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ABSTRACT Context: Lines of code (LOC) is a fundamental software code measure that is widely used as a
proxy for software development effort or as a normalization factor in many other software-related measures
(e.g., defect density). Unfortunately, the problem is that it is not clear which lines of code should be counted:
all of them or some specific ones depending on the project context and task in mind? Objective: To design
a generator of task-specific LOC measures and their counters mined directly from data that optimize the
correlation between the LOC measures and variables they proxy for (e.g., code-review duration). Method:
We use Design Science Research as our research methodology to build and validate a generator of task-
specific LOC measures and their counters. The generated LOC counters have a form of binary decision
trees inferred from historical data using Genetic Programming. The proposed tool was validated based on
three tasks, i.e., mining LOC measures to proxy for code readability, number of assertions in unit tests, and
code-review duration. Results: Task-specific LOC measures showed a ‘‘strong’’ to ‘‘very strong’’ negative
correlation with code-readability score (Kendall’s τ ranging from −0.83 to −0.76) compared to ‘‘weak’’
to ‘‘strong’’ negative correlation for the best among the standard LOC measures (τ ranging from −0.36 to
−0.13). For the problem of proxying for the number of assertions in unit tests, correlation coefficients were
also higher for task-specific LOC measures by ca. 11% to 21% (τ ranged from 0.31 to 0.34). Finally, task-
specific LOC measures showed a stronger correlation with code-review duration than the best among the
standard LOC measures (τ = 0.31, 0.36, and 0.37 compared to 0.11, 0.08, 0.16, respectively). Conclusions:
Our study shows that it is possible to mine task-specific LOC counters from historical datasets using Genetic
Programming. Task-specific LOC measures obtained that way show stronger correlations with the variables
they proxy for than the standard LOC measures.

INDEX TERMS Software measurement, software size, lines of code, LOC.

I. INTRODUCTION
Source code measures are perceived as a good approximation
of higher-level measures, e.g., software complexity or defect
proneness. In particular, lines of code (LOC) is one of
the oldest and most recognized software size measures,
both as a measure of software size and a proxy for
other measures, e.g., software development effort [1], [2],
developers’productivity [3], defect density [4], program
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faults [5], testing effort [6], or pull-request latency [7].
Depending on a study, the strength of the dependencies
between the LOC and the proxy differ [8], and recent studies
on software size have found the possibilities of using LOC
measures as the baseline for validating other measures, thus
implicitly giving the lines of code measure a primary role in
software measurement [9].

Typically, a procedure for counting lines of code, and thus
the measurement instruments implementing it, consists of
two steps. In the first step, each line has to be classified
as either to be counted (true) or not (false), and in the
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FIGURE 1. Defining SLOC and NCLOC with the use of decision rules and
decision trees, and an example of applying the definitions to measure the
size of a method.

second step, we count the lines for which the response was
true. Depending on what is included in the counted lines,
the definition of the measure changes. The simplest LOC
definition is to count all the lines in the source files (SLOC).
A more complicated, but also frequently used LOC variant,
is to count only the non-commented and non-blank lines of
code (NCLOC/ELOC). Alternatively, one could count only
the commented lines (CLOC) or blank lines (BLOC). In
Figure 1, we present formal definitions of SLOC and NLOC
as decision rules and decision trees.

Although the standard LOCmeasures are widely used, they
are also often criticized as being sensitive to programming
style, programming language, or the presence of generated
code [10], [11], [12]. The community has also observed
problems with inconsistency and lack of transparency in the
counting algorithms (and tools) [11], [13], [14]. Finally, the
study by Barb et al. [15] questioned the ability of standard
LOC measures to proxy for complexity, size, productivity,
and effort. Hence, it seems that the rules of counting LOC
could be improved if we:

• adapt them to fit a type of task/context (perhaps not the
same lines of code should be counted when considering
code review, testing, or maintenance effort);

• mine them from a dataset representing the specificity
of a given software development environment (e.g.,
a company or programmers involved in an open-source
project and their programming styles).

We propose a generator of task-specific LOC definitions
and their counters that meets the above requirements. The
core of the generated LOC counter is a binary decision tree
(see Fig. 1). Such trees are mined from a given dataset using
Genetic Programming (GP).

We perform several studies focusing on three types of
software-related tasks: code readability, unit testing, and code
reviews to 1) optimize the choice of GP-related parameters

of the tool from the perspective of its performance, and
2) validate the tool by assessing the effectiveness of
task-specific LOC measures while proxying for the code-
readability score, number of assertions in unit tests, and code-
review duration. Since our goal is to improve the ability
of standard LOC measures to proxy for these measures in
particular contexts, we use the standard LOC measures as a
baseline in our study.

The outline of the remaining part of this paper is as
follows. Section II presents the related work in the areas
of LOC-based software measurement. Section IV presents
the Genetic Programming algorithm used in this study.
Section V describes the method for quantifying lines, i.e.,
feature extraction. Sections VI–VIII present the results of
applying ourmethod to findingwhich lines should be counted
when considering code readability, assertions in test cases,
and code-review duration. Section IX presents the answers
to our research questions and their interpretation. Finally,
Section X presents the conclusions.

II. RELATED WORK
The main use cases of LOC measures are (1) to use them
as predictors of development or maintenance effort, (2) as
features describing source code for Machine-Learning-based
models for code analysis, (3) as a factor ‘‘normalizing’’ other
measures, or (4) as a standard against which other measures
can be evaluated [9], [16].
Although LOC measures have been in use for many

decades, there are only a few variants that have been
widely studied. As we have already stated, the standard
definitions of LOCmeasures include counting all source lines
of code (SLOC), counting only non-commented and non-
blank lines of code (NCLOC or ELOC) [4], [5], [17], [18],
counting commented lines of code (CLOC) or blank lines
of code (BLOC). Alternatively, one can count the number
of executable statements (ES) in the code [19]. It has been
shown that the standard LOC measures correlate with other
commonly used software measures [9], [18]. However, at the
same time, they have been widely criticized [10], [11], [12],
e.g., as being unable to measure code written in multiple
programming languages or being sensitive to programming
styles.

