‘‘Efficient methods for topic
model inference on streaming document collections,’’ in Proc. 15th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jun. 2009,
pp. 937–946.

[24] L. Tierney, ‘‘Markov chains for exploring posterior distributions,’’ Ann.
Statist., vol. 22, no. 4, pp. 1701–1728, Dec. 1994.

[25] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola, ‘‘Reducing the sampling
complexity of topic models,’’ in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2014, pp. 891–900.

[26] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu, and
W.-Y. Ma, ‘‘LightLDA: Big topic models on modest computer clusters,’’
in Proc. 24th Int. Conf. World Wide Web, May 2015, pp. 1351–1361.

[27] J. Chen, K. Li, J. Zhu, and W. Chen, ‘‘WarpLDA: A cache efficient O(1)
algorithm for latent Dirichlet allocation,’’ Proc. VLDB Endowment, vol. 9,
no. 10, pp. 744–755, Jun. 2016.

[28] K. Li, J. Chen, W. Chen, and J. Zhu, ‘‘SaberLDA: Sparsity-aware learning
of topic models on GPUs,’’ ACM SIGOPS Operating Syst. Rev., vol. 51,
no. 2, pp. 497–509, 2017.

[29] X. Xie, Y. Liang, X. Li, and W. Tan, ‘‘CuLDA_CGS: Solving large-scale
LDA problems on GPUs,’’ 2018, arXiv:1803.04631.

[30] H. Zhao, B. Jiang, J. F. Canny, and B. Jaros, ‘‘SAME but different: Fast and
high quality Gibbs parameter estimation,’’ in Proc. 21st ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2015, pp. 1495–1502.

[31] H.-F. Yu, C.-J. Hsieh, H. Yun, S. V. N. Vishwanathan, and I. S. Dhillon, ‘‘A
scalable asynchronous distributed algorithm for topic modeling,’’ in Proc.
24th Int. Conf. World Wide Web, May 2015, pp. 1340–1350.

[32] Y. Yang, J. Chen, and J. Zhu, ‘‘Distributing the stochastic gradient sampler
for large-scale LDA,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2016, pp. 1975–1984.

[33] S. Ashkiani, M. Farach-Colton, and J. D. Owens, ‘‘A dynamic hash table
for the GPU,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2018, pp. 419–429.

[34] F. Yan, N. Xu, and Y. Qi, ‘‘Parallel inference for latent Dirichlet allocation
on graphics processing units,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2009, pp. 2134–2142.

[35] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M. Welling,
‘‘Fast collapsed Gibbs sampling for latent Dirichlet allocation,’’ in Proc.
14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2008,
pp. 569–577.

[36] Y.W. Teh, D. Newman, andM.Welling, ‘‘A collapsed variational Bayesian
inference algorithm for latent Dirichlet allocation,’’ in Proc. Adv. Neural
Inf. Process. Syst., 2007, pp. 1353–1360.

[37] G. C. G.Wei andM. A. Tanner, ‘‘AMonte Carlo implementation of the EM
algorithm and the poorman’s data augmentation algorithms,’’ J. Amer. Stat.
Assoc., vol. 85, no. 411, pp. 699–704, Sep. 1990.

[38] Nvidia. V100 GPU. Accessed: Aug. 5, 2019. [Online]. Available:
https://www.nvidia.com/en-us/data-center/v100/

100178 VOLUME 11, 2023

S. Wang et al.: ezLDA: Efficient and Scalable LDA on GPUs

[39] A. Gaihre, Z. Wu, F. Yao, and H. Liu, ‘‘XBFS: Exploring runtime opti-
mizations for breadth-first search on GPUs,’’ in Proc. 28th Int. Symp.
High-Performance Parallel Distrib. Comput., 2019, pp. 121–131.

[40] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[41] A. Cano, ‘‘A survey on graphic processing unit computing for large-scale
data mining,’’Wiley Interdiscipl. Reviews, Data Mining Knowl. Discovery,
vol. 8, no. 1, p. e1232, Jan. 2018.

[42] M. Zaheer, M. Wick, J.-B. Tristan, A. Smola, and G. L. Steele Jr., ‘‘Expo-
nential stochastic cellular automata for massively parallel inference,’’ in
Proc. Int. Conf. Artif. Intell. Statist., 2016, pp. 966–975.

[43] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, ‘‘Scan primitives for
GPU computing,’’ in Proc. Graph. Hardw., 2007, pp. 97–106.

[44] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numeri-
cal Recipes 3rd Edition: The art of Scientific Computing. Cambridge, U.K.:
Cambridge Univ. Press, 2007.

[45] Y. Chen, A. B. Hayes, C. Zhang, T. Salmon, and E. Z. Zhang, ‘‘Locality-
aware software throttling for sparse matrix operation on GPUs,’’ in Proc.
USENIX Conf. Usenix Annu. Tech. Conf. Berkeley, CA, USA: USENIX
Association, 2018, pp. 413–425.

[46] W.Han, D.Mawhirter, B.Wu, andM. Buland, ‘‘Graphie: Large-scale asyn-
chronous graph traversals on just a GPU,’’ in Proc. 26th Int. Conf. Parallel
Architectures Compilation Techn. (PACT), Sep. 2017, pp. 233–245.

