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ABSTRACT Precise recognition of human activities in any smart environment such as smart homes or
smart healthcare centers is vital for child care, elder care, disabled patient monitoring, self-management
systems, safety, tracking healthcare functionality, etc. Automatic human activity recognition (HAR) based on
smartphone sensor data is becoming widespread day by day. However, it is challenging to understand human
activities using sensor data and machine learning and so the recognition accuracy of many state-of-the-art
methods is relatively low. It requires high computational overhead to improve recognition accuracy. The goal
of this paper is to use exploratory data analysis (EDA) to deal with this strain and after analyzing, visual-
izations and dimensionality reductions are obtained which assists in deciding the data mining techniques.
The HAR method based on smartphone accelerometer and gyroscope sensors’ data, EDA, and prediction
models proposed in this paper is a high-precision method, and its highest accuracy is 97.12% for the HAR
smartphone dataset. Heterogeneous models-based two ensembles: stacking and voting are used in this study
to identify human activities of daily living (ADL). Three estimators are used: Linear Discriminant Analysis,
Linear Support Vector Machines, and Logistic Regression for both stacked and voting generalization. The
experimental results show that the generalization algorithms provide an automatic and precise HAR system
and can serve as a decision-making tool to identify ADL in any smart environment.

INDEX TERMS Activities of daily living, exploratory data analysis, hard voting, heterogeneous model,
smartphone sensor, stacked generalization.

I. INTRODUCTION
Human activity recognition (HAR) has appeared as an
interdisciplinary and exciting field of research with the con-
nection of computer science, signal processing, and machine
learning. HAR system can automatically detect, classify,
and understand human activity. HAR systems empower
the expansion of intelligent systems that can familiarize
themselves with human actions, heighten personalized ser-
vices, and make available valuable insights for observing
and improving individual health and performance. With the
explosion of wearable devices, ubiquitous sensing technolo-
gies, and the growing necessity for smart environments,
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HAR has gained noteworthy consideration as a vital issue
in numerous practical spheres, including healthcare, surveil-
lance, sports analysis, robotics, and human-computer interac-
tion [1], [2]. For example, in healthcare, HAR techniques can
be employed to monitor patients’ physical activities, facilitat-
ing the early finding of anomalies and scheming personalized
treatment strategies.

Activities of daily living (ADL or ADLs) is a term used
in healthcare to denote the fundamental activities people
perform in their daily life generally without the help of
others such as walking, running, standing, sitting, bathing,
dressing, walking upstairs, walking downstairs, lying, brush-
ing, etc. [2]. ADL is used as an indicator of an individual’s
functional status. A person who cannot accomplish necessary
ADLs may have a worse life quality or be risky in their
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present life situations; hence, they may necessitate the help
of other persons and/or mechanical devices [3].
Due to the widespread ease of use of smartphones in recent

years, recognizing ADL using smartphone data has gained
significant attention. Again, having built-in sensors such
as accelerometers, gyroscopes, magnetometers, and GPS,
smartphones have become powerful tools for collecting data
about human activities. Moreover, researchers have achieved
improved recognition performance and better discrimination
between similar activities, by exploring the fusion of multi-
ple sensors in smartphones [4], [5], [6], [7]. Sensor fusion
techniques, such as feature-level fusion, early fusion, and late
fusion have been used to combine data from multiple sensors
meritoriously.

That means, existing works in HAR based on smartphones
have established the potential of smartphones as trustwor-
thy and handy tools to recognize human activities. Various
data mining algorithms, sensor fusion approaches, and sig-
nal processing techniques have considerably contributed to
improving performance and recognition accuracy.

Changes from the existing works which are typically fit
for activity identification part in HAR systems, this study
proposes a new and detailed exploratory data analysis (EDA)
method for visualizing data to separate human activities.
Using smartphone sensors’ data for ADLs and combining
the results of multiple heterogeneous models, we achieve
activity recognition effectively. Our contributions are as
follows:

• In this study, a detailed exploratory data analysis is
outlined to deal with the recognition of activities of daily
living based on smartphone sensor data. So far we know,
no existing work has presented the analysis of HAR
data in such detail. The detailed EDA highlights the
internal characteristics of data so that the data analyst’s
knowledge of identifying activities improves more and
deeper, or changes the understanding with the learning
to figure out the real distribution of the activity data.

• We use boxplots of ‘five number summary’ to visualize
the dispersion of data; histograms, and bar of probability
distribution functions to find the inception for differen-
tiating the steady and moving activities on univariate
analysis. Moreover, we apply kernel Principal Compo-
nent Analysis (kPCA) as well as T-distributed Stochastic
Neighbor Embedding (t-SNE) manifold learning meth-
ods to investigate the separability of data on all features.
These details EDAs assist in selecting a robust model for
the HAR method.

• The HAR method based on smartphone sensor data,
detailed EDA, and recognition from multiple hetero-
geneous models proposed in this paper is a new
lightweight ensemble method. Although the machine
learning method used here is lightweight, it is a
high-precision method. This study attains higher pre-
diction accuracy and lower training time in comparison
with state-of-the-art shallow and deep models. Various
model evaluation techniques are used to measure the

performance of the method to authenticate the estimated
results.

