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ABSTRACT In the past decade, substantial investments have been made in researching and developing
concepts and technologies to support the smart grid, renewable integration, and grid-interactive buildings.
Adaptation of integrated solar photovoltaics with energy storage is increasing in residential buildings as
consumers and utilities are becoming aware of their economic benefits and resilience benefits. Effective
integration and control of these systems with other building loads is critical for providing load flexibility
to improve building energy efficiency, reduce carbon footprint, and support grid resiliency. In recent years
vendors are shifting towards device-level optimization and defining more sophisticated operational modes
for controlling energy storage systems rather than charge and discharge power. As a result, optimization
techniques must encompass the characteristics of these modes and their interactions with other system
disruptions and attributes. This complexity gives rise to a nonlinear optimization problem that cannot be
effectively addressed by an open-source solver and is impractical to implement in real-world scenarios. In this
paper, we designed and evaluated a linear multi-objective model-predictive control optimization strategy for
integrated photovoltaic and energy storage systems in residential buildings by using manufacturer-defined
operational modes. The optimization goal is to minimize the power-purchasing cost from the grid and
maximize the power selling cost to the grid. We developed a generalized method to keep the optimization
linearized, even with operational modes consideration while coupling the modes with the overall system
charging and discharging power. Our simulation results were aligned with real-world measurements and
validated the linearized optimization formulation for each operational mode and for the economic use-case.
The optimization results for the economic use-case demonstrated that the power associated to grid charge
is mostly larger than the grid discharge power which means the optimization tried to maximize the power
selling to the grid when the price is high and avoid power purchasing from the grid during high price.

INDEX TERMS Energy storage, photovoltaic, solar, optimization, demand response, distributed energy
resource, renewable, smart grid, electrification.

NOMENCLATURE
A. ABBREVIATIONS

BTM Behind the meter.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabio Mottola .

ESS Energy storage system.

MPPT Maximum power point tracking.
PI Proportional integration.
PV Photovoltaic.
SOC State of charge.
TOU Time of use.
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B. VARIABLES
SOCAux,t Auxiliary variable for SOC at time t .
SOCt SOC at time t .
PCt /PDt Charge/discharge power at time t .
bCt /bDt Charge/discharge binary variable at

time t .
PModexAuxC,t Charge auxiliary variable for a

particular mode x (1-4) at time t .
PModexAuxD,t Discharge auxiliary variable for a

particular mode x (1-4) at time t .
PCModext /PDModext Charge/discharge power for a mode x

at time t .
bCModext /bDModext Charge/discharge binary variable for

mode x at time t .
PGridAux,t Grid auxiliary variable at time t .

PGrid,C
t /PGrid,D

t Grid charge/discharge power at time t .
bGrid,D
t /bGrid,D

t Grid binary variable for charge/
discharge at time t .

Ploadt Load power usage at time t .
Ppvt PV power output at time t .

C. CONSTANTS

SOCMin/SOCMax Minimum/maximum limit for SOC.
PMin/PMax Minimum/maximum power.
PGridmin /PGridmax Minimum/maximum power for grid.
PCmin/P

C
max Minimum/maximum charging power.

PDmin/P
D
max Minimum/maximum discharging

power.
pGridD,t /pGridC,t Grid charge/discharge price.
ηc/ηd Charge/discharge efficiency for

system.
Ploss Loss power for battery.
E Battery capacity.

I. INTRODUCTION
The US electric power grid is evolving. New carbon emission
requirements and plummeting renewable generation costs
(particularly from photovoltaic (PV) systems) have been
paving the way for retirements of large fossil fuel–based gen-
eration facilities [1], [2]. As part of the renewable deployment
strategy, technologies such as lithium-ion energy storage sys-
tems (ESSs) have become increasingly important to ensuring
the availability of energy capacity to meet demand. Beyond
shifting energy from renewable resources, ESSs have also
been a sought-after technology for augmenting system relia-
bility and resiliency and ensuring renewable plant operations
meet their commitments in the event of adverse weather
phenomena [3]. In [4], the feasibility and effectiveness of
integrated PV and ESS in rural areas with limited access
to reliable electricity is demonstrated and it highlights the
potential for renewable energy systems to contribute to sus-
tainability for such communities.

