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ABSTRACT Significant yield challenges are posed by biotic stress on coffee leaves, which has a negative
effect on the revenue generation of this highly utilized commodity. Numerous studies have proposed
techniques for the early detection and classification of biotic stress in coffee leaves. In this study, we propose
a technique called extracted feature ensemble (EFE) for classifying healthy and infected classes. Transfer
learning-based convolutional neural networks (CNNs) and custom-designed features are used to improve
classification performance. Under the concept of EFE, three methodologies are proposed for evaluating
various extracted feature combinations and determining the effect of dimensionality on the performance
of the model. In addition, a semi-segmentation approach is used to guide the extraction of informative
foreground details, while non-segmented inputs are used to improve the model’s robustness against complex
background noise. By improving three open-source datasets for biotic stress categorization in coffee
leaves, a new dataset was created and employed. The first proposed method, ECNN, focused on the
effective concatenation of five CNNs and obtained a classification accuracy of 93.45% using a decision
tree classifier, exceeding the maximum individual accuracy of 86.07% from Mobile-Net v3 features.
In addition, the HLGGM method was investigated, which demonstrated an enhanced accuracy of 99.16%
by combining dimension-reduced Mobile-Net v3 features with handcrafted features. HLGCM, the final
approach represented, aimed at extracting features from dimensionality-reduced handmade and CNN-based
data, and ultimately succeeded in accomplishing an accuracy of 99.49 percent by using decision tree model.
The obtained results demonstrate the efficacy of feature concatenation in enhancing the classificationmodel’s
discriminative capabilities and classification accuracy. The appropriate combination of hand-made and
CNN-based features gives better accuracy and interesting insights into the effect of feature reduction on
model classification efficiency. The article offers dimensionality reduction, directed learning, and feature
concatenation techniques for identifying coffee leaf diseases. This work can aid in the development of
computationally efficient and accurate disease control and coffee plant sustainability strategies.

INDEX TERMS Features concatenations, transfer learning, coffee leaf, convolutional neural network, biotic
stress.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

100887

https://orcid.org/0000-0002-5587-7614
https://orcid.org/0000-0003-4161-6875
https://orcid.org/0000-0002-3086-0947
https://orcid.org/0000-0002-8664-8953
https://orcid.org/0000-0002-7542-4356


M. A. Latif et al.: Enhanced Classification of Coffee Leaf Biotic Stress

I. INTRODUCTION
Plants play a vital role in our ecosystem by being our primary
production source, ensuring food sustenance and effectively
supply oxygen [1]. They aid in substantial ecological growth
by providing habitats, resources, food, well-being for humans
and a nurturing bio diversity. Among the myriad diversity of
plants, Coffee plants hold an immense significance owing to
their globalized consumption and financial impact on society.
In United States alone Coffee-related economical activities
comprise an approximated 1.6% of total U.S GDP generating
nearly 28 billion$ in taxes [2]. In Africa, more than 12Million
households depend on the revenue generating by coffee
production [3] On a globalized scale, a raging 125 Million
people have their livelihood dependent on Coffee in one way
or the other. With the coffee industry having a market value
of 102 billion $, its significance is obvious [4], [5].

With a prospective economical overview dependent on the
yield, Coffee plants are highly susceptible to biotic stress [6]
that may manifest in many forms - resulting in a production
drop. These diseases have a tendency to escalate quickly and
consume almost entire fields [7]. The coffee plant diseases are
categorized as fungal, bacterial, viral, and nematode affecting
various regions of a plant [8]. This study focused on the
classification of leaf based diseases from the fungal category.
These include Leaf Rust, Phoma, Miner and Cercospora [9].
The effect of these diseases can be estimated by the fact that
leaf Rust alone can drop the entire crop yield by 75% [10].
These diseases have a tendency to degrade the life of leaf and
overall production at various stages of development.

The classification of these leaf diseases poses a significant
challenge, when adapting certain traditional or machine
learning methodologies. Out of many influencing factors,
leaf variability can turn out to be a substantial problem.
The fact that leaf from the same branch can show variations
in texture, shape, color, and size makes it difficult to learn
patterns. In [11] Adding to possible discoloration, lesions or
spots identical to other stress classes leads to an ambiguity
of models in successfully classifying the symptoms. Other
known factors including co-occurrence of various diseases,
limited training data, and image quality during acquisition,
all of those issues led to the intricacy and complexity of the
problem [12]
Many of the traditional, machine and deep learning

methodologies have been implemented in recent years for
the effective classification of coffee leaf diseases, but none
went without a certain set of complications. Most recent
studies rely heavily on a transfer learning approach using
state-of-the-art convolutional models, because of the limited
data [13], [14], [15], [16]. Some modified the pre-trained
architectures for both severity estimation and classification
[15]. Feature concatenation approaches were also presented
for the pre-trained architectures to augment the model’s
ability to learn on diverse multi-scale features [8]. There
were studies that played with the class imbalance conundrum
using some traditional or Machine Learning approaches
before subjecting the results back to a transfer learning

model [14], [16]. In conclusion, many alternate combinations
were leveraged to tackle the problems associated with the
classification. Some of the significant aspects that were left
unattended were the model’s ability to deal with the biases,
tackling the co-occurrence of diseases to correctly quantify
the class probability distribution, the validation data of similar
origin causing generalization problems for deep learning
models achieving high accuracy and considering accuracy as
being the sole benchmark formodel’s performance. Similarly,
computational complexity of pre-trained convolutional mod-
els wasn’t addressed that is a viable foreteller of the model’s
deployment capabilities in resource-constrained areas.

This study proposes a unique approach to take on coffee
leaf biotic stress classification, using a dimensionality reduc-
tion based feature ensemble approach. Usually for smaller
datasets, the CNN models might struggle to find meaningful
patterns to generalize effectively [17]. To facilitate effective
learning, ensemble feature extraction methodologies pro-
posed in this paper can prove to be valuable in complimenting
and augmenting the model’s abilities. Three methodologies
are proposed to evaluate different feature combinations,
along with the impact of dimensionality on the model’s
performance [18]. This contribution of this study are as
follows:

1) A methodology is proposed for effective feature
concatenation of state-of-the-art transfer learning con-
volutional neural networks to analyze and evaluate
the effect of CNN feature concatenation on model
performance.

2) The second proposed methodology aims to explore the
impact of a guided learning approach on classification
performance by investigating the concatenation of
dimensionality-reduced fine-tuned CNN features with
handcrafted features.

3) The third proposed methodology is intended to gener-
ate an essence vector that captures the most defining
properties by efficiently reducing dimensionality and
performing feature selection from both the selected
convolutional network and handcrafted features. The
goal is to create a meaningful comparison of feature
quality and length, allowing for an effective evaluation
with former methodologies.

4) A semi-segmentation approach was employed to guide
the extraction of descriptive foreground details from
segmented leaves, the non-segmented leaves added
to the robustness of the model against complex
background noise.

5) Images for Hand Crafted Feature Extraction were
filtered using Gaussian Blur and their brightness
was enhanced for prominence of suppressed disease
portions.