The rest part of this paper is prepared as follows. The second
section reviews some state-of-the-art in the field of HAR
and the use of smartphone sensors to capture data. The third
section presents a new and details exploratory data analysis
for the selected dataset and details modeling to deal with sen-
sor data for ADL recognition. The fourth section illustrates
and describes the experimental results and discussion with
estimators and their hyper-parameters. The fifth part sums
up the work of this study appeals to a conclusion, and plants
some directorial thought for future study.

II. RELATED WORKS
In the past decades, HAR has become an active field of
research and many researchers worked on HAR systems
for building various HAR applications in smart environ-
ments. Generally, a HAR system consists of several common
steps [7]: sensing activity data from environment or body
sensors, pre-processing and labeling the activity data, seg-
mentation using sliding window, feature extraction from
time and/or frequency domains, and modeling using shallow
and/or deep learning methods with or without transfer learn-
ing. As modeling is an essential and significant part of the
HAR system, the selection of a classification model has a
prominent effect on the overall precision of the system.

In the literature, there are two types of HAR systems
based on the classification algorithms used. One prominent
approach is based on the use of shallow learning algorithms.
These algorithms learn from labeled datasets where each
activity is associated with a specific set of sensor data fea-
tures. Features commonly used include time-domain features,
frequency-domain features, statistical features, and spatial
features. Researchers have employed classifiers such as deci-
sion trees [7], [8], k-nearest neighbors (k-NN) [8], random
forests [7], [8], artificial neural networks (ANN) [8], [9],
support vector machines (SVM) [7], [8], [9], [10], etc. to rec-
ognize activities such as walking, running, sitting, standing,
and cycling. These approaches have demonstrated promising
results in accurately recognizing activities with high accu-
racy rates. Kong et al. [7] proposed a method based on six
different shallow learning models and achieved the highest
accuracy using linear SVC with the Grid search method of
tuning hyper-parameters. They present some data analysis
like ours but details exploratory analysis for the smartphone
sensors data is not provided. Moreover, although their meth-
ods provide certain higher accuracy but require relatively
higher training time. Masum et al. [8] captured data using a
Xiaomi Redmi 4A smartphone, used PCA for selecting fea-
tures, and applied several mining algorithms including Dense
Neural Network, Decision tree, k-NN, random forests, SVM,
and achieved the highest 94.38% accuracy for their prepared
dataset. They compared the recognition results based on gen-
der (Male and Female) whichwas not compared in any former
research but their methods provided worse results for highly
similar activities such as walking with walking downstairs
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and/or walking upstairs. Khan et al. [9] acquired data using
an LG Nexus 4 smartphone from five different phone posi-
tions in the body from 40 subjects, sampling at 6 different
rates, and used data from 30 subjects for offline training and
that of 10 subjects for real-time testing. They used kernel
discriminant analysis to reduce class variance and ANN for
modeling and achieved the highest 87.1% accuracy. They
offered lightweight features that do not necessitate higher
sampling rates and lengthier time windows for their calcula-
tion and so assist in attaining a fast response but those features
are not fully position/orientation-independent of the phone
such as the phone in the user’s hands, in a carrier bag, in a
coat’s side pocket, etc. Moreover, their recognition accuracy
is a bit lower than in many former works. Diney et al. [10]
captured accelerometer data using an Android smartphone
from a single subject and proposed an SVM model for the
recognition of three activities of daily living. The authors
developed the depiction of initially engendered vectors into
compact clusters but captured data of training and recognition
from only one subject, so it cannot be a widespread solution
for HAR applications.

Another approach is based on the use of deep learn-
ing algorithms for HAR. Deep learning models such as
convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) have shown remarkable performance
in various recognition tasks including HAR. By leverag-
ing the hierarchical representations learned from raw sensor
data, deep learning models can automatically extract rele-
vant features and capture complex temporal dependencies in
activity sequences. Researchers have designed deep learning
architectures for HAR [5], [6], [11], [12], [13], achieving
state-of-the-art accuracy rates and robustness to different
environments and user populations. Shi et al. [5] used the
Boulic kinematic model to construct the dataset from body
movement sensors and proposed a Deep Convolutional Gen-
erative Adversarial Network (DCGAN) and a pre-trained
deep CNN architecture on ImageNet, VGG-16, deep model
for recognizing three types of walking activities based on
moving speed. This method is decent to expand and enrich
training set to escape overfitting and acquire better results
even in the case of higher similarity between activities such
as fast-walking and really-fast-walking but the downside is
that the author works for three types of walking activities
only. Ravi et al. [6] proposed CNN models using three dif-
ferent regularizations for each of four different datasets:
ActiveMiles, WISDM v1.1, Daphnet FoG, and Skoda and
achieved 95.1%, 98.2%, 91.7%, and 96.7% for recogniz-
ing 2, 6, 7, and 10 activities respectively. They achieved
consistent accuracy for real-time classification in low-power
devices using their more discriminative and sensor ori-
entation/placement invariant features for the datasets but
their precision and computational times are not better than
some former state-of-the-arts. Hammerla et al. [11] worked
on three different datasets: Opportunity, PAMAP2, andDaph-
net Gait, proposed five different deep models for each of