For grid-scale ESS (i.e., megawatt-scale), use cases have
focused on energy arbitrage and provisioning of ancillary
services [5] with complementary optimization strategies that
focus on market bidding strategies. Other use cases under
investigation include those that focus more on distributed
energy storage technologies, behind the meter (BTM) energy,
and community ESSs [6], [7], [8], [9]. For these ESSs,
utility time-of-use (TOU) mechanisms have been the pri-
mary target value stream in conjunction with reliability
and resilience services. An agent-based software framework
was developed and deployed to enable transactive control
in residential buildings, which enables transactions over a
load and price signal between buildings and the microgrid
controller [10], [11]. In another work, an optimization was
developed that determines the optimal battery charge and
discharge schedules for each day, with the goal of mini-
mizing electricity cost over a given time period [12]. Other
optimizations have considered potential interruptions and
using energy storage as a backup [13]; coordination between
building energy storage (e.g., building envelope with HVAC)
and battery energy storage [14]; a multi-energy storage sys-
tem that includes battery, thermal, and hydrogen [15]; a
multi-objective optimization for reducing the system cost,
maximizing renewable energy generation, and minimizing
green gas emission for integrated PV and ESS with ultra-fast
charging capability [16]; and integrated energy storage with
PV to support electric vehicle charging [17]. In all this
research work the ESS charge and discharge was used to
control the system. SOC is a key variable used by various
control strategies to optimize the performance of the ESS.
Accurate SOC estimation is a critical challenge since it is a
non-linear problem by nature. Various model-based, model-
free, and data driven methods used for SOC estimation along
with their advantages and disadvantages are discussed in [18].

As ESS technology and use cases have matured, manu-
facturers have begun to imbed higher-order control modes
(i.e., beyond the standard real and reactive power control)
into storage systems to support these use cases and reduce the
need for fast communications and constant decision-making.
Instead, control modes can be set and left for extended peri-
ods, thereby allowing the ESS to deliver services without the
need for significant interactions.

For example, mode selection for energy storage and power
electronics controls has been presented for on- and off-grid
scenarios or use cases that consider load and PV in a
microgrid [19], [20]. In another research work, charge and
discharge modes are introduced where SOC values are used
in a binary logic to determine the amount of charge to
be requested [21]. A simulation study was done to reduce
the energy cost of residential houses with integrated PV
and ESS using a multi-objective optimization by scheduling
the charging and discharging of the battery [22]. Another
study demonstrated the impact of using different battery
technologies and sizing for reducing the electricity bill of
the households while ensuring a certain level of reliability
and sustainability [23]. In work related to a hybrid tramway,
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modes such as regenerative, charging, and traction were
introduced and considered for engagement with energy stor-
age [24]. A use case for PV smoothing control between
two systems has also been discussed [25]. In this example,
a peer-to-peer communication strategy was enacted between
two assets. In another work, an ESS was used to directly
measure PV output and automatically adjusted according to
a target forecast [26]. For residential, secondary-use ESS,
a demand management is established through a secondary
closed-loop proportional-integration (PI) control implemen-
tation [27]. An energy management system was introduced
to use control modes that are decided conditionally for an
integrated PV and ESS [28]. In other work, optimization was
used for PV and ESSs that consider user satisfaction [29].
In another work the authors developed and compared various
control strategies for optimal operation of a PV-ESS based
power plant considering typical scenarios such as a clear
day, a partially cloudy day, a cloudy day, and a day with
intermittent cloud cover [30]. In another paper, the optimal
charge and discharge schedule for integrated battery system
is investigated with considering load uncertainty and battery
characteristics [31].

In recent years, machine learning and data-driven algo-
rithms are getting more attention to find the optimal ESS
operational schedule. In a recent work, authors integrate
a bidirectional long short-term memory predictive model
with optimization algorithm for optimal energy distribu-
tion and scheduling of battery ESS [32]. In another work,
a reinforcement-learning(RL) based optimization algorithm
was designed to create the optimal charge and discharge
schedule for integrated PV and ESS in residential houses [33].
DRL was also utilized for a hybrid ESS and reduced the
system operating cost by 50% when compared to rule-based
control for cooling a residential building inMediterranean cli-
mate [34]. A comprehensive literature review was done over
the research and activities involving battery ESS modeling
and optimal control strategies including dynamic program-
ming, stochastic optimization, linear programming, mixed-
integer quadratic programming, model predictive control, and
RL [35]. In all these methodologies charge and discharge
power of the battery were the main control commands used
by the control and optimization algorithm.

Although use cases and controlmodes are being developed,
integrated, and deployed for ESS, optimization strategies for
selecting the optimal mode for different time intervals and
use cases have not been discussed to the same extent [36].
Most of the existing works discussing the application of ESS
optimization in the residential DR management use battery
charge and discharge power as a control mechanism. How-
ever, in recent years, the ESS vendors define operational
modes to control their system besides simply using battery
charge power and discharge power. Each of these opera-
tional modes are based on a device-level optimization. These
modes dictate the charge and discharge power of the ESS
system based on the objective of the operational mode (such
as solar-self consumption) as well as system disturbances

(such as PV, load). In order to develop an optimization
algorithm for such a system, it is necessary to: 1) under-
stand and formulate the model for each operational mode,
2) properly formulate the relation of each operational mode to
the overall system charging and discharging power and other
system uncertainties, and 3) formulate the constraints and
modeling in such a way that the optimization can be solved
by a linear solver so it can be used in real-world applications
for robustness and efficiency. Particularly, linear optimization
formulations that consider different vendor defined opera-
tional modes and the ability to select between the modes
have not been discussed and are novel contributions of this
work. This is an important topic particularly in real-world
implementations because fast communications to dispatch
these types of systems at scale are not realistic and not
scalable for vendor-based communications systems in which
tens of thousands to millions of products could be sold around
the world and utilize centralized communication frameworks.
As such, this paper describes an approach of considering the
available operational modes of an integrated PV and ESS
in a model-predictive multi-objective optimization formula-
tion with local control. This approach can easily be utilized
and deployed by utility or building operators. In this work,
actual measurements from a deployed ESS are used to derive
an optimization formulation for different operational modes.
These formulations are compared to the actual measurements
captured for validation in a real-word implementation.