6) A custom segmentation pipeline was used to subtract
the background for emphasized feature extraction of
informative portions.

7) A new dataset was proposed by effective refining of
three open source datasets [19], [20], [21].
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The remaining part of the paper is organized as follows:
Section II, the Literature Study is given. In Section III,
the methodologies employed are described. The Results and
Discussions are given in Section IV respective.

II. LITERATURE REVIEW
Numerous studies have been conducted to investigate the
use of deep learning techniques in the categorization and
detection of coffee leaf diseases. This literature review looks
at a few of these research, noting the methodology used
and the corresponding accuracy as can be shown in Table 1.
Novtahaning et al. [13] in their study used 1300 images from
[20]. A bagging ensemble of three individual convolutional
neural networks i.e., VGG-16, Inception-v3 and ResNet-50
was used to effectively aggregate the output of three models
for enhanced accuracy. The accuracy achieved through
this approach was 97.13%. A similar study conducted by
Francis Jesmer et al. [9] on 4675 images achieved 95.98%
accuracy using the stage-wise ensemble of EffcientNet0,
DenseNet-121 and VGG-16 models.

By combining the strength of different models, the stage
wise ensemble was able to achieve improved accuracy and
classification performance Some studies focused specifi-
cally on targeting class imbalances, such as the work of
Hasan et al. [14]. In their study, the authors used a kernel
density estimation (KDE) approach for automated clustering
and classification. 2700 images from the dataset [20] were
used to cluster the images into groups followed by a
ResNet-50 architecture to classify the images. The accuracy
achieved through this approach is 98%. Furthermore, com-
parative studies were also following up for traditional and
deep learning feature extraction techniques. In this regard,
Boa Sorte et al. [16], developed a framework for coffee
leaves biotic stress classification using statistical and texture
attributes along with a separate model, Alex Net to observe
the performance. The convolutional method outranked the
traditional technique on a dataset [20] of 750 images by
yielding 98% on Kappa Statistics.

Work on transfer learning models was extended for
enhanced stress classification results. A study by Abuhayi
and Mossa [8] explored the feature concatenation of pre-
trained Google-Net and ResNet features on a private dataset
of 3288 images in an attempt to enhance the classification
accuracy. The resultant accuracy from a concatenation of
diverse set of features was 99.07%. Tassis and Krohling
[22], In their respective study, employed few shot learning
approach to classify the stress class of 1685 images from
[20]. The purpose of using few shot learning was to
address the limitations of traditional deep learning networks
which need a large dataset for better generalization. The
resultant accuracy obtained through this approach was 96%.
Identical to classical transfer learning approaches, Paulos and
Woldeyohannis [23] in their study used pre-trained Mobile
Net and ResNet-50 models for classification of coffee leaf
disease from 1120 images belonging to a private dataset.
The accuracy reached a staggering 97.01% and 99.89%

accuracy on 4 classes respectively. Alongside classification of
biotic stress, some studies extended their approach to severity
classification. One such study by Esgario et al. [15] proposed
a deep learning based end-to-end biotic stress classification
and severity estimation model. The model was trained on
dataset using a modified version of ResNet 50 and was
successful in achieving an accuracy of 95.24%.

While the above studies apprise us of the significant
progress in biotic stress classification for coffee leaves,
several research gaps still persist. These include exploring
novel architectures, optimizing some data augmentation
strategies, developing interpretable and explainable models,
and inspecting and evaluating transfer learning variations.
Additionally, class imbalance poses a significant problem in
this domain owing to an occurrence frequency of some stress
types and rarity of others. Addressing this challenge is also
a force to be reckoned with. Overall, the reviewed studies
demonstrate the effectiveness of deep learning techniques
in the classification and recognition of coffee leaf diseases.
The achieved accuracies range from 95.98% to 99.89% for
varying classes and datasets, indicating the potential of these
models for practical applications in the agricultural sector.
Table 1. Illustrates the recent existing studies implemented
on the different Coffee plant disease datasets.

III. MATERIALS AND METHODS
A. DATASET DESCRIPTION
The dataset used in this experimental workwas a combination
of Bracol [20], JMUBEN [19] and PDCMD [20] datasets.
The new dataset is a collection of open source images
available on [20] for coffee leaf disease containing high
quality images of four classes of coffee leaf diseases
namely Cercospora, Phoma, Rust and Healthy taken under
controlled conditions. The [18] Dataset is a collection
of open-source images available on [19] along with the
associated information focusing on coffee leaf diseases. It is
specifically designed to aid in the analysis and diagnosis
of coffee plant health. The dataset [19] includes a diverse
range of high-quality images featuring various types of coffee
leaf diseases such as Cercospora, Rust, Phoma, Miner and
Healthy. Description for each class is given in Table 2.

The dataset is a comprehensive collection of images
open-sourced available at [21] representing various plant
diseases. This dataset is specifically curated for the task
of plant disease classification using machine learning and
computer vision techniques. The number of diseased coffee
leaf classes in all three datasets are given in Table 3.
Furthermore, the illustration of the stress types considered in
this study is in Figure 1. The figure shows the afflicted regions
of the coffee leaves along with the stress typing.

B. DATA PREPROCESSING
1) REFINING
Assuming the datasets are represented by D1,D2 and D3
having m,n and o samples for each of the respective biotic
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TABLE 1. Related literature on similar datasets.

TABLE 2. Biotic stress description.

FIGURE 1. Biotic stress types for coffee leaves.

stress class. The steps to obtain new refined dataset D′ are
given in Algorithm 1.

2) TRAIN AND VALIDATION SPLIT
The newly refined datasetD′ given in Table 2. is subjected to a
stratified split resulting in a training datasetDt and Validation
dataset Dv with a split ratio q of 80 : 20 is given.

Dt = q× size(D′) (1)

Dv = (1 − q)×size(D′) (2)

where,
q = Desired proportion (0 < q < 1)
Dt = Training split
Dv = Validation split
D′

= Parent Dataset

Algorithm 1 Algorithm for Initial Dataset Refining
Input: Datasets list [D1, D2, D3]
Output: Refined Dataset D’

1 Unique Set → Create an empty set to store unique samples
2 for set in Input // Loop over each dataset
3 for images in Sample set // Looping over images in datasets
4 Instance check → Check multiple instance of each image file
5 Append → Add only a single instance to Unique Set
6 End
7 End
8 Class Segregation → segregate images in Unique Set based on class name
9 Instances → Count image instances in each class
10 Sample Size → Define under-sampling size
11 New Dir (D’)→ Create an empty directory with all class sub-directories
12 for image in each class // Loop over images in each segregated class
13 if(i < sample size) // run the loop till the defined under-sample length
14 Append → Add samples to identical empty class directory in D’
15 Increment → increment i by one after each append
16 End

Training DatasetDt is subjected again for another stratified
split, where the cardinality of the Dt split is given by the
size of Ds and D′

s referring to segmented and non-segmented
segregation given by

Ds = p× size(Dt ) (3)

D′
s = (1 − p) × size(Dt ) (4)

where,
p = Proportion of data to be allocated ranging (0 < p < 1)
Dt = Training dataset
Ds = Data split for segmentation pipeline
D′
s = Non-segmented dataset

3) SEGMENTATION
The second split of Dt is designed to emphasize the
foreground for efficient feature extraction through segmented
inputs and improve the model’s resilience to background
noise using non-segmented data [24]. The samples within the
Ds split are segmented using a series of image processing
algorithms to subtract the background region and retain only
the inherent leaves and their corresponding biotic stress
characteristics.
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TABLE 3. Dataset description.