the datasets, and obtained the highest 92.7%, 93.7%, and
76% accuracy for three datasets respectively. The authors
presented a unique regularization method, explored the influ-
ence of hyper-parameters, and conveyed a recommendation
for future researchers who may use deep learning models but
their suggested setting doesn’t show consistent performance
for all benchmark datasets of HAR as well and their guide-
lines are limited to few deepmodels (DNN,CNN, and LSTM)
and don’t advocate whether they will work for other broadly
used deep models such as Inception, Gated Recurrent Unit
(GRU), etc. for HAR. Xu et al. [12] worked on 18 mid-level
gesture activities from the Opportunity dataset, 18 lifestyle
activities from the PAMAP2 dataset, and 6 activities of daily
living for the dataset used in this study (HAR smartphone
dataset) and achieved 94.6%, 93.5%, and 94.5% accuracy
using Inception GoggLeNet and GRU for three correspond-
ing datasets. Though this method provides better general-
ization and consistent performance than existing methods
but doesn’t explore the class imbalance problem in the
data for real-life HAR applications. Bhattacharya et al. [13]
proposed Ensem-HAR, where CNN-Net, CNN-LSTM-Net,
ConvLSTM-Net, and StackedLSTM-Net are used as base
models and Random Forest, is used as a meta-model of
stacking and implemented their method on three different
datasets including the one used in this paper and obtain
95.05% accuracy for HAR Smartphone dataset. Though their
stacking of four deep learning-based models performs better
than the other works to which it is compared, its accumulative
training time of four different deep learning-based models is
so high that it cannot be a typical method for real-time HAR
applications.

In summary, although plenty of work has been completed
to boost and optimize the models in HARmethods; still there
are the following deficiencies:

(1) As we know human behavior of performing activity is
not only usual and impulsive, but also human beings may
perform some unrelated activities. Besides this, there are
some variations of performing the same activity by different
users. Another challenge is to handle the speed of movement
in moving activities. We use a new EDA method to deal
with HAR, which can effectively and accurately separate the
activities.

(2) There are a variety of machine learning techniques.
So selecting the best machine learning model is a challenge.
The HAR method based on EDA can find a robust classifier
for the dataset to reduce error with low training time.

In this paper, the domain knowledge is enriched by
exploratory analysis of the data which in sequence helps to
select a robust model for the activity classification task, which
provides high precision results by minimizing the associ-
ated HAR problems like solving the misperception of highly
alike activities such as walking and walking-downstairs. For
evaluating the performance of the selected model, numerous
comparative experiments are conducted and various perfor-
mancemetrics are used. The experimental outcomes show our
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methodology overtakes state-of-the-art and reaches higher
accuracy up to 97.12%.

III. METHODOLOGY
The methodology involves the following steps: data collec-
tion, data preprocessing and analysis (which includes data
cleaning as well as exploratory data analysis to observe
imbalance in the data and analysis on the single andmultivari-
able), and finally modeling with sensor data. The conceptual
figure of the proposed framework is shown in Fig. 1 and is
described in the sections below.

FIGURE 1. Conceptual figure of the proposed framework.

A. HAR SMARTPHONE DATASET
The dataset we used in this paper was collected from
the UCI machine learning repository [14] and prepared by
Anguita et al. [4]. The data is acquired from 30 participants
whose age is between 19 and 48. Each person is asked to
perform six activities of daily living: LAYING, SITTING,
STANDING, WALKING, WALKING_DOWNSTAIRS, and
WALKING_UPSTAIRS by wearing a waist-mounted Sam-
sung Galaxy S II smartphone with embedded inertial sensors,
accelerometer, and gyroscope. Using its built-in accelerom-
eter and gyroscope, the three-axis linear acceleration and
three-axis angular velocity are captured respectively at a uni-
form rate of 50Hz. Participants’ activities are video recorded
so that their activities can be labeled manually. The labeled
data is randomly partitioned into train and test sets, where
data from 21 participants are selected for generating the train-
ing data and the data from the rest participants are selected for
generating the test data.

The noise is removed from raw sensor signals (accelera-
tion and angular velocity) by applying a median filter and
a third-order Butterworth low-pass filter with a corner fre-
quency of 20 HZ and then segmented in sliding windows
of constant-width of 2.56 seconds and 50% overlapping, i.e.
128 readings/window. The raw acceleration signal of the

sensor is separated into two components: body accelera-
tion and gravity acceleration by using another Butterworth
low-pass filter with a cut-off frequency of 0.3Hz because
gravitational force is supposed to have only low-frequency
components.

From each segmented window, a feature vector is obtained
by estimating variables from both time and frequency
domains. The data of each feature are normalized and con-
fined within [-1, 1]. Finally, each record of the dataset
contains a 561 feature vector, its activity label, and an identi-
fier of the user who carried out that experiment. Fig. 2 shows
the total data in the dataset with their train and test data
splitting for each activity and we see that about 70% of the
total data is used for training and the rest is used for testing.

FIGURE 2. Splitting whole data into train and test sets.

B. DATA CLEANING
We perform initial data analysis for cleaning the feature data.
From the data overview, we see that there is no outlier; all
the values are bounded between −1 to 1. Again, we see that
there are no duplicates in the train and test datasets.Moreover,
we should not be worried about null values because there
is no missing value present in the dataset and we find no
feature with irregular cardinality. However the dataset con-
tains some features that are irrelevant for machine learning
modeling, so we remove those irrelevant features from the
dataset.