The paper contributes to the body of knowledge in four
ways: (1) a linear model-predictive multi-objective optimiza-
tion with vendor defined operational mode considerations
has been developed for integrated PV and ESS instead of
only using the system constant charging and discharging
power; (2) modeling and formulating the relation of ESS
charge and discharge power with vendor defined operational
modes and other system disturbances such as load and PV
power generation; (3) the operational modes on a real sys-
tem have been modeled and validated based on real-world
measured data; and (4) a generalized approach has been
introduced that linearizes the model-predictive optimization
formulation when considering various operational modes.
Our developed approach will help utilities and building oper-
ators to deploy linearized optimization methodologies which
are not computationally expensive and can be solved by
open-source solvers for their integrated ESS with PV and
other loads. This generalized approach can be applied to
any device as vendors start to introduce more complex oper-
ational modes for their system. Each of these operational
modes is based on a device-level optimization with a goal
of satisfying the operational mode objective such as solar
self-consumption. As ESS vendors move toward defining
more complex operational modes, optimization methodology
can no longer depend only on charge power and discharge
power. The optimization methodology needs a systematic
way to define and formulate the relation of operational modes
with overall system charge power and discharge power along
with other system disturbances. This coupling will result in
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a nonlinear optimization which cannot be easily solved by
open-source solvers, computationally expensive, and imprac-
tical for real-world deployment. This is a barrier for utilizing
and optimizing such systems in real-world deployments to
support DR. For this reason, our systematic and generalized
approach to perform this coupling in a linear fashion can pave
the way for easy deployments of such optimization for ESS
with vendor defined operational modes.

The rest of this paper is organized as follows: Section III
provides general background on the integrated ESS and PV
system and project, Section IV presents the proposed opti-
mization formulations, Section V provides results of the
optimization formulation as applied for different use cases,
and Section VI describes the conclusions drawn from this
work.

II. PROJECT BACKGROUND
Today, developers are integrating PV and ESSs into single
systems to reduce the complexity of system operation and
integration for the user. Figure 1 depicts an example of the
electrical configuration of such a system for a residential
building owner. In this implementation, the PV array directly
connects to the DC bus. The inverter regulates the DC bus
voltage with a PI control loop, and a target voltage is deter-
mined through a perturb and observe maximum power point
tracking (MPPT) control method [37]. An ESS is integrated
into the shared DC bus through a DC/DC converter and
can inject and extract energy via current control based on
control requests. Energy injected into the DC bus is auto-
matically extracted by the inverter and pushed to the grid
connection of the DC bus voltage control. Current transducers
interconnected to the grid-side AC interconnection provide
a mechanism to utilize closed-loop control formulations via
a secondary PI loop. Other topologies exist and utilize a
DC/DC stage for the PV system [16], [38]. However, the addi-
tion of hardware increases the overall cost of the deployed
technology.

Figure 2 depicts the technology as deployed in a test
home, in which two separate battery systems are employed
to provide the total net kWh. These systems are switched
on individually based on logic embedded in the controllers.
This deployment is part of a Smart Communities [39] project
called the Georgia Power Smart NeighborhoodTM. Each
home in this community utilizes 3.6 kW DC of rooftop PV
paired with 19.6 kWh of battery storage. These homes are
also equipped with improved energy efficient construction,
high efficiency and smart mechanical equipment with inter-
net connectivity. The next section describes an optimization
formula that considers the available modes for a deployed
integrated ESS and PV system.

III. INTEGRATED PV AND ESS OPTIMIZATION AND
CONTROL FORMULATION
The integrated PV and ESS presented here does not provide
direct charge and discharge control for the grid intercon-
nection. Instead, the inverter uses MPPT control to regulate

FIGURE 1. Integrated PV and ESS schematic.

FIGURE 2. Picture of deployed integrated PV and ESS.

TABLE 1. PV and energy storage integrated system modes.

the DC bus and automatically sends injected energy from
solar and energy storage to the grid connection. Hence, con-
trol modes are based on how the integrated ESS is used
in conjunction with the PV and locally measured load. The
different modes include load compensating mode, store extra
solar mode, limited load compensation mode, and multimode
load and solar. Each of these operating modes has its own
objective that dictates certain behavior of the ESS. Detailed
descriptions for these modes are presented in Table 1.

