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ABSTRACT This paper presents a security control method of Grid energy storage based on neural network
model. The clean energy consumption effect of hybrid ESS was studied through a load forecasting method
based on improved RNN (Recurrent Neural Network). Based on the current mainstream deep learning
architecture, deep RNNs with different ring kernels were established to optimize the hybrid ESS model.
The research results indicate that the curve obtained by this method is smoother after peak shaving and
valley filling. The planned variance of this method is 43.037, which is 7.37% lower than the load variance
of the literature method. It improves the stability of the distribution network operation and the absorption
of photovoltaic and wind energy, reducing the cost of exceeding the limit of battery losses. The optimized
operation status of microgrids can reduce costs, improve the security of microgrid systems, and better meet
the proposed optimization goals.

INDEX TERMS Neural network, recurrent neural network, energy storage system, power grid.

I. INTRODUCTION
Energy is very important for human survival and devel-
opment. Electric power is a clean and convenient energy
source, this is of great significance to China’s economic
development. With the development and popularization of
new energy technology, the proportion of new energy is
increasing, and its ability to save ES (energy storage) is also
growing. Photovoltaic power station needs to adjust its final
output power through reasonable control mode, so as to real-
ize the optimization of power generation decision and obtain
the maximum long-term benefit. However, the high power
input/output of large-capacity power grid ESS(energy storage
system) intensifies the inconsistency of battery cells, result-
ing in battery capacity attenuation, which seriously affects the
economy and safety of power grid ESS. In order to ensure the
safety of power grid ESS, it is necessary to accurately predict
the attenuation capacity of battery cells in order to carry out
maintenance in advance [1], [2].
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In photovoltaic microgrid, it is of great significance to
configure ESS reasonably for improving the local absorp-
tive capacity of photovoltaic and improving the economy
of the system. At present, ES technology has become a
research hotspot of scholars and industry at home and
abroad [3], [4]. Navarro G et al. established the ESS opti-
mal configuration model in view of the negative impact of
distributed generation access to regional distribution network
on load characteristics [5], taking into account ES charg-
ing and discharging power constraints, operation constraints
and power flow balance constraints of distribution network.
Zeinal-Kheiri S et al. chose ES battery capacity as the target,
and optimized the peak regulation in real time based on
dynamic programming, so as to prolong the battery life by
limiting the number of charge and discharge and the depth
of discharge [6]. Ouyang Jing and others put forward a
new method based on online predictive control in view of
the forecasting error in the process of photovoltaic power
plants participating in the electricity market transaction on
the same day [7]. Wang B et al. used neural network to
smooth the charging and discharging process and proposed
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a new bidirectional converter topology, which avoided the
problems of redundancy and self-discharge of charging and
discharging circuits. However, the learning process of a single
neural network was unstable and the convergence speed was
slow [8]. Haga H et al. studied the microgrid ES device by
using fuzzy control strategy. Its control effect is only related
to fuzzy control rules and membership functions of fuzzy
control variables, and it has strong robustness, rapidity and
adaptability [9].

The controller of ESS is an important functional unit
of microgrid, and a good control strategy can effectively
improve the ability of ESS to solve the negative impact on
the grid when renewable energy is used in a high propor-
tion, which is of great significance to the safe operation of
microgrid. Under the background of increasing new energy
permeability, accurate prediction of new energy consumption
is of great significance to ensure the safe and stable operation
of power grid. With the continuous progress of artificial
intelligence technology, reinforcement learning is introduced
into the control of power electronic system.

With the development of China’s power system, the capac-
ity of the power system is also constantly improving, and the
level of informatization of the power system is also constantly
improving. The collection of data from previously impossible
data to current data, as well as the necessary data to further
improve the accuracy of predictions, provides a theoretical
basis. Deep learning, as a machine learning oriented method,
has received increasing attention in recent years and has good
application prospects in various fields. Therefore, conducting
research on power grid load forecasting methods based on
deep learning is of great significance for the development of
power grid load forecasting. The main purpose of this project
is to establish a neural network-based security control theory
for power electronic systems based on the above research.
On this basis, an improved recurrent neural network (RNN)
technology is used to analyze the clean energy consumption
effect of the hybrid energy storage system, and a mathe-
matical model of the distribution network for new energy
integration is constructed.