C. EXPLORATORY DATA ANALYSIS
Getting to understand the data is called Exploratory Data
Analysis or EDA. It is a statistical way of perceiving
and inferring the dataset. Usually, EDA comprises the
following [15]:

1) Observing data inequality among its various classes.
2) Univariate feature analysis of the dataset, and noticing

the implication of a specific feature in classification
using data visualization methods usually histograms or
boxplots.

3) Multivariate feature analysis of combined features of
the dataset, which is usually done using pair plots
or dimensionality reduction techniques like PCA or
t-SNE.
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1) OBSERVING IMBALANCE IN THE DATA
Fig. 3 below shows the data provided by each subject.
Fig. 3(a) shows the data percentage by all users and from
this figure; we observe that each subject has almost the same
number of data. We have only less data from user 8 (eight)
compared to others but that’s acceptable. So, we should not
worry about the difference between them. Fig. 3(b) shows
this in more detail, where data of each user is further high-
lighted based on the user’s activities and we see that each
user performs each activity in almost equal number of times
which means there is no significant amount of gap in their
readings.

FIGURE 3. Data provided by each subject.

The imbalanced range of percentage of the subjects is
1.74%. So, we conclude that subject-wise data as well as
activity-wise each subject data is balanced well.

Fig. 4 below shows the number of data points for each of
the six activities of daily living. Fig. 4(a) shows the data per-
centage of all activities and from this figure; we observe that
each activity has almost the same number of data. We have
only fewer walking staircase data compared to others but
that’s reasonable. So we should not be worried about the
difference between them. Fig. 4(b) shows this in more detail,
where data of each activity is further highlighted based on
each user and we see that each activity is performed by each
subject in almost equal number of times which means there
is no significant amount of gap in their readings.

FIGURE 4. Data for each activity class.

The imbalanced range of the percentage of the activities
is 5.7%. So, we conclude that activity-wise data as well as
subject-wise activity data is balanced enough.

2) UNIVARIATE FEATURE ANALYSIS
Analysis of a single dimension or feature is known as univari-
ate analysis. We performed the following univariate analysis:
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a: FEATURE/SENSOR IMPORTANCE FROM
DOMAIN KNOWLEDGE
Stationary activities (lying, standing, and sitting) are those
where there is no motion of an object. Moving activities
(Walking, Walking Upstairs, and Walking Downstairs) are
those where there is the motion of an object. That means,
in motionless activities, accelerometer information will not
be very significant whereas in motion activities accelerom-
eter information will be useful. Fig. 5 shows the number
of features in the dataset that come from the accelerometer
and gyroscope sensor of the smartphone. As we see, most of
the features are constructed from accelerometer sensors so
moving activities will easily be distinguished.

FIGURE 5. Number of features from various sensors.

b: STATIC AND DYNAMIC ACTIVITIES ARE
UTTERLY DIFFERENT
Fig. 6(a) shows the probability density functions (PDFs)
for six ADLs based on the feature ‘tBodyACCMag-
mean()’ (mean value for the magnitude of acceleration in the
time domain for body motion). From PDFs, we can observe
the difference between motionless and motion activities.

As per the PDF distribution of Fig. 6(a), we look closer by
dividing the PDFs into two parts to distinguish inactivity and
motion curves, shown in Fig. 6(b) and Fig. 6(c) respectively.
Comparing these two figures, we can find that motion activ-
ities are less intensive than motionless activities. Moreover,
the ranges of feature data for both types of activities are very
dissimilar.

c: BODY ACCELERATION CAN SEPARATE IT WELL
Fig. 7 shows the boxplots for six ADLs based on the fea-
ture ‘tBodyACC-max()-X’ (maximum value of acceleration
along X -dimension for body motion). From the boxplots,
we can observe the difference between stationary and moving

FIGURE 6. Histogram and its nearby view for two types of activities.

activities clearly by their dispersion. We can find that moving
activities spread more than motionless activities. Moreover,
we can separate those activities by simply using the following
threshold statement: if (tBodyACC-max()-X < -0.75) then
Activity = ‘‘Static’’ else Activity = ‘‘Dynamic’’.
Also, using boxplot we can easily separate WALK-

ING_DOWNSTAIRS activity from others: if
(tBodyACC-max()-X > 0.25) then Activity = ‘‘WALKING_
DOWNSTAIRS’’ else Activity = ‘‘others’’.

99486 VOLUME 11, 2023



S.M. M. Islam, K. H. Talukder: Exploratory Analysis of Smartphone Sensor Data for HAR

But still, about 15% ofWALKING_DOWNSTAIRS obser-
vations are below 0.25 which are misclassified so this
condition makes an error of 15% in walking downstairs
classification.

FIGURE 7. Data dispersion of six ADLs for body-acceleration maximum
value along X-dimension.