[47] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, ‘‘GRNN: Low-
latency and scalable RNN inference on GPUs,’’ in Proc. 14th EuroSys
Conf., Mar. 2019, p. 41.

[48] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ‘‘Maiter: An asynchronous
graph processing framework for delta-based accumulative iterative compu-
tation,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 2091–2100,
Aug. 2013.

[49] U. Meyer and P. Sanders, ‘‘δ-stepping: A parallel single source shortest
path algorithm,’’ in Proc. Eur. Symp. Algorithms. Cham, Switzerland:
Springer, 1998, pp. 393–404.

[50] S. Song, X. Liu, Q. Wu, A. Gerstlauer, T. Li, and L. K. John, ‘‘Start late
or finish early: A distributed graph processing system with redundancy
reduction,’’ Proc. VLDB Endowment, vol. 12, no. 2, pp. 154–168, 2018.

[51] R. Crovella. Cuda Atomics Change Flag. Accessed: Jan. 2018. [Online].
Available: https://stackoverflow.com/questions/18963293/cuda-atomics-
change-flag

[52] D. Newman, ‘‘Bag of Words,’’ UCI Mach. Learn. Repository, 2008, doi:
10.24432/C5ZG6P.

[53] L. Han, A. L. Kashyap, and J. Weese, ‘‘UMBC-EBIQUITY-CORE:
Semantic textual similarity systems,’’ in Proc. 2nd Joint Conf. Lexical
Comput. Semantics. Stroudsburg, PA, USA: Association for Computa-
tional Linguistics, Jun. 2013, pp. 1–14.

[54] M. Wahib and N. Maruyama, ‘‘Scalable kernel fusion for memory-bound
GPU applications,’’ in Proc. SC Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2014, pp. 191–202.

[55] Nvidia Inc. Nvidia NVPROF. Accessed: Jun. 3, 2020. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[56] Nvidia Inc.Nvidia Titan 1080. Accessed: Jun. 3, 2020. [Online]. Available:
https://international.download.nvidia.com/geforce-com/international/
pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf

[57] D. Blei and J. Lafferty, ‘‘Correlated topic models,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 18, 2006, p. 147.

[58] Y. Teh, M. Jordan, M. Beal, and D. Blei, ‘‘Sharing clusters among related
groups: Hierarchical Dirichlet processes,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 17, 2004, pp. 1–8.

SHILONG WANG received the B.E. and M.S.
degrees in electromagnetic field and microwave
technology from the Harbin Institute of Technol-
ogy, Harbin, China, in 2011 and 2014, respec-
tively. He is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of Massachusetts Lowell,
Lowell, MA, USA. His research interests include
high-performance computing, machine learning,
and deep learning.

HANG LIU (Senior Member, IEEE) received the
B.E. degree from the Huazhong University of
Science and Technology, in 2011, and the Ph.D.
degree from the George Washington University,
in 2017. He is currently an Assistant Professor
of electrical and computer engineering with the
Stevens Institute of Technology, where he leads
the HPDA Laboratory. Prior to joining the Stevens
Institute of Technology, he was an Assistant
Professor with the University of Massachusetts

Lowell. His research exploits emerging hardware—such as graphics pro-
cessing unit (GPU), field-programmable gate array (FPGA), high-end CPU,
and solid-state drive (SSD)—to build high-performance systems for graph
computing, machine learning, computational omics, numerical simulation,
and cloud computing.

ANIL GAIHRE received the B.E. degree in elec-
tronics and communication from the Institute of
Engineering, Pulchowk Campus, Nepal, in 2014.
He is currently pursuing the Ph.D. degree in
computer engineering with the Department of
Electronics and Computer Engineering, Stevens
Institute of Technology, Hoboken, NJ, USA.
From 2014 to 2017, he was a Software Engineer
and the Project Leader with E&T Nepal Pvt. Ltd.
His research interests include high-performance

computing, sparse linear algebra, and blockchain.

HENGYONG YU (Senior Member, IEEE)
received the bachelor’s degree in information
science and technology and computational math-
ematics and the Ph.D. degree in information and
communication engineering from Xi’an Jiaotong
University, in 1998 and 2003, respectively. He is
currently a Full Professor and the Director of
the Imaging and Informatics Laboratory, Depart-
ment of Electrical and Computer Engineering,
University of Massachusetts Lowell. He has

authored/coauthored more than 200 peer-reviewed journal articles and more
than 140 conference proceedings/abstracts. According to Google Scholar
Citation, the H-index is 45 and i10-index is 144. His research interests
include medical imaging with an emphasis on computed tomography and
medical image processing and analysis. In January 2012, he received the
NSF CAREERAward for the development of CS-based interior tomography.
He serves as an Editorial BoardMember for IEEEACCESS, Signal Processing,
and CT Theory and Applications. He is the founding Editor-in-Chief of JSM
Biomedical Imaging Data Papers.

VOLUME 11, 2023 100179

http://dx.doi.org/10.24432/C5ZG6P