Although these modes provide automatic integration in a
closed-loop control formulation, the primary objective of the
presented PV and ESS optimization formulation is to min-
imize the homeowner’s electric energy cost by considering
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TOU and proxy hourly real-time pricing rate structures. The
formulations must also consider the constraints of different
mode options and equipment. To construct an optimization
model for the ESS, models of each mode have been created
to predict the system performance and SOC under different
operational conditions. Model formulation has been achieved
by operating the system for extended periods (i.e., weeks to
months), collecting and evaluating data, and then deriving
control and optimization methods in response to different
system conditions. The model predictions and measured data
are compared as a means for validation. In the next sections,
the objective function and constraints (i.e., device and mode
models) are discussed in detail.

A. OBJECTIVE FUNCTION
The objective of the model-predictive multi-objective opti-
mization is to minimize the power purchasing cost from the
grid and maximizing the power selling cost to the grid. The
objective function of the optimization problem is formulated
to reliably manage the ESS within bounded operational con-
strains e.g., SOCAux,t limits, the economic value of buying
from or selling to the grid, PGridDt x pDt - P

GridC
t x pCt , and the

utilization of different modes (i.e., modes 1–4). The objective
function has been derived as

min
∑

t∈Nt
(W SOCSOCAux,t +WGridPGridAux,t

+

∑
x∈Modes

(WModexP
CModex
Aux,t )

+

∑
x∈Modes

(WModexP
DModex
Aux,t )

+WGridC (1 − PGrid,C
t )pGridC,t

+WGridDP
Grid,D
t pGridD,t )

(
Nt − t
Nt

)
(1)

where WSOC is the weight associated to SOC auxiliary vari-
able,WGrid is the weight associated to Grid auxiliary variable,
WModex is the weight associated to operational mode charge
and discharge power auxiliary variables,WGridC is the weight
associated to the power sold to the grid, and WGridD is the
weight associated to the power purchased from the grid.
Amultiplier,

(
Nt−t
Nt

)
, has been included to increase the values

nearest in time. This incentivizes the optimization to enact
control when economical instead of waiting for the same
opportunity again in the observed time window. Considering
the conflicting goals in the operation of such systems, the aux-
iliary variables associated with SOC, the ESS mode charge
and discharge power, and the grid charge and discharge power
were added to the objective function. This enables the opti-
mization to successfully solve and drive the SOC, operational
mode charge and discharge power, and grid power to the
desired range without specifying this as a hard constraint for
these variables. This is achieved via the first four terms in
the objective function. The fifth term is the negative of the
cost associated to the power selling to the grid, and the last
term is the cost associated to the power purchased from the
grid.

IV. PV, LOAD, AND ENERGY STORAGE MODELS
As presented in [40], the data used to drive the optimization is
often forecast data. For the load and PV estimations, models
use the expected value of forecasted power as presented in
Eqs. (2) and (3) at the house level.

Ploadt = PLForecastt (2)

PPVt = PPVForecastt (3)

The energy storage model captures the injected, PCt x 1t ,
and extracted energy, PDt x 1t , into the ESS, and the impact
on the system’s capacity is represented as SOC. According
to [41], a linear model for the energy storage can be applied
as

SOCt =SOCt−1+

((
PCt .ηc − PDt ηd − Plosst

)
× 1t

E

)
×100,

(4)

where E is the system energy capacity, and η is the system
efficiency in a single direction (charging or discharging).
A multiplier was added to represent the two storage systems
(i.e., maximum of 200% SOC) and the ability to discharge
and charge from a single system at a given interval.

Power limits associated with charging and discharging
are represented in Eqs. (5)–(7). The binary variables bCt
and bDt ensure that the system is represented as charging,
discharging, or off. These constraints and equations limit
the variables and improve the computational time for the
optimization.

bCt + bDt ≤ 1 (5)

bCt .PCmin ≤ PCt ≤bCt .PCmax (6)

bDt .PDmin ≤ PDt ≤bDt .PDmax (7)

The energy storage SOC operational capacity limits are
shown in Eqs. (8)–(10). The SOCmint and SOCmaxt represent
the minimum and maximum SOC limits for each interval,
respectively. These values could be adjusted in real time
depending on the need to reserve energy for different antic-
ipated operational conditions (e.g., potential outage caused
by a forecasted storm). The following sections describe the
modeled constraints for the operational modes.

SOCAux,t ≥ SOCmint − SOCt (8)

SOCAux,t ≥ SOCt − SOCmaxt (9)

SOCAux,t ≥ 0 (10)

A. MODE 1: LOAD COMPENSATING
In mode 1 (load compensating mode), the integrated energy
storage and PV systems are used to compensate for the
measured load. The control of the system is conditional and
performed in one of two ways: (1) if a load value is measured,
then the energy storage and PV-generated power is controlled
to match the measured load, Ploadt , up to a maximum power
rating, which is captured by the overall limits; or (2) if no
load is measured, then the system charges, 1PCMode1

t , with
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decreasing contribution until SOCmaxt is reached. The formu-
lations of these considerations are shown in Eqs. (11)–(14).