Our analysis shows that not only the body acceleration
value itself can separate the activities but also the jerk and
magnitude of the body acceleration can separate them. Jerk
or jolt is the rate at which an object’s acceleration changes
to time and magnitude is the absolute change in motion
regardless of the direction of movement [16]. We observe
also that standard deviation values in both time and frequency
domains, as well as entropy in the frequency domain of jerk
of body acceleration along the X-dimension, can separate the
ADL. Last but not least, the mean value in the time domain of
magnitude of body acceleration can separate human activities
well. These are illustrated in Fig. 19 to Fig. 22, shown in
Appendix A.

d: GRAVITY ACCELERATION COMPONENTS ALSO MATTERS
Gravity acceleration components can distinguish matting
activity from others. Fig. 8 shows the data extent using box-
plots and probability density function (PDF) for six ADLs
based on the feature ‘tGravityAcc-min()-X’ (smallest value
of gravity acceleration in the time domain along the X -axis).
From both boxplots and PDF, we can observe that it perfectly

distinguishes all data points belonging to the LAYING activ-
ity from other activities by just a single if-else statement: If
(tGravityAcc-min()-X < 0.35) then Activity = ‘‘LAYING’’
else Activity = ‘‘others’’.

FIGURE 8. Boxplot and PDF of six ADLs for gravity-acceleration minimum
value in the time domain along the X-axis.

Analysis shows not only the gravity acceleration min in the
time domain along the X-axis but also the gravity accelera-
tion max, gravity acceleration mean, and gravity acceleration
energy (sum of the squares divided by the number of values)
in the same domain along the same axis can separate the
matting activity well. Last but not least, the angle between
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the X -axis and gravity acceleration mean can also separate
the in-bed activity from others. These are illustrated in Fig. 23
to Fig. 26, shown in Appendix B.

e: ANGULAR VELOCITY FROM THE GYROSCOPE IS
ALSO A FACTOR
Though accelerometer data is significant to distinct static
and dynamic activities, analysis pays attention to that gyro-
scope data in many cases can discriminate them. Fig. 9
shows the boxplots for six ADLs based on the feature
‘fBodyGyro-entropy()-Z’ (entropy value of angular velocity
from gyroscope along Z -dimension in the frequency domain
for body motion). From boxplots, we can see that moving
activities can be clearly distinguished with a threshold value
as follows: If (fBodyGyro-entropy()-Z > 0.04) then Activ-
ity = ‘‘Dynamic’’ else Activity = ‘‘Static’’.

FIGURE 9. Data spread of six ADLs for gyroscope-entropy value along
X-dimension in the frequency domain for body motion.

3) MULTIVARIATE FEATURE ANALYSIS
Analyzing multiple features together is called multivariate
analysis. In the above, we perform analysis on a single
feature; here we perform analysis over all 561 features
(i.e. excluding ‘subject’ and ‘Activity’ features) to investi-
gate the separability of the data through visualization using
two non-linear dimensionality reduction techniques: Kernel
PCA and T-distributed Stochastic Neighbor Embedding.

a: INVESTIGATING THE SEPARABLITY OF DATA USING KPCA
kPCA is an extension of PCA that achieves non-linear dimen-
sionality reduction through the use of kernels to decompose
a multivariate dataset in a set of components that explain a
maximum amount of the variance [17]. In PCA the num-
ber of components is bounded by the number of features
whereas in kPCA that number is bounded by the number of
instances [18].

We have used polynomial as well as Radial Basis Func-
tion (RBF) as kernel and the resulting figures are shown in
Fig. 10(a) for polynomial kernel degree, 9, and in 10(b) for
RBF kernel coefficient, 0.05, respectively.

FIGURE 10. kPCA using two different kernels to separate the activities.

From both figures, we see that steady andmoving activities
can be separated very well. But each of the dynamic activities
is not easily separable from each other whereas each of the
static activities is easily separable from each other with some
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errors in standing and sitting. That means, kPCA is good for
separating each static activity but not good for separating each
dynamic activity.

b: INVESTIGATING THE SEPARABLITY OF DATA
USING T-SNE
t-SNE is another tool to observe the behavior of the data by
visualizing them from an extremely high dimensional space
to a compelling low dimensional space. Though it projects
data to low dimensional space still it retains lots of actual
information [19]. It does this by converting affinities between
data points to Gaussian joint probabilities in the original
space and it tries tominimize theKullback-Leibler divergence
by gradient descent between the joint probabilities of the
embedding space and the original data. In the embedded
space, affinities are represented by Student’s t-distributions.
This allows t-SNE to preserve the local structurewhichmeans
data that is close in embedding space remains close, and the
far remains far [20]. It’s a powerful dimensionality reduction
technique that reveals data to lie in multiple, manifolds or
clusters.

Perplexity is the number of closest neighbors of each point
t-SNE contemplates when producing conditional probabili-
ties. The perplexity value has an impact on the optimization
of t-SNE and therefore on the quality of the resulting embed-
ding. That’s why we analyze different plots with different
perplexities: 2, 5, 20, 30, 50, 60, 80, and 100. A higher
perplexity considers a larger number of neighbors and ignores
more local information in favor of the global structure of
data. Conversely, lower perplexities lead to smaller nearest
neighbors and thus less sensitivity to global information in
favor of the local neighborhood [20]. Four other factors
control the performance of the resulting embedding: early
exaggeration, learning rate, maximum number of iterations,
and angle [20]. The resulting image for perplexity 80 with
early exaggeration, 12.0, learning rate, 153.167, the maxi-
mum number of iterations, 1000, and angle, 0.5, is shown
in Fig. 11.