Interestingly, despite the critique of the standard LOC
measures as being too generic in some aspects, the studies
proposing their variants tailored to specific tasks or contexts
are scarce. For instance, Dundas [20] proposed a customLOC
measure that could be used to evaluate code quality by count-
ing so-called simple lines, condition-based lines, looped-
based lines, and exception-handling lines. Nguyen et al. [13]
discussed how logical and physical lines should be counted
for different programming languages. Finally, Jones [21]
proposed a list of guidelines for counting LOC for different
purposes (e.g., counting reusable code, scaffold code, etc.).

When it comes to the methods and tools allowing to
define custom LOC measures, probably the most recognized
is the framework proposed by SEI [22], which helps to
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precisely define the rules for counting lines of code. Recently,
Ochodek et al. [23] proposed a tool called Flexible LOC
Counter/Classifier (CCFlex) that employs machine-learning
algorithms to automatically implement LOC measurement
instruments based on the labeled examples of code snippets.
This study is the most similar to ours. However, CCFlex
solves the problem of inferring the counting rules from the
examples of counts being made while we propose a method
that automatically derives a LOC-measure definition from
the pairs consisting of code fragments and values of some
external measure that we want to proxy for with lines of code.
Consequently, instead of answering the question of how the
lines were counted, our tool answers the question of which
lines are worth being counted.

Although standard LOC measures correlate with many
code metrics [9], most of the time, one has to collect multiple
measures to evaluate the code from the perspective of a
single quality characteristic. As a result, it is a common
practice to rely on code-metric suites, e.g., REBOOT [24],
QMOOD [25], CK metrics [26], or even multiple variants of
metrics measuring the same aspects, e.g., code cohesion [27].
Unfortunately, collecting multiple metrics increases the costs
of running a measurement program. Therefore, methods like
Goal Question Metric (GQM) advise limiting the number
of measures to the most relevant ones [28]. Our method for
mining task-specific LOC measures could be perceived as a
trade-off between themeasurement costs (we collect only one
measure) and the ability to capture multiple aspects of code
(which could be potentially done more accurately with a suite
of dedicated measures).

Since we formulate the problem of finding a task-
specific LOC measure as a search-based optimization
problem, we can classify our research as belonging to
Search-Based Software Engineering (SBSE). According to
Harman et al. [29], SBSE is ‘‘an approach to Software
Engineering (SE) in which Search-Based Optimization
(SBO) algorithms are used to address problems in SE.’’
They also give numerous examples of SE-related problems
addressed by the use of Genetic Programming (GP) in
the areas such as software testing, design, requirements,
project management, and refactoring. According to Afzal and
Torkar [30], GP has been also extensively applied to software
engineering predictive modeling, including software fault
proneness prediction (e.g., [31]), software cost/effort/size
estimation (e.g., [32]), and software fault prediction/software
reliability growth modeling (e.g., [33]). However, neither of
these studies proposed to useGP to construct a tool formining
task-specific LOC measures.

III. RESEARCH METHOD
We organized our study according to the Design Science
Research (DSR) methodology [34], [35]. DSR is a problem-
solving research paradigm that focuses on creating and
evaluating artifacts as treatments for practical problems.
The scope of our study includes two first steps of the
DSR-engineering-cycle—designing and validating the

treatment, which require answering the following research
questions:

• RQ1: Can binary decision trees mined from datasets
using Genetic Programming provide better indicators
of code readability, unit-testing effort, and code-review
duration than the standard LOC measures (i.e. the
number of all source lines of code, number of non-
commented or non-blank lines of code, etc.)?

• RQ2: How to use Genetic Programming (GP) to
generate good quality specialized LOC counters in a
reasonable time?

• RQ3: What code-line features are discovered by GP as
important attributes of code in the context of the three
software-related tasks, i.e. code understanding, testing,
and code review?

The first question (RQ1) regards the validation of the
treatment. Since we want to find task-specific LOC mea-
sures, we assume that such measures would have to be
more accurate proxies for task-related dependent variables
than the standard LOC measures, i.e., SLOC, NCLOC,
BLOC, CLOC. The second research question (RQ2) is a
general, design-related question covering all issues related
to designing and tuning the treatment—a GP-based tool for
searching the space of LOC measure definitions based on the
provided data sample. Finally, by answering the last research
question (RQ3), we want to investigate whether the choice of
source-code line features in the generated task-specific LOC
measures is coincidental or could be justified by referring to
the existing theories in Software Engineering.

The replication package for this study is publicly
available.1 It includes the datasets, code, and instruc-
tions allowing to replicate analyses presented in this
paper.

A. TASKS UNDER STUDY
We selected three tasks to validate the proposed treatment,
i.e., mining tasks-specific LOC measures to proxy for code-
readability score, (2) the number of assertions in unit test
cases, and (3) code-review duration.

Each of the studies contributes to answering the research
questions RQ1 and RQ3. In addition, we use the study
on code readability to investigate how to balance the
accuracy and computation costs depending on the GP-related
parameters of our tool (RQ2) because the study is based on
three independent and relatively small datasets allowing us to
experiment with different algorithm settings.

Finally, we decided to focus on a single programming
language (Java) to be able to use the same set of features
describing lines of code in all the studies and make their
results comparable.