II. RESEARCH METHOD
In this paper, 40000 samples are divided as follows: there
are 35000 samples in the K-Fold cross-validation set and
5000 samples in the prediction set. The cross-validation set is
divided into five parts: A, B, C, D and E. The four data sets A,
B, C andD are used as training sets, and E is used as validation
set to get the model error. By analogy, the selected hyperpara-
metric model is trained with the whole cross-validation set,
and finally the error of the prediction set is obtained. Table 1
lists the prediction errors (MSE, RMSE, MAPE) of different
models (BPNN, LSTM, GRU, CNN, Our).

A. STRUCTURE AND ANALYSIS OF HYBRID ESS
Through the hybrid ES technology, the characteristics of
various ES components can be integrated, and their advan-
tages can be complemented and maximized. Compared

with single ES element, hybrid ESS has higher power and
energy density, longer service life and shorter response
time [10], [11]. Because of its low cost, high technical
maturity and large capacity, storage battery ES has high
applicability in distributed power generation systems such
as microgrid. However, the limitations of battery ES are
also obvious, such as low power density, high action fre-
quency and short service life of battery. As an important part
of lithium-ion battery, solid electrolyte has the advantages
of high temperature resistance, non-flammability and non-
volatilization, which makes it possible for lithium-ion battery
to avoid electrolyte leakage and short circuit. The equivalent
circuit model of lithium ion circuit is a model constructed
with basic circuit components according to its volt-ampere
characteristics [12].
The capacity of storage battery refers to the amount of

electric energy that storage battery can release under certain
conditions. There are three ways to define the capacity of
storage battery: The actual capacity refers to the maximum
capacity that the battery can discharge at rated current under a
certain discharge state. Nominal capacity refers to the actual
capacity of the battery, which is the maximum value of the
rated capacity that can be released under a certain current.
Rated capacity refers to the discharge capacity of the battery
under specific conditions stipulated by the state. Termination
voltage value When the battery is discharged to a proper
voltage value, the discharge should be terminated, which is
beneficial to prolong the battery life. The size of the termina-
tion voltage will also affect the actual capacity of the battery.

Battery is an important ES device in microgrid sys-
tem [13], [14]. The equivalent circuit of battery is shown in
Figure 1, which is the basic model of battery and consists of
internal resistance R and voltage source E in series.

FIGURE 1. Equivalent circuit of battery basic model.

The electromotive force E is calculated by the following
formula, as shown in Formula (1):

E = E0 − K
Cmax

Cmax − Qe
+ A exp (−BQe) (1)

where A,B,K is the fitting parameter; Cmax is the maximum
capacity of the battery; Qe is the discharge capacity of the
battery; E0 is the internal potential.
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The core idea of reinforcement learning method is that
the controller constantly tries and tries the environment,
observes the changes of the environment, obtains feedback
information, and learns the optimal behavior from it, thus
realizing the optimal control. In the traditional scheduling
mode, the forecasting and decision-making processes are two
independent stages. There is no cooperation between these
two stages [15].

Optimization algorithm usually describes the uncertainty
of photovoltaic power output with known probability distri-
bution [16]. If the assumed probability distribution does not
conform to the actual situation, it will affect the effectiveness
of the optimization algorithm. Two independent links are
merged into one link to realize the integrated scheduling of
photovoltaic -ES hybrid system.

After scheduling, it is input to the photovoltaic -ES hybrid
system in the power grid, and it is comprehensively sched-
uled according to its actual output Ppv,t and control strategy,
as shown in Figure 1. The sum of the determined ESS charg-
ing and discharging powers PESS,t , namely:

Psys,t = Ppv,t + PESS,t (2)

where: a positive value of PESS,t indicates that ESS is in a dis-
charging state, and a negative value indicates a charging state,
that is, ESS is charged by the photovoltaic power station.

The research focus of this paper is to apply ES devices to
photovoltaic-ES composite system, ES devices; Charging ES
when the power price of external network is very low; When
the power price of external network is high, the released
power supply load. To simplify the analysis, the ES device
is simplified as the following power-energy model:

Ek+1 = Ek − Pk (3)

Among them, Ek ,Ek+1 indicates that the ES equipment
stores electric energy at k time and k + 1 time respectively,
and the differences among the ES equipment are reflected in
their different performance constraints, including the maxi-
mum charging and discharging powerPmax and themaximum
ES Emax.