FIGURE 2. Image segmentation pipeline.

For a sample Dsi in the set Ds with pixel values in
(x,y) plane, the segmentation process is initiated with the
conversion of the respective sample in HSV color space
[25] and extracting required Hue, Saturation and Value
components, using a threshold th followed by Bit-wise AND
operation to create a mask. Morphology operations are
performed with a structure element to constrict and extend
the mask as needed as seen in the Figure 2. The step-
wise implementation of the background subtraction pipeline
in given in Algorithm 2. For a few image samples with
significant background complexity, guided segmentation
approach was employed using Orbit Background Removal
tool [25]. Later the segmented set Ds is merged with the
un-segmented counterpart D′

s.

Df = Ds + D′
s (5)

where,
Df = Proposed dataset for feature extraction

C. FEATURE EXTRACTION
1) PRE-PROCESSING FOR HAND CRAFTED AND CNN
FEATURE EXTRACTION
The dataset Df is then propagated to a feature extraction
pipeline, consisting of hand-crafted techniques and pre-
trained convolutional neural networks. For the hand-crafted
feature extraction techniques, Histogram of Oriented Gradi-
ents (HOG) [26], Gray-Level Co-occurrence Matrix(GLCM)
[27], Local Binary Patterns (LBP) [28] and Gabor Filters [29]
are employed. Whereas for CNNs based feature extraction,

state-of-the-art techniques inclusive of but not limited to
MobileNet V3 – Large [30], Xception [31], VGG-16 [32] and
the likes are used.
Prior to being subjected for feature extraction, the dataset

Df is processed for each of the respective feature extraction
method such that the samples are gray-scaled and re-sized to
128×256 for hand crafting based extraction and 224×224 for
CNN based techniques. The specified size ratio of 1:2 is
preferred for Hand Crafted Extractions owing to a similar
input’s size ratio in HOG research paper [26] while the 224×

224 input resolution for CNN feature extraction provides
an optimal trade-off between computational cost and feature
representation and is generically standardized.
The dataset Df intended for hand-crafted features extrac-

tion under-goes a Gaussian filtering [33] and brightening
stage given as under.

G(x,y) =
1

25σ 2e
−(x2+y2)
(2σ2)

(6)

where,
G(x,y) = Gaussian filter value at (x,y)
σ = standard deviation

Bo(x,y) = Bi(x,y) × k (7)

here,
Bo(x,y) = Output Image’s pixel intensity at coordinates (x,y)
Bi(x,y) = Input Image’s pixel intensity at position (x,y)
k = Brightness scaling factor

2) HAND CRAFTED FEATURE EXTRACTION
HandCrafted Feature Extraction involves carefully extracting
or designing specific visual features from the input data,
most often from raw images. By meticulously analyzing
the patterns and characteristics from the input data, features
of interest and defining nature are derived. These features
may involve edges, textures, colors, shapes or other visually
relevant properties. Each technique extracts unique charac-
teristics that prove vital in robust discerning of the object
vaguely illustrated in Figure 4.

a: HISTOGRAM OF ORIENTED GRADIENTS (HOG)
For proposed dataset Df having n samples and size
(M × N), where each sample I has pixels values positioned at
(x,y), the mathematical representation for extraction of HOG
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FIGURE 3. Data pre-processing pipeline.

FIGURE 4. Hand crafted gradient and textural features.

descriptors for I is given as.

Gmag(x,y) =

√
(I(x+1,y) − I2(x−1,y))

+

√
(I(x,y+1) − I2(x,y−1)) (8)

The gradient orientation given gradient magnitudes (Gx ,Gy)
is represented below.

2 = tan−12
Gy
Gx

(9)

here,
Gmag(x,y) = Gradient magnitudes for pixel at (x,y)
Gx ,Gy = Magnitudes at x and y axis
tan−12 = Arc-tangent function
The normalization factor Nf is given as

S(mag) =

Bx∑
i=0

By∑
j=0

Gmag(i,j)2 (10)

h =
√
Smag + ϵ (11)

Smag = square of the magnitude of gradients
ϵ = value added for preventing undefined values
The final vector of feature descriptors is.

H1 = [h(1,1), h(1,2), . . . , h(y,z)] (12)

Algorithm 2 Algorithm for Image Segmentation
Input: Image from Data-split Ds
Output: Segmented Image for Dataset Ds

1 RGB to HSV Convert image from RGB color space to HSV color space
2 Components Extract Hue Saturation and Value Components from image
3 HSV Projection Project HSV space in 3D to determine threshold values
4 Threshold Define upper and lower threshold for each channel
5 for (x,y) in HSVimage // loop over each pixel in HSV image sample
6 if ((x,y) in threshold range) // check for the pixel value in threshold range
7 Set value to 1 // If in range set value to 1
8 end
9 Mask Create empty mask of size HSVimage
10 for (x,y) in HSVimage // loop over post-threshold HSVimage
11 if (x,y) and Mask(x,y) is not 0 // check if (x,y) for both is not zero
12 Mask(x,y) = 255 // set empty mask pixel to max value
13 end
14 Structure Element // Define a structure element i.e., square, circle
15 //Morphology Operation On Mask
16 //Erosion and Dilation
17 for (x,y) in Mask // Iterate over mask pixels
18 for (i,j) in Structure Element // iterate over pixels in structure element
19 // Erosion
20 if (x,y) is 1 // check if pixel in mask is 1
21 if neighbor pixel equals to 1 // check if neighbor pixel has value 1
22 set (x,y) to 1 else set to 0 // set the mask value to 1
23 // Dilation
24 if (x+i, y+j) in range(size(Mask)) // check if in bound of Mask
25 set (x+i, y+j) to 1 // set the respective pixel to 1
26 end
27 end
28 // Applying mask on original image
29 Segment Create a empty image of size(HSVimage) for segmented output
30 for (x,y) in RGBimage // loop over original RGB image
31 if (x,y) in Mask is 1 // check if pixel in Mask is at value 1
32 set segmentedimage(x,y) to RGBimage(x,y)
33 else
34 set segmentedimage(x,y) to 255 // set 255 for white background
35 end

FIGURE 5. Histogram of oriented gradients (HOG) based feature
extraction.

b: GRAY LEVEL CO-OCCURRENCE MATRIX(GLCM)
Similarly, the Dataset Df duly pre-processed for the hand-
crafted feature extraction is passed through a GLCM based
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FIGURE 6. Gray level co-occurrence matrix (GLCM) based feature
extraction.

feature extraction scheme to extract the features. For an image
sample I with pixels values in gray-scale given by (x,y)
having size (M x N), the mathematical representation shown
as.