We select perplexity 80 because it balances attention
between local and global characteristics of data than other
perplexities. For clarification, the figures for four other per-
plexities: 5, 20, 50, and 100 are shown in Fig. 27 to Fig. 30 in
Appendix C.

In Fig. 11, we see the data points in 2 dimensions and we
observe the behavior of those data points. We can see the
six activities in three folds/clusters. Again we observe that
all other classes are fairly separable instead of ‘standing’ and
‘sitting’ classes, because of similarities in sensor values, and
it is expected because both are static actions. Maybe other
sensors like the heartbeat sensor can assist in discriminating
this because the heart rate is different at resting and stand-
ing poses. Laying activity is totally in a different position.
Walking, Walking downstairs, and walking upstairs are some
kind of similar so they are clustered together but separable
from each other. So, t-SNE is good for separating each of

FIGURE 11. t-SNE with perplexity 80 for separating the activities.

both types of activities, especially all dynamic and matting
activities.

D. MODELING WITH SENSOR DATA
We have used those two ensemble approaches where the
final prediction result is obtained from multiple conceptu-
ally different or heterogeneous learning models: Stacking,
and Voting. In both approaches, we have combined the pre-
dictions of three classical machine learning linear models:
Linear Discriminant Analysis (LDA), Linear Support Vector
Machines (LSVM), and Logistic Regression (Logit). These
heterogeneous models are applied with the same hyper-
parameters in both stacking and voting classification cases,
but their learning and recognition strategies are different.
Both stacking and voting classifiers improve generalizability
or robustness over a single classifier [21]. In the below, the
three estimators that are used in our both stacked and voting
generalization are outlined with their hyper-parameters so
that one can reproduce the result and then the learning and
recognition process of both ensembles are delineated.

1) ESTIMATORS AND THEIR HYPER-PARAMETERS
The parameters that are not directly learned within models
are called hyperparameters. They are provided as arguments
to the model classes’ constructors in Scikit-learn [22].
Linear Discriminant Analysis provides a linear decision

boundary which is generated by fitting a class conditional
Gaussian density to each class and using Bayes’ rule [23].
As the dataset contains six ADLs, the desired dimensionality
here is five. We have used the least squares solution as a
solver and automatic shrinkage as a form of regularization
(to improve the estimation of covariance matrices) using the
Ledoit-Wolf lemma [24].
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Support Vector Machines use only a small subset of train-
ing data in producing the decision boundary (called support
vectors) [25]. We have used linear support vector classifi-
cation i.e. SVM with linear kernel and so the multiclass is
handled according to the one-vs-the-rest scheme. The maxi-
mum iteration used here is 500 with a random state of 42.

Logistic Regression or Logit regression is a maximum-
entropy log-linear classification model in which the prob-
abilities unfolding the potential outcomes of a single test
are modeled using a logistic function [26]. We have used
L2 regularized logistic regression with maximum iteration
50 and the multiclass is handled using cross-entropy loss.

The list of hyper-parameters for all the above baseline
algorithms is shown in Table 1.

TABLE 1. Hyper-parameters of the baseline estimators.

2) LEARNING AND RECOGNITION PROCESS OF
STACKING CLASSIFIER
Stacked generalization is a stack of estimators (base estima-
tors) with a final estimator (meta-estimator) which reduces
the bias of individual estimators. This allows for combining
the different strengths of all individual predictors [27], [28].
In our proposed method, among the linear models mentioned
above the first two are used as base models and the third
one is used as a meta-model, stacked in two different layers,
as shown in Fig. 12.

FIGURE 12. Proposed stacking model.

We first remove irrelevant features from both the HAR
train and test dataset. During training, the whole train data
are fed to the first base estimator, LDA, directly and to the
second base estimator, LSVM, after standardization whereas

FIGURE 13. Training strategy of the meta-model.

the Logit model is fitted on out-samples through 5-fold
cross-validation i.e. using cross-validated predictions of base
models to generalize and avoid over-fitting. The training
strategy of base-layer estimators is shown in (1) and (2), and
that of the meta-estimator is shown in Fig. 13.

fit (LDA) = LDA_fit(x_train, y_train) (1)

fit (LSVM) = LSVM_fit(x_train, y_train) (2)

During recognition, the outputs of base-layer estimators,
LDA and LSVM, are stacked together in parallel on the test
data, and the Logit estimator in the second layer uses those
outputs as input to compute the final activity class of the
stacking model. The recognition process of those estimators
is shown in (3), (4), and (5) respectively.

predict (LDA) = LDA_predict(x_test, y_test) (3)

predict (LSVM) = LSVM_predict(x_test, y_test) (4)

predict (Logit) = Logit_predict (predict (LDA) ,

predict (LSVM)) (5)

In the above equations (also in (6) to (12) below), x_train
and x_test are the train and test data after removing irrelevant
and target features from the training and test set respectively.
Similarly, y_trainand y_test are the target activity classes of
those datasets. The fit and predict functions (in various forms)
represent the learning and prediction by related models on
given data correspondingly.