Compared with battery ES, supercapacitor is complemen-
tary in function. Based on the characteristic advantages of
supercapacitors, it has high applicability in power grid sys-
tems with high frequency of charging and discharging actions
and high transmission power [17], [18]. The author will
choose the hybrid ES scheme, integrate the performance
advantages of supercapacitor and battery, improve the power
density and energy density of hybrid ESS, and extend the
service life of hybrid ESS. Relatively speaking, lead-acid
battery has higher load capacity and lower production cost,
which can reduce the use cost of hybrid ESS, thus improving
the economy of hybrid ESS.

This paper systematically explores the operation mech-
anism of DC/DC converter. If the capacitance C and
inductance L in the system are large, the switching period
[t, t + Ts] analysis is divided into two stages on the premise
of determining the state of the device S1.

FIGURE 2. Structure of hybrid ESS.

If the device S1 is in the on state and within the time
[t, t + DTs], the range of duty ratioD is [0,1]. At this time, the
battery and the supercapacitor are in the charging state, and
the inductor L and the capacitor C are in the electric energy
storage stage. The calculation formula includes:

L
dIc
dt

= Udc − Uc = uL(on)

C
dUdc
dt

= Idc − Ic = ic(on)

(4)

It is the goal of this paper to reduce the load rate of each
line in the distribution network reasonably. Therefore, the
upper limit of each line load in distribution network is a
very important parameter in constructing this problemmodel.
For the problem of insufficient line capacity in distribution
network, for a fixed physical system, the maximum allowable
active power flow of each line is fixed, that is, for each line,
if the reference value of line capacity is given, the upper limit
of line load rate can be fixed, which will not change during
the whole system operation [19], [20].

We assume that the jump of the upper limit of load rate
is a random process, and the probability of jump obeys a
fixed distribution. At the j-th moment, the upper limit of load
rate is r (j), and the probability of jumping to r (j+ 1) at the
next moment is Pr(j)r(j+1). Since the current action of the
system will affect the future reward, the following infinite
time discount reward function is defined:

ηv = (1 − γ ) lim
U→∞

E

[
U−1∑
u=0

γ uf (s (j+ u) , a (j+ u))

]
(5)

where γ is the discount value. The optimization goal of this
paper is to reasonably schedule the energy of multiple ESS,
so as to minimize the cost of the whole system in infinite
time, that is to say, on the premise of meeting the power con-
sumption of users, the number of charging and discharging is
minimized, so that the load rate of distribution network can
be optimized.
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B. NEURAL NETWORK MODEL DESIGN OF ESS SECURITY
CONTROL METHOD FOR POWER GRID
With the increasingly serious environmental problems, vari-
ous distributed power generation systems based on renewable
energy have been widely concerned. Micro-grid system orga-
nizes distributed power generation system, load and ESS
together, this is an effective way to give full play to the effi-
ciency of distributed power supply and improve the efficiency
of electricity consumption. Compared with AC microgrid,
DC microgrid can reduce energy conversion links, simplify
the energy conversion process of the system, reduce system
cost, reduce energy consumption and improve system secu-
rity. In addition, the control of DC microgrid is simpler and
the power quality is higher. In this paper, there are single flow
batteries, lead-acid batteries and lithium iron phosphate bat-
teries in the photovoltaic -ES hybrid system. In the microgrid,
all ES devices are kept in a state of charge and discharge.
When the ES level is low, continuous discharge will lead to
over-discharge, which will seriously shorten the battery life
and affect the battery performance. On the other hand, if the
ES level is maintained at a high level, the battery capacity will
be wasted and the efficiency will be reduced.

Neural network is abstracted or modeled after human brain
or biological neural network, which has the ability of learn-
ing and simulating biological adaptability and environmental
interaction. Neural network is an important product of the
development of intelligent science and an important com-
ponent of intelligent computing. This project will promote
the in-depth development of brain and neuroscience, and the
related research results will provide new ideas for solving
more complex optimization problems and automation and
intelligent control problems.