B. EVALUATION CRITERIA
We evaluate a LOC measure definition by investigating how
strongly it correlates with the external variable it proxies
for. In particular, we use Kendall’s τ since it can capture

1Replication package — https://zenodo.org/record/8331775
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non-linear relationships between variables and is robust to
outlying observations. It is also preferred [36], [37] over
Spearman’s ρ, which is another widely use non-parametric
correlation coefficient. In order to interpret the strength of the
relationship, we estimate Pearson’s r based on Kendall’s τ

using the formula r = sin(0.5πρ) [38] and use the guidelines
for interpreting Pearson’s r [37] (in the absence of such
guidelines for Kendall’s τ ).

IV. GENCOME
We developed a tool called GENetic COunt-based Measure
findEr (GENCOME)2 that uses Genetic Programming (GP)
to search the space of possible count-based measures
definitions expressed in the form of binary decision trees.
The tool is implemented in Python with the use of the DEAP
computational framework [39].
The problem of finding task-specific LOC measures could

be defined as a search problem where we search the space
of all possible decision trees or rules that could be derived
from a set of features used to describe lines of code to
find the measure definition that maximizes or minimizes
the correlation between the number of lines of code and
some variable of choice (e.g., development effort, testing
effort). Unfortunately, with the increase in the complexity
of decision trees or rules (e.g., the increase of decision-tree
height) searching the entire space would quickly become
practically infeasible. For instance, for binary trees, the
maximum number of nodes n is equal to 2(height+1)

− 1 and
when the objects are characterized by k features, we can
generate up to kn complete trees (as permutations with
repetitions of n elements taken from the set of k elements).3

Consequently, even for small trees with a height of 3 and
10 features describing counted objects, there would be up
to 1015 complete trees to search through (not to mention the
incomplete ones).

GENCOME finds definitions of task-specific LOC mea-
sures based on a dataset—X and y (see Figure 2). X consists
of lines of code characterized by a set of features. Each line
has a reference to a unique identifier of the entity it belongs to
(e.g., the name of the source file). Entries in y are the pairs of
entity identifiers and values of the output variable we want to
proxy for (e.g., the number of assertions in test cases, code-
readability score, or code-review duration). The tool uses
GP to find a definition of LOC measure that maximizes (or
minimizes) the correlation coefficient (in the GP terminology
called fitness function) for the number of lines of code and
the external variable. It is possible to provide multiple pairs
of Xs and ys. The algorithm will search for a LOC measure
definition that optimizes a multi-objective fitness function
being the mean of the correlation coefficients calculated for
each of the X , y pairs.

2GENCOME— https://github.com/mochodek/gencome.
3Please note that this is an upper boundary, and in practice, the number

of valid decision trees to investigate would be lower than that (e.g., valid
decision trees have only two types of terminal nodes—’true’ and ‘false’; we
could exclude isomorphic trees or trees having nonsense combinations of
nodes—e.g., ‘true’ and ‘true’ pair of children nodes, etc.).

GENCOME represents LOC definitions as binary decision
trees (see Figure 1) with two types of terminal nodes true
and false—a final decision whether to count the line or
not. Other types of nodes correspond to the presence or
absence of a given feature in the line of code. For instance,
a node ’bracket’ is evaluated by checking whether a
line contains at least one opening or closing round bracket.
A tree-based definition can be transformed into a rule-based
definition by joining the nodes (or their negations) on each
of the paths from the root node to one of the true terminal
nodes using the and logical operator and adding one more
rule otherwise: false.

The search process starts by generating an initial popula-
tion of µ decision trees (called individuals). The tool controls
the process of generating the trees by ensuring that all pairs
of terminal nodes in the trees are either true and false or
false and true and that the height of each tree is between
the minimum and maximum allowed height (h) requested
by the user. In the next step, each individual is evaluated
using the fitness function. The following steps are performed
g times, and in each iteration, a new generation of individuals
is created and evaluated:

• Selection — the highest rated individuals in the popu-
lation are selected for reproduction using a tournament
algorithm (in each tournament, ts individuals are ran-
domly sampled and the best-fitted one is selected for
reproduction).

• Reproduction — the selected individuals produce off-
spring with the use of crossover and mutation operators.

• Evaluation — the quality of offspring is evaluated
by calculating the fitness function for each of the
individuals.

• Replacement — individuals from the old population are
replaced by the new ones.

The process is controlled by two parameters defining the
probability of crossover (crossProb) and mutation (mutProb)
(the user can also independently choose the probability for
each of the mutation operators). The crossover operator (see
Figure 3 A) allows generating new individuals that inherit
parts of the trees from their parents, while mutation is a
technique that helps to get out from local optima (see Figure 3
B–E). During each iteration, GENCOME controls the height
of the trees so they remain in the range expected by the user.

The choice of parameters µ, g, ts, crossProb, and mutProb
determines how fast the fitness function will converge to
the optimum and how likely it will get out of local optima.
Although the choice of the parameters is determined by
multiple factors [40], a commonly accepted rule of thumb is
to set crossProb close to 1.0 while keeping mutProb close to
zero to prevent the search procedure from becoming random.
Also, usually, the bigger the size of the initial population (n),
the more likely it is to find the optimal solution in a fewer
number of generations (g).

V. EXTRACTING LINE FEATURES
GENCOME operates independently of the mechanism used
to extract features from lines of code. In this study, we use
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FIGURE 2. An example of the dataset structure—X and y files.

an external tool, CCFlex [23], to extract over 100 features4

from lines of code written in Java. Most of them represent
the number of occurrences of a given token or substring in a
line (e.g., Java keywords, operators, primitive types, numbers,
camel-case names, etc.). We also count the number of charac-
ters and tokens and transform them to a set of binary features
(e.g., ‘up_to_20_chars’, ‘more_than_80_chars’).
We also add some features grouping other token-
based features (e.g., ‘access_keyword’, ‘keyword’,
‘any_bracket’, ‘bracket’, ‘loop_header’). For
instance, a feature called ‘access_keyword’ counts
the occurrences of private, public, and protected
keywords in a line.