3) LEARNING AND RECOGNITION PROCESS OF
VOTING CLASSIFIER
The voting generalization of the proposed method is a major-
ity rule classifier that combines the three heterogeneous linear
models mentioned above and uses a majority vote (hard
voting) i.e. the mode of the predicted labels to recognize the
human activity. This is useful to balance out the weaknesses
of each model [21]. All models: LDA, LSVM, and Logit are
worked in the same layer, as shown in Fig. 14.

After removing irrelevant features from the dataset, the
same train data are fed to all estimators directly, except
LSVMwhere data is fed after standardization. That means all
estimators are trained on the whole training data. In the recog-
nition stage, each estimator predicts the activity, and the final
output is selected based on the maximum vote. The whole
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FIGURE 14. Proposed voting model.

voting strategy is illustrated in the following equations where
(6), (7), and (8) show the training process of each estimator
and (9), (10), and (11) show the prediction process of each
estimator respectively and (12) shows the final recognition
by voting classifier.

fit (LDA) = LDA_fit(x_train, y_train) (6)

fit (LSVM) = LSVM_fit(x_train, y_train) (7)

fit (Logit) = Logit_fit(x_train, y_train) (8)

predict (LDA) = LDA_predict(x_test, y_test) (9)

predict (LSVM) = LSVM_predict(x_test, y_test) (10)

predict (Logit) = Logit_predict(x_test, y_test) (11)

predict (VOTING) = max (predict (LDA) , predict (LSVM) ,

predict (Logit)) (12)

where max represents the majority class of the predictions.

IV. RESULT ANALYSIS
We have implemented our method using the Scikit-learn
library for machine learning in Python 3.0. The following
section describes our experimental results and later the com-
parisonwith the state-of-the-art and a discussion of the results
is outlined.

A. EXPERIMENTAL RESULTS
Developing the machine learning model by properly tuning
the hyper-parameters of the estimators, the heat map of the
confusion matrix is obtained. Fig. 15 shows the confusion
matrix for both stacking and voting classifiers. From the
heat maps, we outline three remarks: (1) The correlation
degree of the stacking model is higher than that of the voting
classifier (2) The correlation degree of inactivity is higher
than that ofmoving activity. (3) The correlation degree among
static activities is higher than the correlation of any static
activity with any other moving activity. This means that if any
static activity is misclassified, it is misclassified to another
static activity not to any motion activity. The opposite is
also true.

Besides this, the detailed classification reports i.e. activity-
wise precision, recall, F1-score, and support, and their
weighted averages are also obtained for both ensembles
(Table 2 and Table 3). By analyzing these tables, we can
find that the difference between precision and recall is not so

high which indicates that for any human activity class, the
classifier misclassified it to any other class as well as any
other class is misclassified to it; in both cases, the error is
almost equal and too low. The higher support value of static
activities than that of dynamic activities focus on the disguise
that human is too lazy to do exercise activities. The high
average values of precision, recall, and F1-score show the
robustness of themodels andwe see that the stackingmodel is
better than the voting model for the HAR smartphone dataset.

FIGURE 15. Confusion matrix for ensemble models.

Again, the learning accuracy and learning time as well as
recognition accuracy and recognition time of the proposed
models are also found (Table 4 ). Training accuracy illustrates
that models are not fully over-fitted, that’s why we get com-
parable prediction accuracy for both models. Comparing the
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TABLE 2. Classification report for stacking ensemble.

TABLE 3. Classification report for voting ensemble.

TABLE 4. Accuracy and required time for the ensembles.

TABLE 5. Comparison with state-of-the-art.

data within the table, we see that the stacking ensemble shows
better results than the voting classifier in all cases except in
the case of training time complexity, though the training time
is at a negligible level. The proposed stacking classifier shows
97.12% accuracy.

Moreover, for clarifying the performance of the proposed
models the Cohen’s kappa score, Jaccard score, Mathew
correlation coefficient, Hamming loss, and Zero one loss are
also obtained and shown in Fig. 16. These metrics also show
the robustness of both models and as before show little better
performance for stacking model.

FIGURE 16. Five other classification performance metrics for proposed
stacking and voting models.

FIGURE 17. Recognition accuracy of all considered models.

TABLE 6. Training time comparison with state-of-the-art.

B. COMPARISON AND DISCUSSION
Some state-of-the-art who worked on the same dataset have
been compared with the results of the proposed study, given
in Table 5.

Comparing the models developed in this study with similar
studies in the literature, it is seen that the results of this study
are pleasing with an accuracy rate of 97.12% for the same
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TABLE 7. Comparison of the proposed stacking model with its baselines.

FIGURE 18. Training and testing ROC curves of each activity class and
their average for the proposed Stacking ensemble.

dataset. Again, as can be seen from the table, both of our
ensemble methods outperform the results of state-of-the-art.
We also observe that many of the existing works in the above
table use deep learning as a model but our ensemble models

FIGURE 19. Data dispersion of six ADLs for the body-acceleration-jerk
standard deviation in the time domain along X-dimension.

show better results than them, so deep learning methods are
not automatically every time the best selection when dealing
with machine learning and sensory data models. Though our
voting classifier outperforms a little, our stacking classifier
outperforms a better amount of percentage for recognizing
human activities of daily living from the HAR smartphone
dataset. This result of the stacking ensemble concludes that
stacked generalization can be a good choice for future HAR
systems.