RNN is a special neural network. The unique signal feed-
back structure in RNN can correlate the current output state of
the network with the previously input historical information
state, and it has dynamic properties and memory ability,
and can make accurate predictions [21]. The expanded RNN
structure is shown in Figure 3:

FIGURE 3. Expanded RNN structure.

RNN includes forward propagation and backward propa-
gation. Firstly, the forward propagation is analyzed. When
propagating forward, the output of the hidden layer at time t

is determined by the input at time t and the hidden layer state
ht−1 at time xt , t − 1, which can be expressed as:

ht = ϕ (Uxt +Wht−1 + b) (6)

Among them, ϕ (·) is the activation function, and tanh
function is generally selected, and b is the bias. The output
at time t is related to the state ht of the hidden layer at time t ,
which can be expressed as:

ot = Vht + c (7)

where c represents offset. The final output of the model can
be expressed as:

ŷt = σ (ot) (8)

Among them, σ is the activation function, and the softmax
function is generally selected.

In the back propagation algorithm, the gradient of each
parameter is the core of the algorithm, and the appropriate
RNN model parameters are obtained by iterative gradient
descent method. Although RNN has great advantages in
memory and parameters, it also faces the problem of gradient
disappearance, and it is difficult to process and store long time
series information [22]. RNN is not only difficult to train,
but also prone to gradient loss, gradient explosion and other
phenomena, and faces the problem of short-term memory.
The researchers found that RNN can only understand short
input, but can’t remember and use the information which is
a little far away in a long range. This phenomenon is called
short-term memory [23].

RNN can be divided into shallow RNN and deep RNN
according to the network depth. Shallow network model is
a data-driven adaptive algorithm, which can describe the
nonlinear mapping relationship between input and output,
and can mine hidden information from it [24]. For different
projects and different researchers, the depth of the network
can be different. Based on the current mainstream architec-
ture of deep learning, this paper establishes the depth RNN
of different loop cores to optimize the hybrid ESS model.
As shown in fig. 4, it is a schematic diagram of the deep
RNN architecture, and the loop kernel can be GRU(Gated
Recurrent Unit) or LSTM(Long Short-Term Memory).

The deep learning network architecture in this section
is built based on Keras kernel of TensorFlow2.0. The net-
works with different circulation modes are basically the
same except for calling different high-level circulation inter-
faces [25], [26]. The input dimension of the network is
[35,000,14,3], and there are 35,000 input vectors with the
input dimension of [14,3]. Each input vector is composed of
load sequence before the forecast point, load sequence of the
previous day and extremely similar sequence.

The main structure of the network can be roughly divided
into two major structures: cyclic structure and dimension
compression. In this method, an activation function is added
before the output layer, and a completely connected layer
is used to connect the main structure of the whole network
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FIGURE 4. Depth RNN framework.

with the output [27]. At the same time, LSTM network can
also effectively overcome the problems of unobvious gradient
or abrupt change in the traditional recursive process of error
transfer, and show good results in many sequential prediction
tasks such as traffic, voice and handwritten words.

The LSTM unit receives the current state xt through three
different gates:

The hidden state ht−1 of LSTM at the last moment and the
state ct−1 of the memory cell.
Each gate calculates the forgetting rate ft at each moment

by its logic function according to the output of the previous
moment and the input of the network at that moment [28].
Finally, the state ct of the memory cell forms the output

ht of the LSTM cell through the operation of the nonlinear
function σ and the dynamic control of the output gate o.

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ

(
Wxf xt +Whf ht−1 +Wcf ct−1 + bf

)
ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc)
ot = σ (Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh (ct)

 (9)

where: Wxc,Wxo,Wxf ,Wxi is the weight matrix connecting
the input signals xt ; Whc,Who,Whi,Whf is the weight matrix
connecting the hidden layer output signal ht ; Wci,Wcf ,Wco
is the diagonal matrix connecting the output vector ct of the
neuron activation function and the gate function; bi, bf , bc, bo
is an inherent bias vector; σ is the activation function, which
is often selected as Tanh or Sigmoid.