1PD1Mode1t = (Ploadt − PDt ) (11)

1PD2Mode1t = (PDt − Ploadt ) (12)

1PC1Mode1t =
(
SOCmaxt − SOCt ) × 90

)
− PCt (13)

1PC2Mode1t = PCt −
(
SOCmaxt − SOCt ) × 90

)
(14)

These values are applied as positive values for PMode1Aux,t to
create a cost for the objective function, as shown in Eqs. (15)
and (16).

PDMode1Aux,t =


≥ 10 × 1PD1Mode1t

≥ 10 × 1PD2Mode1t

≥ 0

(15)

PCMode1Aux,t =


≥ 1PC1Mode1t

≥ 1PC2Mode1t

≥ 0

(16)

The control charge power, PCMode1t , and discharge power,
PDMode1t , are derived to provide the targeted request but also
to allow these values to be decoupled or set to zero when a
mode is not active, as shown in Eqs. (17) and (18). A large
negative condition has been added to decrease the value
below zero, and a positive constraint has been added to break
the connection. This approach couples the operational mode
power to the system over all power while keeping it linear.

PCMode1t =

{
≥ 0
≥ 1PC1Mode1t − 104 × (1 − bCMode1t )

(17)

PDMode1t =

{
≥ 0

≥ 1PD1Mode1t − 104 ×

(
1 − bDMode1t

)
(18)

B. MODE 2: STORE EXTRA SOLAR
In mode 2 (store extra solar mode), the integrated energy
storage and PV systems are controlled to ensure excess solar
production is consumed locally. The control is again con-
ditional: (1) if the power generated by the PV system is
more than the load, then the excess energy is stored; and
(2) if there is load, then energy is discharged to match the
load. The formulations for these conditions are presented
in Eqs. (19)–(22).

1PC1Mode2t =

(
Ppvt − Ploadt

)
− PCt (19)

1PC2Mode2t = PCt −

(
Ppvt − Ploadt

)
(20)

1PD1Mode2t =

(
Ploadt − PDmax

)
− PDt (21)

1PD2Mode2t = PDt −

(
Ploadt − PDmax

)
(22)

These values are again applied as positive values for
PAux,tMode2 to create a cost for the objective function,

as shown in Eqs. (23) and (24).

PCMode2Aux,t =


≥ 1PC1Mode2t

≥ 1PC2Mode2t

≥ 0

(23)

PDMode2Aux,t =


≥ 1PD1Mode2t

≥ 1PD2Mode2t

≥ 0

(24)

The actual applied charged, PCMode2t , and discharge,
PDMode2t , are provided in Eqs. (25) and (26).

PCMode2t =

{
≥ 0
≥ 1PC1Mode2t − 104 × (1 − bCMode2t )

(25)

PDMode2t =

{
≥ 0

≥ 1PD1Mode2t − 104 ×

(
1 − bDMode2t

)
(26)

C. MODE 3: LIMITED LOAD COMPENSATION
For mode 3 (limited load compensation mode), the integrated
energy storage and PV are controlled conditionally: (1) if a
load value is measured, then the discharge power matches
the measured load up to a maximum power rating; and (2) if
no load is measured, then the energy storage is charged when
the PV is producing. The formulations for this are shown in
Eqs. (27)–(30).

1PC1Mode3t = Ppvt − PCt (27)

1PC2Mode3t = PCt − Ppvt (28)

1PD1Mode3t = Ploadt − PDt (29)

1PD2Mode3t = PDt − P
load
t (30)

These values are applied as positive values for PMode3Aux,t to
create a cost for the objective function, as shown in Eqs. (31)
and (32).

PCMode3Aux,t =


≥ 1PC1Mode3t

≥ 1PC2Mode3t

≥ 0

(31)

PDMode3Aux,t =


≥ 1PD1Mode3t

≥ 1PD2Mode3t

≥ 0

(32)

The control charge power, PCMode3t , and discharge power,
PDMode3t , are provided in Eqs. (33) and (34) to set values to
zero when the modes are not active.

PCMode3t =

{
≥ 0
≥ 1PC1Mode3t − 104 × (1 − bCMode3t )

(33)

PDMode3t =

{
≥ 0

≥ 1PD1Mode3t − 104 ×

(
1 − bDMode3t

)
(34)
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D. MODE 4: MULTIMODE LOAD AND SOLAR
These modes can be combined to consider load and the need
to consume solar locally. To represent thesemodes, the charge
and discharge equations are a combination of the different
modes (charging: store extra solar mode and discharging:
limited load compensating mode). The formulation for this
mode is represented in Eqs. (35)–(42):

1PC1Mode4t = (2.5 ×

(
Ppvt − Ploadt

)
) − PCt (35)

1PC2Mode4t = PCt − (2.5 ×

(
Ppvt − Ploadt

)
) (36)

1PD1Mode4t = min(Ploadt ,PMax) − PDt (37)

1PD2Mode4t = PDt −min(Ploadt ,PMax) (38)

PCMode4Aux,t =


≥ 1PC1Mode4t

≥ 1PC2Mode4t

≥ 0

(39)