G(I(x,y), I(x+dx ,y+dy)) = G(I(x,y), I(x+dx ,y+dy)) + 1 (13)

The normalized matrix Gnorm is given as

Gnorm(i,j) =
G(i,j)

T
(14)

T = Number of valid pixel pairs
Normalized Matrix Gnorm serves as a foundation to com-

pute various descriptive features such as Entropy, Correlation,
Energy, Homogeneity and Contrast.

c: GABOR FILTERS
For Gabor feature extraction from Input Image I → Df prior
pre-processed for hand-craft techniques, having pixel values
positioned at (x,y).

G(x, y) = e
−(x′−xo)2+(y′−yo)2)

(2σ2) cos(25f (x ′
− xo) (15)

where,
(x ′, y′) = coordinates in spatial domain
(xo, yo) = center of Gabor filter
σ = width control for Gabor envelope
f = frequency of sinusoidal plane wave

Assuming we have a gray scale Image I with pixel values
positioned at (x,y), the convolution operation C(x,y) between
the image and the Gabor filter is given ∋

C(x, y) =

∑ ∑
I (u, v)G(x − u, y− v) (16)

where,
(u,v)= coordinates within the neighborhood around the pixel

For each filter response (x,y), the magnitude M(x,y) is
given as

M (x, y) =

√
G(x, y)2 + jG(x, y)2 (17)

where,
jG(x,y) = imaginary part of filter at coordinates (x,y)

By leveraging the magnitude, we can compute meaningful
features such as Energy En and Entropy E

d: LOCAL BINARY PATTERNS(LBP)
For the fourth hand-crafted feature extraction technique,
Local Binary Pattern (LBP) is employed. The post-processed

FIGURE 7. Gabor Filter Based feature Extraction.

FIGURE 8. Local binary patterns (LBP) based feature extraction.

dataset Df , having sample Image I with pixel coordinates at
(x,y) is subjected to LBP.

Bi =

{
1 if pi < c
0 otherwise

(18)

where,
Bi = Binary value of ith neighboring pixel
Pi = intensity value of ith neighboring pixel
c = central pixel
The direction (clockwise/anti-clockwise) invariant value of

LBP for the pixel(x,y) is calculated as.

LBP(x,y) =

N−1∑
i=0

Bi × 2i (19)

N = number of neighboring pixels
Assuming we have K number of pixels within the image,

the histogram H(c) for the LBP codes for each pixel is
calculated by a bin increment of 1.

H (c) = H (c) + 1 (20)

The normalized value of Histogram Hnorm(c) is calculated as
given

Hnorm(c) =
H (c)
K

(21)

3) CNN FEATURE EXTRACTION
Following the hand crafted feature extraction, the
pre-processed Dataset Df re-sized and normalized is fed to
each of the below mentioned networks for feature extraction.

a: MOBILE-Net v3 LARGE
The stem block of MobileNet V3 [30] consists of a
convolutional layer denoted as conv. Here the learnable filters
capture the spatial information from input I→Df . The conv
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FIGURE 9. General block diagram inclusive for biotic stress classification.

layer is followed by a batch normalization (BN) layer shortly
succeeding a ReLU activation layer.

Blockstem = Conv([Bnorm[ReLUConv(I )]]) (22)

Based On the concept of depth-wise separable convolu-
tions, the large blocks of the model also referred to as inverted
residual blocks consist of separable convolutions, squeeze-
and-excitation operations followed by a linear bottleneck
given as.

Blockinv−res = Lbottleneck ([Depthsep[Xstem]]) (23)

The feature maps obtained are pooled using G.Avg Pooling
operation to compute the average of each feature map in the
last layer for a latent feature vector.

Pool(avg.global)(Block(res−inv)) (24)

The feature vector obtained from MobileNet V3 is given as
under.

C1 = [m1,m2, . . . ,mn] (25)

b: XCEPTION
These entry blocks also termed as separation block in
Xception [31] consist of depth-wise separable convolutions,
batch normalization, and ReLU activation. Residual or skip
connections are used to connect the inputs of each block to the
outputs. For the input sample I → Df , the Separation block
is given by.

Blocksep = I + Depthsep([Bnorm[ReLU [Depthsep(I )]]])

(26)

The middle blocks consist of repeated separable convolution
operations with residual connections.

Blockmiddle = Blocksep + Sepconv([Bnorm
× [ReLU [Sepconv(Blocksep)]]]) (27)

Similar to the entry blocks, the exit blocks consist of
depth-wise separable convolutions, batch normalization, and
ReLU activation represented as

Blockexit = Blockmiddle + Depthsep(Bnorm
[ReLU [Depthsep(Blockmiddle)]]) (28)

The head block consists of a G.Avg Pooling Operation to
compute the average of each feature map for a latent vector
given as

Pool(avg.global)(Blockexit ) (29)

The feature vector obtained from Xception is given by

C2 = [x1, x2, . . . , x3] (30)

c: DenseNet-169
The dense block in DenseNet-169 [34] consists of a dense
stack of bottleneck layers consisting of a 1 × 1 convolution
followed by a 3×3 convolution. Each dense block’s output is
concatenated with the input and fed into the next dense block.
For a sample input image I→Df , the dense block is given by

Blockdense = Conv([(I ),Layerdense[Conv[Conv(I )]]]) (31)

The transition block followed by a dense block is intended to
reduce the spatial dimensions and number of channels using
a 1 × 1 convolution followed by average pooling.

Blocktrans = Poolavg.global([Conv(Blockdense)]) (32)

The Head block consists of a G.Avg Pooling operation to
compute the average of each feature map and output a latent
feature vector.

Pool(avg.global)(Blocktrans) (33)

The feature vector obtained from DenseNet-169 is given by

C3 = [d1, d2, . . . , d3] (34)
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d: VGG-16
Convolutional blocks in a VGG-16 [32] architecture consist
of convolutional layers with 3×3 filters, followed by a batch
normalization and ReLU activation function. After every
two subsequent convolutions a max pooling is performed to
reduce the spatial dimension. For a sample image I → Df ,
the convolutional block is given as

Blockconv = Poolmax([ReLU [Bnorm[Conv([ReLU

× [BnormConv(I )]])]]]) (35)

A G.Avg Pooling is performed on the feature maps obtained
to output a latent feature vector for classification ∈

Pool(avg.global)(Blockconv) (36)

The feature vector obtained from VGG-16 is given by

C4 = [v1, v2, v3, . . . , v4] (37)

e: ResNet - 152
The ResNet-152 [35] as the name suggests is built upon
the notion of residual connections to mitigate the vanishing
gradients originating within the deep networks. The skip
connection or residual block consist of convolutional layers
with batch normalization and ReLU activation. Each residual
block has a skip connection that directly adds the input to the
outputs. For the datasetDf , an input image sample I is subject
to the network such that.