VI. TASK #1: CODE READABILITY
We study the task of using LOC as the proxy for the
code-readability score. According to [41] ‘‘code readability
measures the effort of the developer to access the information
contained in the code.’’ Poor code readability increases the
difficulty of software maintenance tasks [41], [42], [43].
Therefore, code-readability score (the higher the score, the
more readable the code) should be negatively correlated with
the maintenance effort.

A. DATA COLLECTION
We based this study on three publicly available datasets5

collected by Buse and Weimer [43] (D b&w), Dorn [44]
(D dorn), and Scalabrino et al. [41] (D scal). The datasets
include code snippets written in Java for which readability

4The complete list of features could be found in the replication package.
5The datasets D b&w, D scal and D dorn are available at

https://dibt.unimol.it/report/readability.

was manually assessed by human annotators. D b&w is the
oldest dataset among them. It consists of 100 Java code
snippets (768 SLOC) evaluated by 120 student annotators.
In contrast to the remaining two datasets, the code snippets
in this dataset are small and range from 4 to 13 lines
of code (mean = 7.7, SD = 2.5). The D dorn dataset
includes 121 Java code snippets (3,617 SLOC) ranging
from 9 to 50 lines of code (mean = 29.9, SD = 16.3). The
readability of the snippets was assessed by 5,468 annotators,
including 1,800 industrial developers. Finally, D scal is
the newest dataset among the three datasets. It consists
of 200 Java methods (5,337 SLOC) ranging from 10 to
42 lines of code (mean = 26.7, SD = 10.2). The readability
of the code snippets was evaluated by 30 students. In all the
datasets, the final code-readability score for each snippet was
calculated as the mean score given by the annotators.

B. CODE READABILITY AND STANDARD LOC MEASURES
The correlations between the standard LOC measures and
code-readability score for the datasets D b&w, D dorn, and
D scal are presented in Table 1. We can see that the code-
readability score is negatively correlated with the number
of lines of code (SLOC) for D dorn and D scal (τ equal
to −0.24 and −0.28, respectively). Even stronger negative
correlations (‘‘moderate’’ to ‘‘strong’’) could be observed for
NCLOC (τ = −0.36). Surprisingly, we can observe a ‘‘weak’’
positive correlation between SLOC and code-readability
score for the D b&w dataset, (τ = 0.16) and a ‘‘weak’’
negative correlation for NCLOC (τ = −0.13). We suspect
this might be caused by the fact that the code snippets in
D b&w are too small to have a visible impact on the difficulty
of reading the code. At the same time, we can observe that the
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FIGURE 3. Examples of applying the genetic operators available in GENCOME to generate new LOC measure definitions (the outgoing arcs

true/false determine whether the feature represented by the node is greater than zero or not; e.g., ‘bracket’
true
−−−→ . . . means that either

‘(’ or ‘)’ appears at least once in the line).

number of commented lines (CLOC) is positively correlated
with the readability score for all the datasets (τ equal to
0.25, 0.39, and 0.16). Finally, the number of blank lines of
code (BLOC) is negatively correlated (a ‘‘weak’’ correlation)
with the code readability score for D dorn and D scal
(τ equal to −0.14 and −0.08) and positively correlated with
code-readability score (‘‘weak’’ to ‘‘moderate’’) for D b&w
(τ = 0.23).

C. CODE READABILITY AND TASK-SPECIFIC
LOC MEASURES
We ranGENCOME to find LOC-measure definitions for each
dataset (an intra-dataset search) and then we cross-applied

TABLE 1. Correlations between the standard LOC measures and
code-readability score.

the measures between the datasets (an inter-dataset search).
We also searched for the measure definitions using all three
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datasets at once and a pair of D dorn and D scal datasets
by using multi-objective fitness functions (a multi-dataset
search).

Also, as we stated in Section III-A, we used the study
on code readability to investigate the impact of GP-related
parameters, i.e., the population size (µ), the maximum
allowed height of trees (h), and the number of generations
(g) on the fitness of the measure definitions found by
GENCOME as these parameters can have the biggest impact
on processing time. Unfortunately, simultaneously searching
the space of all considered GP-related attributes (including
crossProb and mutProb) is not a feasible option. Therefore,
we decided to perform a systematic search starting from
the typical settings found in the literature, narrowing ranges
and fixing the values of some parameters. In particular,
we divided the search process into three stages. The aim
of the first stage was to extensively search the parameters’
space with high crossover probability (crossProb) and low
mutation probability (mutProb), which is a widely used con-
figuration [40]. In the second stage, we narrowed the search
space and swapped the values of mutProb and crossProb.
It was motivated by the fact that high mutation probability
can help increase the diversity in small populations [40].
In the last stage, we significantly increased the population
size (by two orders of magnitude) to investigate its impact
on the fitness function. During the study, we controlled the
maximum height of generated decision trees (h) by setting it
to 1, 2, 3, 4, 5, 6, 7, 8, and 16 to balance the generalizability of
the task-specific LOC measures and their ability to proxy for
the output variable. Finally, we set the tournament size (ts) to
4 for all simulations.