Because GRU has obvious advantages in structure sim-
plification, it has attracted extensive attention [29], [30].
RG(Reset Gate) is used to control the acceptance level of
GRU loop structure to input vector xt and state vector ht−1
at time t . The gating vector gr is obtained by transforming
the input xt at time t and the last timestamp state ht−1:

gr = σ (Wr ∗ [ht−1, xt ] + br ) (10)

Wr , br is the parameter of RG. After random initialization,
it needs to be continuously optimized and improved through

later model training. Usually, σ is set as Sigmoid activation
function.

UG(Update Gate) is used to control the influence of the last
timestamp state ht−1 and the new input h̃t on the new state
vector ht . UG control vector gz is obtained by the following
formula:

gz = σ (Wz ∗ [ht−1, xt ] + bz) (11)

where Wz, bz is the parameter of UG, and σ is the activation
function, and the Sigmoid function is generally used.

Under the constraints of capacity and power, the charging
sequence and discharging sequence with minimum variance
canmake the points far away from the average value approach
to the average value as much as possible, and the upper
and lower limits of the peak shaving target take the adjusted
sequence maximum and minimum values, which can follow
the adjusted values of the sequence, and can lower the lower
limit of the peak shaving target and raise the upper limit of the
peak shaving target when the available capacity is exhausted.

III. RESULTS ANALYSIS AND DISCUSSION
Taking photovoltaic power generation as an example, the
effectiveness of the proposed method is verified. The sam-
pling time is 10 minutes and the sampling times are 95 times
a day. The storage power plant has a battery capacity of
345MWh, a safe capacity of 30MWh and a maximum charg-
ing and discharging capacity of 15MWh. In the neural
network toolbox ofMATLAB, the newff function is used. The
parameters of the trained BP neural network model are: the
learning rate is 0.02, the maximum training times is 200, and
the training accuracy is 0.001.

Fig. 5 shows the comparison of peak shaving effects of two
methods under general working conditions. The curve after
peak shaving and valley filling with this method is smoother.
The actual load variance is 96.179, the variance after adopting
the ref [5] algorithm is 46.459, and the variance after planning
with this method is 43.037, which is 7.37% lower than that
of the ref [5] method. Although the ref [5] algorithm prolongs
the battery life, it discretizes the battery capacity, resulting in
the discontinuous ES output, and the peak shaving effect is
slightly worse than that of the planning control in this paper.

In order to compare and analyze the influence of users’
total electricity consumption constraints on the system opti-
mization results before and after considering the uncertainty
of price-based DR (Demand response), and draw the net
benefits of the system under different maximum allowable
deviations of total electricity consumption before and after
considering the uncertainty of price-based DR. The result is
shown in Figure 6.
It can be seen that whether the uncertainty of price DR is

considered or not, the net income of the system will decrease
with the decrease of the maximum allowable deviation. This
is mainly because with the decrease of the maximum allow-
able deviation, the response level of the price-based DR
decreases, so the system is less affected by the uncertainty of
the price-based DR. Therefore, when themaximum allowable
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FIGURE 5. Comparison of peak shaving effect.

FIGURE 6. Net benefit under maximum allowable deviation.

deviation decreases, the net income gap of the system before
and after considering the uncertainty also decreases.

According to the real-time system data, GRU is used to
forecast, and the load demand data predicted in the day is con-
stantly updated, and the optimal allocation is made according
to the hybrid ESS proposed in this paper. The SOC(State of
charge) of the hybrid ESS under different schemes is shown
in Figure 7.

The research shows that the hybrid ESS can significantly
absorb the active power fluctuation in the distribution net-
work, effectively guarantee the normal operation of the
traditional ES system, enhance the stability of the distribution
network, absorb photovoltaic, wind power and other energy
sources, reduce the ultimate loss of batteries, and improve the
ESS security of the power grid.

It can be seen that after the completion of the whole
scheduling period, the conventional ES SOC remains normal,
thus ensuring the normal operation of the conventional ES
in the hybrid ESS in the next scheduling period. However,
in some scheduling cycles, the conventional ES SOC will
exceed the limit, mainly because the conventional ES is
deeply charged and discharged to meet the need of suppress-
ing the fluctuation of the active power of the tie linewhen only

FIGURE 7. SOC of conventional ES in different scenarios.