Block(residual) = I + Conv([Bnorm[ReLU [Conv(I )]]]) (38)

The feature maps are the pooled via G.Avg Pooling to
compute a latent representation of features given as

Pool(avg.global)(Blockresidual) (39)

The feature vector obtained from ResNet-152 is given by

C5 = [r1, r2, r3, ..rn] (40)

4) PROPOSED METHODOLOGY
Convolutional Neural Network learns hierarchical represen-
tation of the data through a series of convolutions, pooling and
non-linear activations. These networks au-tomatically extract
complex features and abstractions from raw data without
much pro-cessing, adding to the generalizing capability of
these powerful models. On the other side, hand-crafted
features are engineered to capture certain local details and
patterns including shape, texture, color and statistical features
giving us the ability to extract and interpret specific char-
acteristics of data. Convolutional Neural Networks may not
explicitly capture certain local variations and details as they
excel in gathering a global context [36], so by incorporating
hand-crafted features along with the convolutional features in
an ensemble – we can ensure comprehensive representation
of the data and a more explainable ap-proach towards the
classification process [37].

The ensemble of features is not confined to an inter-
operability of CNN and Hand Crafted techniques, rather
it can be extended to an information transfer between
features obtained through varying convolutional architec-
tures. Hence, by leveraging each model’s hierarchical
feature representations and varying levels of abstractions,
an interplay between different convolutional network features
can result in a robust classification model [38]. Inspired
by the concept of ensemble features, we proposed three
methodologies to enhance the classification performance and
robustness of our model as defined in Figure 3. These tabular
description of proposed feature extraction methodologies and
their combinations are given in Table 4 and 5 respectively.
The Table 4 represents the statistical descriptions for

each proposed feature extraction technique. Each statistical
descriptive characteristic namely Mean, St. Deviation, Min
and Max is computed for features extracted from an
individual image instance and then cross computed for all
instances of the images. This approach is repeated for each
of the three feature extraction methodologies proposed.

Similarly, the feature count for each technique is given
in Table 5 representing the number of features taken from
each of the corresponding CNN and Hand crafted techniques.
Finally the total feature count for each proposedmethodology
is show in the respective table.

a: ECNN
The first proposed methodology solely relies on the feature
vectors obtained via Convolutional Neural Networks. The
feature vectors extracted by processing the dataset Df
through each of the five state-of-the-art transfer learning
models are concatenated to form a final feature vector. The
concatenated features result in an enhanced representation
power by capturing diverse patterns. Moreover, the ensemble
of feature extraction adds to the discriminative power of the
feature representation while enhancing the robustness to the
variations in the input data. The finally acquired ensemble
feature vector is classified using a decision tree based
classifier as show in Figure 4.The mathematical expression
for the ensembledMobileNet v3-Large, Xception, DenseNet-
169, ResNet-152 and VGG-16’s feature vector is given.

F =

5∑
i=1

Ci (41)

where,
F = Concatenated feature vector
fi = Feature vector obtained through each of the five CNN
models.

b: HLGGM
The second proposed methodology incorporates an ensemble
of hand crafted features and dimensionality reduced Mobile-
Net features. Prior to hand crafted features extraction from
the respective dataset Df , the data was denoised using
Gaussian filter [36] with a succeeding brightening stage
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TABLE 4. Aggregate feature description for all proposed methodologies.

TABLE 5. Feature combination for each proposed methodology.

FIGURE 10. Block diagram of first proposed methodology (ECNN).

for added prominence. Hand Crafted feature extraction was
then carried using Histogram Of Oriented Gradients (HOG),
Linear Binary Patterns (LBP), Gray Level Co-occurrence
Matrix(GLCM) and Gabor Filters in an attempt to extract the
defining and descriptive properties of the data.

For the feature extraction using Convolutional Neural
Network (CNN) a state-of-the-art fine-tuned model Mobile-
Net v3 Large was used. The extracted feature vector from
the CNN based architecture was reduced using a Principal
Component Analysis(PCA) based approach resulting in a
lower dimensional representation. Themotivewas to alleviate
the curse of dimensionality and improved computational
efficiency, by retaining only the most informative compo-
nents. The final feature vector was then propagated towards
a decision tree classifier for obtaining prediction values as
illustrated via Figure 5. The mathematical expression of the
aforementioned methodology is given as:

F1 = [h1, h2, h3, . . . , hn] (42)

F2 = [g1, g2, g3, . . . , gn] (43)

F3 = [gr1, gr2, gr3, . . . , grn] (44)

F4 = [l1, l2, l3, . . . , ln] (45)

H =

4∑
i=1

Fi (46)

where,
H = Concatenated Hand Crafted feature vector.
F1 = HOG features
F2 = GLCM features
F3 = Gabor features
F4 = LBP features
Similarly the Principal Component Analysis based Dimen-
sionality reduced Mobile-Net v3 features are given by:

M .N = [n1, n2, n3, . . . , nn] (47)

Xc = X − µ (48)∑
=

1
nXTc Xc

(49)∑
= V × D× V T (50)
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P = [p1, p2, p3, p4, . . . , pn] (51)

P(M .N ) = XcP (52)

Algorithm 3 Algorithm for ECNN Feature Extraction
Input: Image → Df
Output: Concatenated Feature Vector F

1 Resize Resize the input image to 224 × 224
2 Normalize Normalize the Pixel Values between 0 and 1
3 Feature Vector F Initialize an Empty Feature Vector [ ]
4 Extraction Use 5 Pre-trained CNN Models for feature extraction
5 for (i =0 to 4) // loop over all feature vectors obtained by 5 CNN models
6 Append(CNN model feature[i]) to Feature Vector F
7 End
8 Classification : Use Decision Tree for final Classification

where,
M.N = Mobile Net features
µ = mean vector of dataset Df
Xc = Centered feature matrix∑

= co-variance matrix of the dataset
V = Eigen vector matrix
D = Diagonal Eigen Value matrix
PMN = Projection Matrix of Eigen values
The resultant feature matrix of this proposed methodology is
given as.

FF = H + PM .N (53)

Algorithm 4 Algorithm for HLGGM Feature Extraction
Input: Image → Df
Output: Concatenated Feature Vector FF

1 Resize 1 Resize the input image to 224 × 224 for Mobile-Net v3
2 Normalize Normalize the Pixel Values between 0 and 1
3 Fine Tune: Freeze top 150 layers of MobileNet for retaining weights
4 Extraction Use fine-tuned Mobile-Net for feature extraction
5 PCA Vector PMN Initialize feature vector for PCA reduced vector M.Net
6 PCA Apply PCA on Mobile Net Features to reduce the features to 10
7 Append(PCA) to Feature Vector PMN
8 Resize 2 Resize input image to 128 × 256 for hand crafted feature extraction
9 ProcessApply Gaussian filter and enhance brightness of image
10 Vector H Initialize an empty vector H for storing hand crafted features
11 Vector FF Initialize an empty vector FF for final concatenated vector
11 for ( i in all Hand Crafted Techniques)//Iterate over hand crafted features
12 Append(hand crafted features[i]) to vector H
13 End
14 Concatenate[H , PMN] and Append to FF
15 ClassificationClassify final vector FF with Decision Tree Classifier.

c: HLGCM
The third proposed methodology centers around the com-
putational efficiency and the dimensionality curse of the
feature vectors obtained from both the hand crafted and
the convolutional methods. The proposed approach tends to
reduce the dimensionality of HOGdescriptors andMobileNet
features using an effective feature selection approach. Using
a Gaussian filter followed by a brightness enhancement
stage, the dataset Df is passed through a hand crafted
feature extraction pipeline where techniques like Histogram
of Oriented Gradients (HOG), Linear Binary Patterns (LBP),
Gray Level Co-occurrenceMatrix (GLCM) and Gabor Filters
are used. Prior to being concatenated with hand crafted

features obtained from other aforementioned techniques,
the dimensionality of the HOG descriptors is considerably
reduced using a chi square test while the features of
fine-tuned Mobile-Net v3 were reduced using Principal
Component Analysis (PCA).