In the first stage, we performed the analyses for µ = 100,
200, 300, 400 and set crossProb and mutProb to 0.8 and
0.2, respectively However, since we roll back all mutation
operations that produce individuals exceeding the maximum
allowed height, the probability of successful mutation is
visibly lower than that. We ran the algorithm for each of
the configurations for 1000 generations. The correlations
between the LOC counted using the best task-specific LOC
measures found by GENCOME and code-readability scores
are presented in Table 2. For the intra-dataset search, the
correlations were ‘‘strong’’ to ‘‘very strong’’ (τ = −0.83 for
D b&w, −0.78 for D dorn, and −0.76 for D scal). Also,
the observed standard deviation calculated for τ between
the runs ranged between 0.01 and 0.03. Therefore, the
process of finding LOC measures seem stable. Even for
the decision trees of height one (e.g., ‘brackets’: true,
otherwise: false), the calculated τ was lower than for
the standard LOC measures (τ = −0.37 for D b&w, −0.40
for D dorn, and −0.37 for D scal). For all the inter-dataset
searches, the observed correlations could be interpreted as
‘‘moderate’’ to ‘‘strong’’ / ‘‘very strong’’ (τ ranged from
−0.56 to −0.39). Finally, the multi-dataset search seems
to be a compromise between the intra- and inter-dataset
searches.

By analyzing the plot in Figure 4, we can see that
increasing the population size allows finding better measure

definitions, as long as the processing is performed for a
sufficient number of generations. Also, we can see that this
effect gets stronger with the increase of themaximum allowed
height of decision trees. For instance, for the trees with h
= 4, the difference in τ between the smallest and biggest
populations was up to ca. 0.04 while for h = 16, it increased
to ca. 0.15. Based on these results, we conclude that setting
g = h×50 could be used as a rule of thumbwhile configuring
GENCOME since it allows to reduce the processing timewith
little effect on the results.

Figure 5 shows an example of how the choice of crossProb
and mutProb (0.8, 0.2 or 0.2, 0.8) can affect the fitness
function τ (comparing the results of stage 1 and stage 2 of the
search procedure). When h was very small (1, 2, or 4), there
was nearly no difference in τ between both settings (none of
the strategies was consistently better). However, for the larger
trees of h equal to 8 and 16, the best results were obtained for
crossProb= 0.2 and mutProb= 0.8. One of the explanations
for this phenomenon is that when generated trees reach
their maximum allowed height, the crossover operation might
no longer allow to introduce structural changes into their
offspring. Conversely, mutation operators can easily modify
the already grown trees (e.g., by shrinking them) which helps
to avoid stalling at local optima. Therefore, we recommend
using higher mutProb for larger tree sizes (h ≥ 8), while for
the smaller trees, we perceive both of the strategies as equally
effective.

The results for applying the strategy of using large
populations in stage 3 while reducing the number of
generations are presented in Figure 6 (µ = 10,000, and
g = 50). Although the number of generated trees was
approximately the same as for µ = 500 and g = 1000, the
observed correlations (tau) were visibly weaker for almost all
the cases. Consequently, we decided to abandon that strategy
as being computationally ineffective.

We analyzed the structure of the decision trees and
most frequently appearing line features to investigate what
characterizes lines that are good proxies for code readability
(see Table 3). The feature’s frequency of appearing is
expressed as the percentage of positive rules (that evaluate
to true) in which the feature appears.

It seems that the line features that are the most
important from the perspective of proxying for code
readability are the presence of brackets (’bracket’—
round brackets). The second important feature is the line
length (’up_to_80_chars’, ‘more_than_80_chars’,
‘up_to_40_chars’, and ‘up_to_60_chars’).
We could also see that equality operators and assignment
operators are consistently being used as nodes in the decision
trees. According to Buse and Weimer [43] the number of
brackets, and line length are very strong predictors of code
readability.

VII. TASK #2: ASSERTIONS IN UNIT TESTS
The second task that we study is to use LOC as a proxy for the
number of assertions in unit-level test cases (and indirectly as
a proxy for testing effort [6], [45], [46]).
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FIGURE 4. The average Fitness (τ ) depending on population size (µ), maximum allowed height of decision trees (h), and
number of generations (g) for crossProb = 0.8 and mutProb = 0.2. To ensure the clarity of presentation, the plots include the
subset of the tested parameters µ and h (the full plots are available in the replication package).
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FIGURE 5. Comparison between the average Fitness (τ ) for crossProb = 0.8, mutProb = 0.2 and crossProb = 0.2, mutProb = 0.8.
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FIGURE 6. The average Fitness (τ ) for the strategy of using large populations while reducing the number of generations (µ = 10,000,
and g = 50).

TABLE 2. Correlations between the best task-specific LOC measures and code-readability score.

A. DATA COLLECTION
We collected code and unit tests from a large sample of
repositories hosted on GitHub (D unit). First, We took the list
of 1.85M repository URLs collected by Munaiah et al. [47].
Then, we used the Reaper [47] and PHANTOM [48] tools
to curate the list for engineered software projects (we took
only those repositories for which both tools agreed) and
selected repositories labeled as containing projects imple-
mented in Java (36K GitHub URLs). In the following step,
we downloaded the code from the repositories and extracted
the pairs of .java files containing the code and unit tests for
that code.When performing this step, we limited the search to
the projects following the Maven convention for structuring
Java projects and using JUnit 4 or 5 to implement unit tests
(9,390 GitHub repositories). We matched the code and tests
files by assuming that the tests for a class implemented in

src/main/java/A.java are available in src/test/java/ATest.java
or src/test/java/ATests.java. We assumed that a testing class
should consist of at least two test cases (e.g., at least a pair
of positive and negative test cases), therefore, we rejected the
repositories for which the mean number of testing methods
per testing class was lower than two. As a result, we obtained
data from 6,991GitHub repositories (more than 143K pairs of
code and test files). Since such a big dataset would make the
evaluation of individuals run too long, we downsampled the
dataset by randomly selecting 2000 file pairs (1.2M SLOC of
code in the source files).