PDMode4Aux,t =


≥ 1PD1Mode4t

≥ 1PD2Mode4t

≥ 0

(40)

PCMode4t =

{
≥ 0
≥ 1PCMode4t − 104 × (1 − bCMode4t )

(41)

PDMode4t =

{
≥ 0

≥ 1PDMode4t − 104 ×

(
1 − bDMode4t

)
(42)

E. ADOPTING COMBINATIONS OF MODES
Because only a single mode can be selected for control
implementation at any given time, all binaries associated
with charging and discharging are summed to 1, as shown
in Eq. (43).∑

x∈Modes
(bDModext + bCModext ) = 1 (43)

The available modes binaries must also be tied to the sys-
tem’s corresponding overall charge binary, bct , and discharge
binary, bdt , as shown in Eqs. (44) and (45). This ensures that
the charge and discharge of the individual control modes
and the maximum power ratings associated with charge and
discharge are all coupled.∑

x∈Modes
(bCModext ) = bCt (44)∑

x∈Modes
(bDModext ) = bDt (45)

In obtaining the ESS’s total charge power, PCt , and dis-
charge power, PDt , the contributing power from each mode
is summed (all modes except for the chosen mode are zero).
This is represented by Eqs. (46) and (47).∑

x∈Modes
(PCModext ) = PCt (46)∑

x∈Modes
(PDModext ) = PDt (47)

In summary, Eq. (43) ensures that we have only one opera-
tional mode for either charging or discharging enabled at each
given time. Eqs. (44)-(45) ensure that the binary variable for
operational mode for charge or discharge matches the overall
system charging or discharge binary variable. Eqs. (46)-(47)
ensure that the active operational model charge or discharge
power matches the overall system charge or discharge power.

F. POINT OF COMMON COUPLING MODEL
For interconnection to the grid, a maximum power limit has
been defined. This limit is represented by Eq. (48), which
captures the power from the grid in separate components for
charging, PGrid,C

t , and discharging, PGrid,D
t . This equation

ensures that the calculated power for grid charge and dis-
charge remains within the permissible operational range.

PGridAux,t =


≥ PGrid,C

t − PGridmax

≥ PGrid,D
t − PGridmax

≥ 0

(48)

As the case with the energy storage model, the grid can
only be charged or discharged at a given time interval, and this
constraint reduces the potential solutions available, as shown
in Eqs. (49)–(51).

bGrid,C
t + bGrid,D

t ≤ 1 (49)

0 ≤ PGrid,C
t ≤ bGrid,C

t Pmaxt (50)

0 ≤ PGrid,D
t ≤ bGrid,D

t Pmaxt (51)

Finally, the summation of all the resources at the point of
common coupling can be represented by Kirckoff’s Laws in
Eq. (52).

Ploadt − Ppvt + PCt − PDt = P
Grid,D
t − P

Grid,C

t (52)

V. EXPERIMENTAL RESULTS
The ESS optimization period is a rolling 6-hour window
with 5-minute time steps or 72 total intervals. The opti-
mization has a price signal forecast, load forecast, and PV
forecast for all time intervals. This optimization is used for
the deployed integrated ESS and PV systems in the Georgia
Power Smart NeighborhoodTM described in Section III. The
optimization formulation has been implemented in Python.
COIN_MD [20] is used to solve the optimization, and the
PuLP library [21] is used as an interface to the solver and
to construct the problem.

As mentioned in INTRODUCTION, proper modeling of
operational mode is necessary to incorporate them in opti-
mization. The modeling involves formulating the charging
and discharging power of each mode based on system
disturbances (i.e., PV and load), impact of the power
on SOC changes, and proper coupling of the operational
model charge/discharge power with the overall system
charge/discharge power. This was explained in detail in pre-
vious section and in Eqs. (4)-(52). To validate the control
formulation, the deployed ESS was set to each of the opera-
tional modes for two weeks and we collected the data during
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that period for each mode. This data, which was collected
from a real-world setup, is used to establish the characteristic
behavior of the different control modes and to validate each
mode’s optimization formulation.

We ran the optimization with a flat price signal using
the PV and load data that was used by the ESS in real-
world deployment. The flat price signal was used to ensure
the optimization is solely making its decision based on the
operational mode formulated model and not due the eco-
nomic benefit. During this validation for each mode, the
constraints associated to other modes were removed to ensure
that only the operational mode under investigation is making
the control decisions. The result of this model validation for
each operational mode is presented in the following next four
subsections.