The resultant feature vector was then fed into a decision
tree based classifier for the estimation of class probability
values as shown in Figure 6. The aforementioned feature
reduction substantially decreased the computational costs
associated with classifying HOG descriptors and Mobile-Net
features by only selecting the most informative components.
This dimensionality reduced ensemble of hand-crafted and
convolutional features offer a novel approach towards the
classification process at hand by surpassing previous state-
of-the art convolutional architectures in terms of both the
computational efficiency and the classification score. The chi
squared based feature selection of HOG descriptors is given
by

chi2(x, y) =

∑ (F1 − E)2

E
(54)

F ′

1 = F1[:,Ktop] (55)

where,
F1 = Hog descriptor from eq (28)
Y = class labels
E = Expected frequencies based on F1 and Y observed
frequencies.
Ktop = Indices of largest elements
F ′

1 = Top K features obtained from HOG descriptors after
chi2 statistics
After chi2 statistics, the final hand crafted feature ensemble
is given as

Hc = [
4∑
i=2

Fi] + F ′

1 (56)

The final feature vector is given by

FF ′
= PM .N + Hc (57)

where,
PM .N = PCA basedMobileNet v3 features taken from eq (52)
Hc = chi square based ensemble of hand crafted features
FF ′

= Final feature vector consisting of CNN and Hand
Crafted ensemble.

5) EVALUATION METRICS
The evaluation metrics are used to assess the performance
and efficacy of many ma-chine and deep learning models.
In the context of multi-class classification of various dis-
eases, evaluation metrics provide a deep and thorough insight
on not only the general performance but also class-wise
performance. Helping in assessing the model’s inclining
disposition and bias towards certain classes over others. Some
of the metrics considered for assessing the performance of
aforementioned techniques are given below:
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FIGURE 11. Block diagram of second proposed methodology (HLGGM).

FIGURE 12. Block diagram of third proposed methodology (HLGCM).

Algorithm 5 Algorithm for HLGCM Feature Extraction
Input: Image → Df
Output: Concatenated Feature Vector FF’

1 Resize 1 Resize the input image to 224 × 224 for Mobile-Net v3
2 Normalize Normalize the Pixel Values between 0 and 1
3 Fine Tune: Freeze top 150 layers of MobileNet for retaining weights
4 Extraction Use fine-tuned Mobile-Net for feature extraction
5 PCA Vector PMN Initialize feature vector for PCA reduced vector M.Net
6 PCA Apply PCA on Mobile Net Features to reduce the features to 10
7 Append(PCA reduced components) to Feature Vector PMN
8 Resize 2 Resize input image to 128 × 256 for hand crafted feature extraction
9 ProcessApply Gaussian and brightness filter
10 Vector Hc Initialize an empty vector Hc for storing hand crafted features
11 Vector F1’Initialize an empty vector for storing Chi2 Based HOG Features
12 Vector FF’ Initialize an empty vector FF’ for final concatenated vector
13 Chi Square Apply Chi2 test on HOG features to reduce to 80 components
11 for ( i in all Hand Crafted Techniques)//Iterate over hand crafted features
12 Append(hand crafted features[i]) to vector Hc
13 End
14 Concatenation: Concatenate[Hc, PMN] and Append to FF
15 ClassificationClassify final vector FF with Decision Tree Classifier.

a: PRECISION
Precision provides the insight about the instances that
were correctly predicted i.e., (True Positives) against all

predictions marked as Positive i.e., (True Positives + False
Positives) given mathematically as

Precision(PR) =
TPositive

TPositives + FPositives
× 100 (58)

b: RECALL
Recall evaluates the model’s ability to avoid False Negatives.
Recall is given by a ratio of True Positives out of all positively
marked instances i.e., (False Positives + True Positives).
Mathematically Recall is given as.

Recall(RC) =
TPositive

(TPositives + FPositives)
× 100 (59)

c: ACCURACY
The most basic of evaluation matrices is Accuracy, as it
determines the correctly classified instances over a total of
all instances. Accuracy can be represented as.

Accuracy(AC) =
TPos + TNeg

TPos + TNeg+ FPos + FNeg
× 100

(60)
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FIGURE 13. (a) Confusion matrix for Mobile-Net v3-Large (b) ROC curve
for Mobile-Net v3-large.

d: F1-SCORE
F1 Score provides a quantification of the balance between the
precision and recall. In general, F1 Score can be described as
the Harmonic mean of the two metrics. It proves useful in
evaluating the performance of a class imbalanced data. It is
given as.

F1 − Score(FS) =
2(PR∗RC)
(PR+ RC)

× 100 (61)

e: KAPPA STATISTICS
The Kappa Statistics also referred to as Cohen’s Kappa
Co-efficient is a statistical measure of the agreement between
actual and predicted class labels. It accounts for the
possibility of a occurrence by chance or a random occurrence.
Mathematical representation is given by

Kappastats(KS) =
(po − pe)
(1 − pe)

(62)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EVALUATION OF INDIVIDUAL CNN FEATURE
EXTRACTION METHODS
The assessment of individual feature vectors obtained
through each of the five state-of-the-art transfer learning
based convolutional neural network was carried out on a
decision tree classifier for the respective data set Df . The
pre-trained models used for feature extraction were Mobile
Net v3 Large, Xception, Dense Net 169, Res Net 152 and
VGG-16 respectively. The lowest accuracy obtained from
the respective pre-trained networks was of Xception, lying
around 63.08 % while the highest performing pre-trained
model on the same dataset Df in terms of accuracy was
Mobile Net v3 Large giving an accuracy value of 86.07%.
The varying degree of results obtained on the feature vectors
of the size 960, 2048, 1664, 512 and 2048 suggest the
network results not solely relying on the number of features
obtained but also on the quality of the descriptors. Mobile-
Net v3, ranking second to last among the aforementioned
methodologies in terms of feature count, achieved the highest
accuracy.

It can therefore be concluded that the inherent composition
of a CNN architecture plays a crucial role in capturing
the defining properties of the input. Adding to it, the

FIGURE 14. (a) Confusion matrix for Xception (b) ROC Curve For Xception.

FIGURE 15. (a) Confusion matrix for Dense-Net 169 (b) ROC curve for
Dense-Net 169.

play of feature count in determining the classification
performance cannot be ruled out, considering a high number
of descriptive features that may result in enhancing the
model’s performance albeit with some shortcomings i.e.,
computational costs as seen in Table 6 and susceptibility
to over-fitting. The parametric configuration of the decision
tree classifier for this experiment’s setting is defined in
the Table 7. The Figure 13 - 17, explicitly illustrate the
performance of each of the above mentioned methods.