B. UNIT TESTS AND STANDARD LOC MEASURES
The correlation coefficients calculated for the standard LOC
measures and the number of assertions in unit tests are
presented in Table 4. We observed ‘‘moderate’’ to ‘‘strong’’
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TABLE 3. Top 10 most frequently appearing line features in the positive
rules (...: true) of the best task-specific LOC-measure definitions for
code readability.

TABLE 4. Correlations between the standard / task specific LOC
measures and number of assertions in unit tests.

correlations for SLOC, NCLOC, and BLOC (τ = 0.28, 0.27,
and 0.27, respectively). The correlation between CLOC and
the number of assertions was slightly weaker (‘‘weak’’ to
‘‘moderate’’) than for the remaining standard LOC measures
(τ = 0.22).

C. UNIT TESTS AND TASK-SPECIFIC LOC MEASURES
The dataset D unit is bigger by two orders of magnitude than
all the datasets we used for the study on code readability,
therefore, we decided to set the population size (µ) to 200 and
performed the analyses for h between 1 and 5. Each time, the
number of generations (g) was set to h× 50.
The correlation between the task-specific LOC measures

and the number of assertions in unit tests are presented
in Table 4. Similarly to the standard LOC measures,
we observed ‘‘moderate’’ to ‘‘strong’’ correlations, however,
the calculated correlations coefficients were higher than the
ones calculated for the standard LOCmeasures by ca. 11% to
21% (τ ranged from 0.31 to 0.34).
When analyzing the structure of the decision trees,

we observed that the definitions of the task-specific measures
were similar to the code complexity measures that are
known to be used to determine the number of test cases

TABLE 5. Top 10 most frequently appearing line features in the positive
rules (...: true) of the best task-specific LOC-measure definitions for
the number of assertions in unit tests.

needed to achieve a given branch or path test coverage,
such as McCabe’s Cyclomatic Complexity (CC) [49] or
SonarQube’s Complexity.6 For instance, one of such LOC
definitions stated that a line is counted if it is not commented
(’comment’) and contains a ‘relational_operator’
or if it contains a ‘return’ keyword. As it is presented in
Table 5, the list of most frequently appearing line features
contains other features that are related to paths in the
code, i.e., ‘condition_check’ (grouping if, case,
else, switch), ‘curly_brackets’ (determines the
boundaries of code blocks), and ‘.’ or ‘camel_case’
(a reference to a field or a method call).

VIII. TASK #3: CODE-REVIEW DURATION
We study the possibility of using LOC as a proxy for code-
review duration. In particular, we focus on counting modified
lines of code (code churn) since they are a better predictor
of code-review duration than the total size of the code being
reviewed [7], [50], [51].

A. DATA COLLECTION
We collected data on code reviews from three mature Eclipse
projects, i.e., Eclipse JDT (D jdt), Platform (D plat), and
Papyrus (D pap). We fetched the data concerning code
reviews and the source code under review from the Gerrit
and Git repositories owned by the Eclipse Foundation.7 We
collected data concerning 2,375 code reviews conducted
between 2014-06-19 and 2020-08-05. In the next step,
We filtered out the reviews that included files different
than Java source files to preserve consistency between the
studies and prevent deriving LOCmeasure definitions mixing
features of different types of files. Then, we ran CCFlex to
extract line features from the source files but once the features
were extracted, we selected only the lines that were modified.
The resulting datasets included data from 890 reviews (320
reviews and 125.6K SLOC in D jdt; 163 reviews and 69.3K
SLOC in D plat; and 407 reviews and 268.7K SLOC in
D pap).

B. CODE REVIEWS AND STANDARD LOC MEASURES
The correlations between the standard LOC measures and
code-review duration are summarized in Table 6. None of
these correlations could be characterized as stronger than
‘‘weak’’ (τ ranged from −0.14 to 0.16). We also observed

6https://docs.sonarqube.org/latest/user-guide/metric-definitions
7Gerrit—https://git.eclipse.org/r,

Git—https://git.eclipse.org/c/.
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TABLE 6. Correlation between the standard LOC measures and
code-review duration.

that the approach to reviews might differ between the
considered projects since we observed a ‘‘weak’’ negative
correlation between NCLOC and code-review duration for
one of the projects (Eclipse JDT) which suggests that in this
project reviews last shorter if the code is commented.

C. CODE REVIEWS AND TASK-SPECIFIC LOC MEASURES
Since the size of D jdt, D plat, and D pap is bigger than
the datasets regarding code readability by one order of
magnitude, we decided to reduce the number of GENCOME
runs by fixing the population size (µ) to 200, selecting h
between 1 and 6, and setting the number of generations (g)
to h× 50.
We performed intra- and inter-dataset searches for task-

specific LOC measure definitions. As it can be seen in
Table 7, the correlations for the measures found in the intra-
dataset searches were visibly stronger than for the standard
LOC measures (τ between 0.31 and 0.37). However, for the
inter-dataset searchers, the correlations were similar to those
observed for the standard LOC measures.

The lists of most frequently appearing features pre-
sented in Table 8 includes many line features that
were important for more than one project, e.g, features
regarding the length of lines (e.g., ‘up_to_80_chars’,
‘more_than_16_words’), code blocks (’{’ or
‘block_code’), comments (’block_comment’), com-
parison operators (’<’ or ‘:’), or the presence of string
literal in the line (’”’). We can justify the importance of
these features by referring to the studies on the types of
defects discovered in code reviews. According to Mäntylä
and Lassenius [52], the most frequently found ‘‘Visual
Representation Defects’’ regard the usage of brackets or
line length, also the second most frequent issue related
‘‘Documentation–Textual Defects’’ concerns problems with
comments, and finally, the most frequent among ‘‘Logic
Defects’’ are issues related to comparison operations.
Therefore, it seems that the features used in the LOC
definitions derived by GENCOME characterize lines of code
that might be defective, and consequently, could increase the
duration of code reviews [7], [51].