A. MODE 1: LOAD COMPENSATING
Figure 3 shows the measured power collected from the inte-
grated PV system, the measured load, and the optimization
results for the ESS running in mode 1 (load compensating
mode). The measured load and PV system data are used as
forecast input for the optimization along with the initial SOC
to compare the optimization result against measured data.
As shown for this case, when a load appears, the optimization
formulation projects the system discharge to track the load.
However, because the load exceeds the rated power of the
system, the system only discharges to the 5 kW limit. Once
the load is no longer observed, the optimization immediately
begins charging the system. Results of the optimization pro-
jections compared against the measured charging of the ESS
and measured SOC during this period are presented in Figs. 4
and 5, respectively. The system overall SOC is calculated
as the sum of the first battery SOC and the second battery
SOC. For this reason, in the plots the SoC range is between
0 and 200. As shown, the projected optimization SOC follows
the same functionality as the measured SOC and almost
perfectly matches the charging power. This slight mismatch
is likely a result of inaccuracies associated with charge and
discharge efficiency in the energy storage model. Tuning the
energy storage model to better represent the measured data
is the subject of future work. This result validates the SOC
modeling and proper coupling between overall system charge
and discharge power andMode 1 charge and discharge power.

B. MODE 2: LOCAL SOLAR CONSUMING
Figure 6 shows the measured power collected from the inte-
grated PV system, the measured load, and the optimization
results for the ESS running in mode 2 (store extra solar
mode). Again, themeasured load and PV system data are used
as forecast input for the optimization along with the initial
SOC to compare the optimization result against the measured
data. As shown in Figure 6, the charging power follows the
difference between the PV and the load (Blue Line). During
discharge periods, the discharge power is less than the load,
which is expected because the discharge power is governed
by a maximum limit of 5 kW. As shows in Figure 7, the

FIGURE 3. Measured power (load and PV) as used in validating the
optimization formulation and corresponding charge and discharge power
for mode 1 operation.

FIGURE 4. Charging power modeling for mode 1. The dark-blue line
represents the optimization charging power, and the light-blue line is the
measured charging power. It can be seen that these lines match nicely.

FIGURE 5. SOC modeling for mode 1. The orange line represents the
optimization SOC, and the blue line is the measured SOC. These two lines
are very close which implies on the accuracy of battery model.

calculated charge power by the optimization and the
measured charge power match nicely. There is a mis-
match between these two measurements around time
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FIGURE 6. Measured power (load and PV) as used in validating the
optimization formulation and the corresponding charge and discharge
power for a mode 2 operation.

FIGURE 7. Charging power modeling for mode 2. The dark-blue line
represents the optimization charging power, and the light-blue line is the
measured charging power. We can see that the measured data and
modeled and optimized data aligned nicely.

interval 25 which can be caused due to calculating the power
every five minutes. The measured SOC and the calculated
SOC by the optimization match almost perfectly as shown
in Figure 8. This validates the proper modeling and coupling
between system SOC, system charge and discharge power,
and mode 2 charge and discharge power.

C. MODE 3: LIMITED LOAD COMPENSATION
Figure 9 shows the measured power collected from the inte-
grated PV system, the measured load, and the optimization
results for the ESS running in mode 3 (limited load compen-
sation mode). In this event, no PV power is present, and only
load is measured. When load is observed, the optimization
projects that the ESS will discharge to meet the load (up to
the 5 kW limit). Figure 10 shows that the projected SOC from
the optimization matches almost perfectly with the measured
SOC. This implies that the relation between the system SOC,
system charge and discharge power, and the mode charge and
discharge power are captured properly.

FIGURE 8. SOC modeling for mode 2. The orange line represents the
optimization SOC, and the blue line is the measured SOC.

FIGURE 9. Measured power (load and PV) as used in validating the
optimization formulation and corresponding charge and discharge power
for a mode 3 operation.

FIGURE 10. SOC modeling for mode 3. The orange line represents the
optimization SOC, and the blue line is the measured SOC.

D. MODE 4: MULTIMODE LOAD AND SOLAR
Figure 11 shows the measured power collected from the inte-
grated PV system, the measured load, and the optimization
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FIGURE 11. Measured power (load and PV) as used in validating the
optimization formulation and corresponding charge and discharge power
for a mode 4 operation.

FIGURE 12. Charging power modeling for mode 3. The dark-blue line
represents the optimization charging power, and the light-blue line is the
measured charging power.

results for the ESS running in mode 4 (multimode load and
solar). As shown, the ESS discharges when a load is measured
but charges only when PV power is available. Figure 12
shows that the projected charging power by the optimization
and the measured charging power match almost perfectly.
There is a mismatch between time interval 45 and 50 which
can be addressed by using a dynamic constant rather than
a fixed constant for charging power in Eq. (35 and 36).
Figure 13 shows that the forecasted SOC by the optimization
follows the measured SOC. There is a mismatch in the slope
of these two plots between time interval 40 and 60 which is
a result of the charge and discharge power efficiency used
in SOC model. Fine tuning of this variable is a subject of the
future work. These plots validate the SOCmodel formulation
and proper modeling of mode 4 charge and discharge power
and coupling it with overall system charge and discharge
power.

E. OPTIMIZATION CONSIDERING CHANGING MODES
With the available vendor defined operational modes mod-
eled individually, we tested the objective function while

FIGURE 13. SOC modeling for mode 4. The orange line represents the
optimization SOC, and the blue line is the measured SOC.