To promote the results and discussion of our study,
we experimentedwith two other stacking classifiers: (1) using
only the LSVM model as both base-layer estimators and
meta-estimator (2) using LDA and LSVM as base-estimators
and again, LSVM as meta-estimator. The result of all of our
experimented methods is shown in Fig. 17.
From this figure, we see that the two newly considered

stacking models show 96.91% and 96.84% accuracy respec-
tively. That means all three stacking methods (the new two
with the proposed one) outperform both our voting model as
well as all state-of-the-art methods mentioned in Table 5.

Again, the highest accuracy is achieved by
W. Kong et al. [7] among the existing methods listed in
Table 5 and only that paper mentioned the training time of

VOLUME 11, 2023 99493



S.M. M. Islam, K. H. Talukder: Exploratory Analysis of Smartphone Sensor Data for HAR

FIGURE 20. Data dispersion of six ADLs for body-acceleration-jerk
standard deviation in frequency domain alongX-dimension.

FIGURE 21. Data dispersion of six ADLs for body-acceleration-jerk
entropy in frequency domain along X -dimension.

their used models. That’s why the model training time of
our proposed method is compared with that of [7], shown
in Table 6.

FIGURE 22. Data dispersion of six ADLs for the
body–acceleration-magnitude mean in the time domain.

FIGURE 23. Data extent of six ADLs for gravity-acceleration maximum
value in time domain along X-axis.

The authors of [7] developed six different models in
their work and among their models; Linear SVC with Grid-
SearchCV shows the best accuracy. From the above table,
we see that both of our ensemble models’ training times are
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FIGURE 24. Data extent of six ADLs for gravity-acceleration mean in the
time domain along the X-axis.

FIGURE 25. Data extent of six ADLs for gravity-acceleration energy in the
time domain along the X-axis.

less than that of their best model. Therefore, the above two
comparison tables show the strength of our models in terms
of accuracy and time complexity.

FIGURE 26. Data extent of six ADLs for the position of gravity-
acceleration mean with X-axis.

FIGURE 27. t-SNE with perplexity 5 for separating the activities.

Moreover, the accuracy of our best model (stacking model)
is compared with its baseline algorithms in Table 7.

The above table shows that the stacking model provides
better results than its baseline methods and so, this table
focuses on the significance of organizing baseline models
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FIGURE 28. t-SNE with perplexity 20 for separating the activities.

FIGURE 29. t-SNE with perplexity 50 for separating the activities.

according to the proposed stacking model framework, which
is the best model than our other proposals and mentioned
state-of-the-art.

FIGURE 30. t-SNE with perplexity 100 for separating the activities.

Finally, the Receiver Operating Characteristic (ROC)
curves for training and test datasets of our best model (stack-
ing model) are shown in Fig. 18. From the two plots of
Fig. 18, we see that the area under the curve (AUC) for each
activity class and their micro-, as well as macro-average, is
1 for all cases, for both training and test set except 0.99 for
that of SITTING class in the test set, which is very near to
(area) 1. Therefore, these AUCs illustrate the robustness of
the proposed stacking model again.

The above experimental results and comparisons demon-
strate that the exploratory data analysis method has better
generalization performance than the traditional data analysis
method and as an estimator both the proposed stacking and
voting classifier have good performance whereas stacked
generalization has better performance than voting, no mat-
ter for different human activities or different evaluation
strategies. These conclusions offer direction for the strat-
egy of HAR methods using smartphone sensors in the
future.

V. CONCLUSION AND FUTURE WORK
The proposed HAR method is a comparatively higher
accuracy method. Additionally, the method of this study
is lightweight, precise, and reasoning. Moreover, the
exploratory data analysis outlined in this paper visualizes
the detailed nature of activities, from which more new HAR
systems can be developed. The experimental results show that
our proposed activity visualization and identification method
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has the potential to increase the performance of present
HAR applications. Moreover, the solution can be extended
to the classification of any multivariate time series data for
other applications. As our experiment is carried out offline,
our future target is to use our EDA to build and publish a real-
time system to classify human activities. Again, as human
beings may accomplish numerous activities at the same time,
the future HAR hopes to be capable of recognizing parallel
activities. Moreover, our future target is to extend HAR based
on EDA to other human activities, human interactions, and
relationships.

APPENDIX A
FIGURES MENTIONED IN THE SUBSECTION ‘BODY
ACCELERATION CAN SEPARATE IT WELL’
See Figs. 19–22.

APPENDIX B
FIGURES MENTIONED IN THE SUBSECTION ‘GRAVITY
ACCELERATION COMPONENTS ALSO MATTERS’
See Figs. 23–26.

APPENDIX C
FIGURES MENTIONED IN THE SUBSECTION
‘INVESTIGATING THE SEPARABILITY
OF DATA USING T-SNE’
See Figs. 27–30.

APPENDIX D
THE CODES OF THIS STUDY
The codes used to produce the outcomes of our study are
available in the following Github link: https://github.com/
SM-Mohidul-Islam/Exploratory-Analysis-of-HAR-Smartph
one-Sensor-Data.
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