IX. DISCUSSION
A. SUMMARY OF FINDINGS
RQ1: Can binary decision trees mined from datasets using
Genetic Programming provide better indicators of code
readability, unit-testing effort, and code-review duration than

the standard LOCmeasures? The described generator of LOC
counters was able to find task-specific LOC measures that
correlated stronger with the considered external variables
than any of the standard LOC measures for each of the
considered tasks. We even found the superiority of the
simplest definitions of task-specific LOC measure derived
from binary decision trees of height equal to one.

At the same time, we observed that there is a trade-off
between the portability and specificity of the task-specific
LOC measures. We even found the tipping point of the depth
of the decision trees—at the height of 4 or above, the task-
specific measures performed better for the same project, but
worse across different projects. This is rather natural as task-
specific measures are expected to be task-specific.

Therefore, we recommend finding new measures using
GENCOME rather than searching for universal measures
for all kinds of projects. In the case of the reuse of
measures, we recommend inspecting the definitions found by
GENCOME to verifywhether the counting rules they propose
could be justified by experience or theories in Software
Engineering.
RQ2: How to use Genetic Programming to generate good
quality specialized LOC counters in a reasonable time?
We designed and implemented a GP-based tool called
GENCOME that is capable of finding definitions of count-
based measures based on the provided data sample by
optimizing the correlation between the measure and an
external variable of choice.

We used the study on code readability to explore the
performance of GENCOME and the quality of its results.
We found that the most important parameter is the maximum
allowed height of decision trees (h). The height of the
tree impacts the computational cost of evaluating the
individuals and the maximum complexity of the rules they
can encode. The choice of h should be made depending
on the representativeness of the population sample we use
to derive the measures and the granularity of the features.
For the less representative samples, smaller trees would be
preferred. Also, using a grouping of elementary features
can help achieve good results for smaller decision trees
(e.g., ‘access_keyword’ = ‘private’ or ‘public’ or
‘protected’).

Two other parameters that are important from the per-
spective of computation costs are the population size (µ)
and the number of generations (g). We observed that the
population size should not be smaller than the number
of features used to describe the lines of code because
if a feature is not present in the initial population then
the only way it could be introduced to the trees in the
population is by the result of the mutation operation. Based
on the results of all the studies, we recommend starting
with the population size of 200 individuals as a sensible
value balancing the computational costs and quality of the
results. For the number of generations, we propose to set it
depending on the maximum allowed tree height (g= h×50).
We used two strategies for setting the crossover probability
(crossProb) and mutation probability (mutProb) (0.8, 0.2 and

VOLUME 11, 2023 100229



M. Ochodek et al.: Mining Task-Specific Lines of Code Counters

TABLE 7. Correlation between the best task-specific LOC measures and code-review duration.

TABLE 8. Top 10 most frequently appearing line features in the positive
rules (...: true) of the best task-specific LOC-measure definitions for
code-review duration.

0.2, 0.8), None of them seemed superior for the smaller trees
(h up to 4), however, the strategy for choosing highermutProb
seems to be a better choice for the larger trees (h ≥ 5).
Finally, we can recommend setting the tournament size (ts)
to 4, however, this recommendation is not supported by a
systematic simulation study on optimizing the choice of this
parameter.

The computational costs also depend on the size of the
dataset (X, y) since each individual is used to classify all the
lines in the X file to calculate the fitness.

In this study, we mined the measures using commodity
hardware. For small datasets and low values of the afore-
mentioned parameters, the execution time was up to a few
minutes, while for the largest datasets and the most extreme
values of the parameters, it raised up to a few days at
maximum. Thus, performance-wise, usage of GENCOME in
industrial settings seems feasible.

RQ3: What code-line features are discovered by GP as
important attributes of code in the context of the three
software-related tasks, i.e. code understanding, testing, and
code review? The quality of the output of GENCOME was
compared to the most frequently used line features for all
three considered tasks found in the body of knowledge. As a
result, we learned that it is worth counting the lines containing
brackets or being too long as they correlate negatively with
the code readability [43]. For the problem of using LOC as
a proxy for the number of assertions in unit tests, the rules

derived by GENCOME could be considered as empirical
approximations of measures such as McCabe’s Cyclomatic
Complexity as they focus on counting the lines containing
conditional expressions, method calls, or return statements.
Finally, for using lines of code as an indicator of code-
review duration, the most frequently used features could be
mapped to some of the most commonly raised issues in code
reviews [52].

B. OTHER GENCOME USE CASES
LOC measures are one of the most frequently used source
code measures with numerous use cases [53]. Their reported
use cases include software fault and defect prediction
(e.g., [54], [55]), software quality estimation (e.g., [56]),
code smells detection (e.g., [57]), dead code prediction
(e.g., [58]), code churn estimation (e.g., [59]), software
testing (e.g., [60]), software refactoring (e.g., [61]), software
maintainability (e.g., [62]), predicting software build out-
comes (e.g., [63]), software reliability (e.g., [64]), software
security (e.g., [65]). In nearly all of these use cases,
LOC measures are used as predictors or proxies for some
other variables. Numerous studies on prediction in Software
Engineering reported that prediction models trained on
context-specific datasets outperform those trained on generic
datasets [66], [67]. Therefore, since GENCOME can find
task/context-specific variants of LOC measures that show
stronger correlations with external variables than their stan-
dard counterparts, they could be treated as replacements for
the state-of-the-art LOC measures for all these applications,
as long as historical data are available.

C. THREATS TO VALIDITY
We discuss the threats to validity for this study based on
the general guidelines provided by Wohlin et al. [68] and the
framework dedicated to Search-Based Software Engineering
(SBSE) proposed by Barros and Neto [69].