FIGURE 14. Price signal and net PV and ESS power. It can be seen that
during high peak price the algorithms tries to maximize its benefit by
selling power back to the grid.

FIGURE 15. Measured power (load and PV) and ESS charge and discharge
power. It can be seen that when there is a load, the optimization
discharges the battery and when there is extra PV production, it tries to
charge the battery.

considering a dynamic price and all operational modes
included. The price signal is based on residential TOU pric-
ing with a peak-price of $0.20/kWh and a low-price of
$0.05/kWh (Fig. 14). Figure 15 shows the measured load
power in green and the measured PV generated power in pur-
ple. In this figure, optimization charge and discharge power
are shown by dark blue and red, respectively. The goal of
optimization is to minimize the power purchasing cost from
the grid and maximizing the power selling cost to the grid.
We can see this in Figure 14 in which the difference between
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FIGURE 16. Optimization SOC. During high peak price the battery
discharged until it hits the min SOC, then it charges again but still tries to
avoid purchasing power from the grid till end of peak (around minute 45).

FIGURE 17. Modes selected by the optimization. We can see only one
mode is activated at each time.

the grid discharge and grid charge is negative during the peak
time and positive during non-peak period.

Figure 16 shows the optimization SOC, and Fig. 17 shows
the modes selected by the optimization. As shown, the opti-
mization opted to charge the ESS before the price peaked by
selectingmode 2 (store extra solarmode). Thismode enforces
charging when solar is present and is used to drive the SOC
to a higher state before the peak- price period. Once the price
peak is reached, the optimization opted to discharge or switch
to mode 1 (load compensating mode). This forced the ESS to
cover most of the load while sending solar energy back to
the grid (creating a negative power). As the ESS reaches a
minimum SOC threshold at 90%, the optimization attempts
to hold the energy capacity by switching modes.

VI. CONCLUSION AND FUTURE WORK
The increasing electrification of buildings and the growing
adoption of DERs like solar power has created a pressing
demand for the advancement of optimization and control
techniques for integrated ESS in conjunctionwith other build-
ing loads and generated power. These techniques are crucial
for providing grid services and ensuring the reliable operation
of the power grid. In recent years, ESS vendors are shift-
ing towards defining more complex operational modes for
these systems which is based on a device-level optimization.
To effectively develop optimization and control strategies for
such systems, it is important to properly model the behavior

of these operational modes, establish their relationship with
system disturbances such a load and PV, and overall sys-
tem charge/discharge power. Consequently, this gives rise to
a non-linear optimization problem that is computationally
expensive and cannot be solved using open-source linear.

To address this challenge and enable real-world appli-
cations for such system, there is a critical need for a
linear optimization framework and an accurate yet simplified
model capable of capturing the system’s dynamic behavior.
To address this need, this paper describes a multi-objective
model-predictive control for integrated PV and ESS that
considers different operational modes. The goal of the opti-
mization is to minimize the cost of purchasing power from
the grid and to maximize the amount of power sold back
to the grid. We developed a general approach that linearizes
the optimization formulation when considering various oper-
ational modes while coupling them with system disturbances
and overall ESS charge/discharge power. This is crucial for
deployment of optimization for integrated ESS used by util-
ities and building operators. Each of these vendors defined
operational mode is basically a device-level optimization to
achieve the mode objective such as solar self-consumption.
We validated the accuracy of model-predictive optimization
in capturing the behavior of each operational mode by run-
ning the optimization for that mode with a flat price. We did
this experiment for each operational mode and compared the
result with the measured data when the ESS was operating
under that mode. The result validated our proper formu-
lation and coupling of the operational mode with system
disturbances and overall system charge and discharge power.
Although an exact match to the ESS model was not captured,
future work is anticipated to utilize artificial intelligence tun-
ing approaches to better fit the model to the data. This future
task will involve using AI for periodic and dynamic tuning of
the charge and discharge power efficiency and the constant
weights associated to the calculated charge and discharge
power.

We also evaluated the effectiveness of our optimiza-
tion method based on a TOU price. As presented in the
result section, by having the optimization select between
the modes, the optimization can manage the system to
meet cost objectives using vendor defined operational mode.
We demonstrated the ESS is forced to cover most of the load
while sending solar energy back to the grid during the peak
period (creating a negative power). Our developed approach
offers utilities and building operators a valuable solution
for implementing cost-effective and computationally efficient
linearized optimization methodologies for their integrated
ESS with PV and other loads. By leveraging open-source
solvers, our approach significantly reduces computational
expenses and deployment costs. Furthermore, it can be
applied to any device, accommodating the growing complex-
ity of operational modes introduced by system vendors.

In this experiment, we use the measured PV and load as an
input to our optimization. For future work, we are aiming to
use data driven algorithm such as long short-term memory to
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forecast the load and PV power and integrate that result in the
battery optimization. The other future experiment includes
developing and testing a whole house optimization which
includes the battery optimization along with HVAC and water
heater optimization to minimize the power purchased from
the grid while satisfying the homeowner comfort constraints.
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