The results from the confusion matrices and ROC curves
from each of the aforementioned feature extraction tech-
niques suggest the difficulty of the models in distinguishing
the different classes. Due to significant similarity of statis-
tical, texture and color features of each disease class, the
convolutional models appear to struggle. As seen in the
confusion matrices, left diagonal depict the values that were
truly predicted or in other term True Positives for a particular
class. The values in above figures, seem to have a high
misclassification rate as seen in the number of mis-classified
instances lying in blocks apart from the diagonal. Similarly,
the ROC curve above suggests the individual classification
accuracy for each class by defining the Sensitivity or True
Positive rate along the y-axis and False Positive rate along
the x-axis. The classification performance of each CNN
models for each class can be evaluated by observing the
ROC curve as it treads away from the vertical axis. Apart
from Mob‘‘ileNet, the Area Under Curve (AUC) for other
CNN models is observed to have a lower value depicting the
inefficient discerning capacities of the individual models.

The Table 6,illustrates the performance evaluation mea-
sures of each feature extraction technique. There are various
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TABLE 6. Performance evaluation metrics for all implemented and proposed methodologies.

FIGURE 16. (a) Confusion matrix for VGG-16 (b) ROC curve for VGG-16.

FIGURE 17. (a) Confusion matrix for ResNet-152 (b) ROC curve for
ResNet-152.

evaluation metrics against which the performance was tested.
Most individual CNN models didn’t perform well with the
least accuracy, precision and recall value at 63.4%,63.08%
and 63.08% by Xception. Whereas, MobileNet landed at
a testing 86.07% accuracy with 86.74% precision and
86.07% recall. Similarly, the computational cost for the
MobileNet was 0.13 seconds for the training and 0.01 seconds
for prediction – slightly lower then our proposed method
HLGCM training time. The ECNN method achieved 93.45%
in terms of accuracy while for Recall, Precision and F1 Score
the results are 93.45%, 93.48% and 93.46% respectively. For
HLGGM features, the precision was at 99.19%, accuracy,
recall and F1-score at 99.16%. Lastly HLGCM features stood
at the top of the evaluation metrics with the precision at a
staggering 99.50%, accuracy and recall at 99.49% with the
F1 Score and Kappa Statistics at 99.79% and 99.37%.

B. EVALUATION OF ECNN FEATURES
The Evaluation of feature vectors obtained through an
effective concatenation of five state-of-the-art convolutional
neural networks provide an optimistic overview of the

TABLE 7. Parametric configuration for decision tree classifier.

technique. The model selection ensured different architec-
tures are picked based on their varied feature extraction
mechanisms including the depth-wise separable and residual
connection based hierarchy. These variations in different
architectures allowed a diversity of features. The individual
classification for each of the respective CNN based features
in the previous approach, stood at the highest accuracy of
86.07%derived from theMobile-Net v3 features.Meanwhile,
the concatenated feature approach namely ECNN soared
the accuracy value from a model 86.07% highest to a
new benchmark value of 93.45% on the corresponding
decision tree classifier with a depth value of 250. The
parametric definitions of the respective classifier is given
in the Table 7. The significant increase in approx. 7.38%
accuracy proved the efficacy of feature concatenation in
enhancing the classification and discerning capabilities of the
model. The performance increase may be accounted to the
fact that the higher number of concatenated features added
more descriptive details that a single architecture wasn’t able
to capture. Although the increase in the number of features
resulted in the computational complexity, this technique can
be significantly effective under resource-abundant setups
where accuracy is of utmost priority. In crux, a final concate-
nated vector holding essential definitive properties of various
scales helped the model better distinguish between the
classes. The descriptive illustration of the evaluation metrics
including the ROC curve is given in the Figure 18. Moreover,
the metrics details inclusive of precision, sensitivity and other
evaluation criterion is provided in the Table 6.

The Confusion Matrix for the ECNN shows an improved
performance then the individual CNN counterparts. There
are lower mis-classified instances as seen in Figure 18(a).
Con-fusion Matrix. Similarly, the Individual classification
performance for each class is better as illustrated in the ROC
Curve. Class 2 has comparatively lower AUC score due to a
slightly higher False Positive Rate as seen in Fig.18(b) ROC.
Overall performance of the ECNN approach is satisfactory.
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FIGURE 18. (a) Confusion matrix for ECNN (b) ROC curve for ECNN.

FIGURE 19. T-SNE based visualization of ECNN features.

In Figure 19, the t-SNE plot shows the projection of the
class distribution for ECNN features. For a detailed examina-
tion of the relationships between coffee leaves with varying
stress types, the perplexity parameter has been set to a lower
value. Meanwhile, the segregation of clusters in the above
plot signifies the lower-dimensional representation of distinct
patterns in the disease features. Each cluster represents a
group of instances that share similar characteristics or exhibit
similar patterns in the feature space. Different separations
between clusters suggests that there are clear boundaries
between different types or categories of coffee leaf diseases
based on the ECNN features. Furthermore, the proximity of
points within each cluster indicates similarities in the feature
representations and related disease characteristics. Points that
are closer to each other in above t-SNE plot are likely to
have more similar features and share common attributes. This
observation implies that instances within the same cluster are
more likely to belong to the same or closely related disease
category.

C. EVALUATION OF HLGGM FEATURES
The ensemble of hand-crafted and convolutional neural
network based features showed promising outcomes when
classified using the Decision Tree Classifier under the
parametric settings defined within the Table 7. The exper-
iment was an endeavor towards determining the extent to
which a feature concatenation would enhance the model’s

FIGURE 20. (a) Confusion matrix for HLGGM (b) ROC curve for HLGGM.

FIGURE 21. T-SNE based visualization of HLGGM features.

performance. The concatenation of hand crafted features
and a PCA based dimensionality reduced Mobile-Net v3
feature vector generated a classification accuracy of 99.16%
on identical dataset. Outperforming the previous ECNN
methodology’s result of 93.45% by a margin of 5.71%. The
final HLGGM feature vector held a size of 16780 inclusive
of 10 features from PCA based fine-tuned Mobile-Net v3
architecture. The hand-crafted feature descriptors played a
crucial part along with the condensed Mobile-Net v3 feature
vector in determining the characteristics of the input images.
The nature of input required a low level extraction of
definitive characteristics for meticulous distinction of disease
classes, which was successfully accomplished by the use of
hand crafted techniques and an added fine-tuned Mobile-Net
architecture. More details regarding the evaluation matrices
is given in the Table 6 and the Figure 20 - 21.
The Confusion Matrix for HLGGM is yet again depicting

the model’s capabilities in terms of individual classification.
Moreover, The ROC Curve shows the exceptional AUC
scores for each class with just a scarce amount of miss-
classified instances. In terms of performance, the model
surpassed the former two approaches namely ECNN and the
individual CNN models.