1) CONCLUSION VALIDITY
Genetic Programming depends on stochastic random-number
generators. To mitigate this threat, we performed 10 runs of
each study and observed consistent results between the runs.

2) CONSTRUCT VALIDITY
We used the correlation coefficient as a fitness function since
our goal was to find a LOC-measure definition that will
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be the best proxy for a given external variable. Therefore,
this choice seems to be justified, however, we cannot prove
that this is the best function to be used for this purpose.
Also, there are no single rules to evaluate the effect size of
correlations.Wemitigate this problem by using the guidelines
for interpreting correlation coefficients coming from three
different research areas [37].
We used an external tool called CCFlex to extract features

from lines of code and used them to count the standard LOC
measures. To mitigate the threat related to miscounting the
lines, we verified the way the tool counts the standard LOC
measures on a random sample of code.

Also, in the study on unit tests, we matched the pairs
of source code and testing code based on the names and
locations of the .java files. Although this approach should
not lead to false positives because we rejected files that did
not contain tests, we could falsely reject some of the projects
that did not follow this naming convention. Nevertheless,
we downsampled the dataset to 2000 file pairs, therefore,
even if we missed some pairs in the full dataset the impact
of this threat on the results of our study would be negligible.
Similarly, we measured the duration of code reviews based
on the data reported in the Gerrit instances. The measurement
could be biased by factors such as time-zone differences since
the open-source community working on Eclipse is globally
distributed. Nevertheless, the impact of this threat is also
negligible since we aim at discovering context-specific LOC
measures.

Finally, although GENCOME does not focus on extracting
features describing lines of code, the availability of the
features relevant to a given task is extremely important.
We based the set of features on the syntax of Java
programming language and the physical features of lines
(e.g., line length).We treatedmost of them as binary variables
(e.g., the presence of a keyword in the line), however,
we could use different strategies for discretizing the features,
which could yield better results.

3) INTERNAL VALIDITY
According to Barros and Neto [69], the main SBSE-
related threats in this category regard the problems with
the reproducibility of the research or lack of real problem
instances. Since we discussed the choice of the parameters
and made the source code publicly available the former threat
should not materialize in our study. Also, since we based our
study on the data from real software development projects,
also the latter threat seems not relevant to our study.

4) EXTERNAL VALIDITY
We applied GENCOME to derive task-specific LOC mea-
sures for three effort-related tasks. We used the datasets
containing from 768 SLOC to 1.2M SLOC. Therefore, the
variability in the size of the datasets seems sufficiently large
to mitigate the threats related to the ‘‘lack of evaluations for
instances of growing size and complexity’’ [69]. There is
also a threat related to the representativeness of the source
code in the datasets. Apart from the datasets related to code

readability, all other datasets contain code directly from
software projects. In particular, the dataset on unit tests was
composed by mining 36K GitHub repositories. However,
since we studied only three different tasks in the context
of open-source projects, we have to accept the fact that the
proposed treatment might not give comparable results when
applied to other tasks or when it is used in other contexts.

X. CONCLUSION
In this paper, we introduced GENCOME—a tool that gen-
erates task-specific LOC-measure definitions and counters
by mining historical data with Genetic Programming. The
generated LOC counters have a form of binary decision trees
with maximum height (h) controlled by the user. Based on
the conducted studies, we proposed to set the default value
of the population-size parameter (g) to h× 50 to balance the
trade-off between the performance and effectiveness of the
tool.

We performed three studies to validate the tool and the
effectiveness of the generated task-specific LOC measures in
proxying for the code-readability score, number of assertions
in unit tests, and code-review duration. The inferred task-
specific LOC measures showed a ‘‘strong’’ to ‘‘very strong’’
negative correlation with code-readability score (Kendall’s
τ ranging from −0.83 to −0.76) compared to ‘‘weak’’ to
‘‘strong’’ negative correlation for the best among the standard
LOC measures (τ ranging from −0.36 to −0.13). For the
problem of proxying for the number of assertions in unit tests,
correlation coefficients were also higher for task-specific
LOC measures by ca. 11% to 21% (τ ranged from 0.31 to
0.34). Finally, task-specific LOCmeasures showed a stronger
correlationwith code-review duration than the best among the
standard LOC measures (τ = 0.31, 0.36, and 0.37 compared
to 0.11, 0.08, 0.16, respectively). In all of these studies, task-
specific LOC measures showed stronger correlations with
the proxied variables than the state-of-the-art LOC measures
(SLOC, NCLOC, CLOC, and BLOC).

Also, we observed that the choice of code-line features in
the generated decision trees can be justified by referring to the
theories in a given research area. For example, task-specific
LOC measures proxying for the number of assertions in unit
tests seemed to be empirical approximations of McCabe’s
Cyclomatic Complexity.

In all of these studies, task-specific LOCmeasures showed
stronger correlations with the proxied variables than the
state-of-the-art LOC measures (SLOC, NCLOC, CLOC,
and BLOC). Therefore, they could be considered as their
replacements. The definitions of task-specific LOCmeasures
are inferred directly from the context-specific historical
data which mitigates some of the well-known weaknesses
of the standard LOC measures. Also, the GENCOME-
generated definitions of LOC measures are executable
and can be instantly used as measurement instruments.
Unfortunately, there are some limitations to the proposed
approach. We observed that there is a trade-off between the
portability and specificity of the task-specific LOCmeasures.
We even found the tipping point of the depth of the decision
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trees—at the height of 4 or above, the task-specific measures
performed better for the same project, but worse across
different projects. This is rather natural as task-specific
measures are expected to be task-specific.

As future research, one could consider using GENCOME
to search for new count-based measures in other areas. For
instance, a good candidate metric would be to count the
number of specific types of tasks or defects in projects that
would strongly correlate with development effort.
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