TABLE 1. Prediction error of different models.

the conventional ES is considered. The deep learning fore-
casting method adopted in this paper can constantly update
the forecast value of load demand, effectively improve the
dispatching optimization of distribution network system, and
the more accurate load forecasting results ensure the suppres-
sion of active power fluctuation of distribution network tie
lines, and achieve ideal optimization results.

The 40,000 samples are divided as follows: there are
35,000 samples in the K-Fold cross-validation set and
5,000 samples in the prediction set. The cross-validation set
is divided into five parts: A, B, C, D and E. The four data
sets A, B, C and D are used as training sets, and E is used
as validation set to get the model error. By analogy, the
selected hyperparametric model is trained with the whole
cross-validation set, and finally the error of the prediction
set is obtained. Each model trains 45,000 samples in the
cross-validation set at the optimal depth, and the prediction
error results of 5,000 prediction samples in the prediction set
are shown in Table 1 and Figure 8.

It can be known that GRU’s MAPE (mean absolute
percentage error), MSE (mean square error) and RMSE
(Root Mean Squared Error) are lower than those of LSTM,
and lower than those of BPNN and CNN (voluntary neural
network).

IV. COMPARISON
On the whole, the combined algorithm still shows greater
advantages in information extraction, and the combined pre-
diction can achieve better results than the single algorithm.
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FIGURE 8. Statistical chart of prediction error of different models.

In the single algorithm prediction, RNN has a better starting
point than other traditional neural network structures in time
series prediction; It can also be seen that compared with other
common single algorithms or similar combined algorithms,
this algorithm can mine more features of time series correla-
tion information and has better prediction accuracy.

Take the forecast results of one day as an example. See
Figure 9 for the comparison of load forecast results:

FIGURE 9. Comparison of load forecasting results.

The prediction results of GRU and LSTM are more accu-
rate than those of CNN in terms of load change trend and
specific load values, which can be attributed to the superiority
of circular structure in time series analysis and prediction and
the complex gate structure inside GRU and LSTM.

The prediction error of GRU model is smaller than that
of LSTM, but it does not exceed the combined algorithm
in this paper, and there is almost no obvious lag near the
extreme point of load change, which shows that GRU has
better forecasting immediacy when the load rises and falls
sharply. Generally speaking, the model architecture of deep
RNN and a considerable part of optimization experience are

still worth learning from other network structures when they
develop into deep learning.

The optimized operation state of microgrid not only
reduces the cost and improves the security in the microgrid
system, but also plays a positive role in the power redis-
tribution of the whole power system. One of the purposes
of the time-of-use electricity price policy is to guide users
to use electricity reasonably, that is to say, the high point
of electricity price must be the high point of load, and the
optimized microgrid system, for energy consumers, reducing
the peak and valley prices and increasing their electricity
prices can reduce the peak and valley prices, thus achiev-
ing the purpose of reducing the peak and valley. Finally,
the purpose of reducing the overall energy consumption of
microgrid is achieved, and the microgrid system is ensured to
run smoothly, economically and reliably.

Combined with the above simulation results, it can be seen
that the energy optimization control method of microgrid
based on deep RNN planning method proposed in this paper
has good effectiveness and reliability, and can better meet the
proposed optimization objectives.

V. CONCLUSION
This paper takes a photovoltaic power station as an example
to verify the effectiveness of the proposed method. The sam-
pling interval of load data is 10 min, and the number of sam-
ples per day is 95. BP training network is established by using
the newff function of neural network toolbox in MATLAB.
The transfer function from input layer to hidden layer and
from hidden layer to output layer are S-shaped tangent func-
tion and linear transfer function respectively. Parameters of
the trained BPNN model: the learning rate is 0.02, the maxi-
mum training times is 200, and the training accuracy is 0.001.

However, due to the limitations of my conditions and time,
there are still many issues that need to be improved in the
process of writing the paper. If the charging and discharging
efficiency of the battery is assumed to be 100%, it is not con-
sistent with the actual charging and discharging process of the
battery. In response to the energy allocation problem of multi
energy storage and multi user microgrids, this project divides
distributed power sources into multiple levels, regardless of
differences in climate and environment. On this basis, further
use techniques such as neural network dynamic programming
to construct more accurate mathematical models, making
them closer to real physical systems.
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