The t-SNE projection for HLGGM features, shown in
Figure 21, provides a visualization of the relationships
between different leaf disease features. With perplexity
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FIGURE 22. (a) Confusion matrix for HLGCM (b) ROC curve for HLGCM.

parameter set to a lower value, the t-SNE algorithm captures
local structures and nearby similarities among the data
points. This projection demonstrates, how the various disease
features of the leaves are related to each other based on
the HLGGM features. The projection further reveals that
the relationships between the disease characteristics are not
straightforward and simple, but a complex and densely
intricate pattern. This complexity is shown by a slight
overlap of the disease characteristics in the visualization.
The overlapping clusters suggest that there are similarities
and shared characteristics between different types of leaf dis-
eases. This emphasizes the intricacy and inter-dependencies
among the various leaf disease features captured by the
HLGGM features which cannot all be expressed by a lower
dimensional representation.

D. EVALUATION OF HLGCM FEATURES
The derivation of HLGCM features from dimensionality
reduced hand-crafted and convolution network was a step
towards determining the impact of feature reduction on
the model’s efficiency. The method attained an accuracy
of 99.49% on the decision tree classifier, outperforming
the ECNN and HLGGM approaches having accuracy of
93.45 and 99.16% respectively with the feature count of
HLGCM lying at a bare 99, inclusive of chi2 based hog
features, LBP,GLCM, GABOR and PCA based Mobile-
Net Features. The exceptional results further clarified the
co-relation between the feature vector size and the quality
of descriptors. It was found after the HLGGM classification
results that the HOG based descriptors along with other
Hand Crafted and CNN Techniques captured the essence
of distinct classes providing a highest achieved accuracy
of 99.16%, however, the size of the final vector alone
eluded to a redundancy of features that can be reduced
after a careful feature selection. Hence an exposure to a
chi2 based feature reduction for HOG descriptors to a mere
80 length vector successfully captured the most definitive
properties. The concatenation of the reduced vector with
other respective features not only reduced the final vector
size and computational cost but also enhanced the final
classification accuracy by a factor of 0.33%. The evaluation
results are given in Table 6 and an illustration of the ROC
curve is given in the Figure 22. The performance of HLGCM
in terms of truly predicted values and false positive rates can

FIGURE 23. T-SNE based visualization of HLGCM features.

be inferred from the Confusion Matrix and the ROC Curve.
As observed, the phenomenal AUC score for each class
instance depicted in ROC Curve shed light on the model’s
abilities to distinguish each class. Moreover, a few instances
of mis-classification shown in Confusion Matrix, themselves
define the extent to which the HLGCM technique subdues
the performance of previous methods. Thus making it more
effective in classification of our given problem.

In Figure 23, the t-SNE projection is applied to the
HLGCM features with a lower perplexity. Consequently,
the projection reveals feature overlapping, indicative of
the class similarities.The overlapping, alludes that certain
classes are semantically identical with shared patterns and
characteristics, which are reflected in their HLGCM feature
representations.

This overlapping behavior further highlights the presence
of inter-class similarities, where data points from different
classes are closer to each other in the lower-dimensional t-
SNE space due to their shared semantic attributes.

Overall, the t-SNE projection using the HLGCM features
at a lower perplexity value effectively captures the similarity
between classes, as evidenced by the overlapping of clustered
points. This provides insights into the semantic relationships
and shared characteristics among the different classes in the
dataset.

E. COMPARISON WITH EXISTING STUDIES
Ground breaking research has been ongoing in the field
of biotic stress classification for Coffee Leaves, however,
densely intricate texture and patterns of various diseases
makes it difficult to classify them using straightforward
approaches. Moreover, the inherent textural and color
similarities between varying disease types make many
models susceptible to mis-classification. A couple of recent
research studies analyzed for their methodologies, preferred
convolutional architectures for classification of varying stress
types as mentioned in Table 8.

Almost all of these studies showed inclination for a transfer
learning based approach, due to limited data. Approaches
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TABLE 8. Brief comparison of proposed methodologies with existing studies.

including Few Shot Learning, modifications to existing
state-of-the-art architectures, ensemble learning and guided
learning were used to achieve high accuracy on different
datasets. While [14] worked on a deeper analysis of class
overlapping and their segregation using a Kernel Density

approach prior to using a convolutional network for a
guided take on imbalanced classes, others focused entirely
on pushing the capabilities of the convolutional networks
achieving a maximum accuracies of 99.07 and 99.87% using
concatenated and transfer learning models for 5 and 4 class
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classification. The computational costs and limited control
over feature extraction pose significant challenges.While
convolutions are indeed a powerful mechanism for feature
extraction, hand crafted features provide a complementary
interpretation of complex features and textures for better
explainability of underlying decision making process if
used alongside CNN. Along with the performance, the
computational complexity can be greatly mitigated using
only the selective highly descriptive features from both
convolutional networks and hand crafted techniques. As is
evident by our HLGCMmethodwhich attained a state-of-the-
art accuracy of 99.49% for 5 classes alongwith an exceptional
computational cost reduction compared with other state of the
art architectures as given in Table 8.

V. CONCLUSION
This paper addressed various challenges posed by biotic
stress on coffee leaves. These challenges have a fatal
footprint and have a detrimental impact on the yield. This
paper contributes by proposing three methodologies using
a feature ensemble technique employing state-of-the-art
CNN architectures and hand-crafted features to enhance
the classification performance. Different combinations of
feature ensemble were inspected and analyzed to assess
their impact on model’s performance. Moreover, semi-
segmentation approach was considered for an effective
guided extraction of foreground details and a deliberate
openness to background noise for enhanced robustness.
Additionally, a newly re-fined dataset was utilized for
stress classification. The competency of the proposed
technique was evaluated through various metrics. It was
found that the concatenation approach worked better then
the non-concatenated approaches for this setting. The pro-
posed ensemble of CNN and handcrafted features named
HLGGM attained superior performance than the ensemble
of only CNN based features named ECNN by attaining
99.16% accuracy. Similarly, the dimensionality reduction
further enhanced the performance of CNN and handcrafted
techniques by attaining 99.49% accuracy. Revealing further
insights about the role of feature reduction in augmenting
model’s efficiency. The challenges pertaining to plant disease
classification and the effective novel approaches proposed
in this research aim to contribute towards the deployable
and computationally inexpensive solutions. Moreover, the
proposed approaches offer a potentially improved disease
classification for timely interventions and nurturing a sustain-
able coffee production. Despite attaining significant results,
the following study faces some limitations. One of which
is the validation and real world deployment testing. The
evaluation methodologies employed in this paper focus
mostly on the classification accuracy for this particular
dataset, however the experimentation should be extended to
tests under various environmental conditions and for different
sets of data. Moreover, the proposed methodologies are
complex in their composition and require segregated feature
extraction and processing before classification albeit having a

significantly lower decision time. Therefore, further combi-
nations of features should be explored for a computational
friendly and low complexity methodology. In future, the
study will further be extended to a low complexity and
computationally efficient approach along with an automated
severity estimation for an effective diagnosis of the extent of
biotic stress. Moreover, additional work on the deployment
on edge devices will be explored for effective integration in
real world scenarios.
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