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ABSTRACT In the field of image recognition, Visual Transformer (ViT) has excellent performance.
However, ViT, relies on a fixed self-attentive layer, tends to lead to computational redundancy and makes it
difficult to maintain the integrity of the image convolutional feature sequence during the training process.
Therefore, we proposed a non-normalization hierarchical attention transfer network (HAT), which introduces
threshold attention mechanism and multi head attention mechanism after pooling in each layer. The focus of
HAT is shifted between local and global, thus flexibly controlling the attention range of image classification.
The HAT used the smaller computational complexity to improve it’s scalability, which enables it to handle
longer feature sequences and balance efficiency and accuracy. HAT removes layer normalization to increase
the likelihood of convergence to an optimal level during training. In order to verify the effectiveness of the
proposed model, we conducted experiments on image classification and segmentation tasks. The results
shows that compared with classical pyramid structured networks and different attention networks, HAT
outperformed the benchmark networks on both ImageNet and CIFAR100 datasets.

INDEX TERMS Visual transformer, attention transfer mechanism, hierarchical network, image feature,
image recognition.

I. INTRODUCTION

Visual Transformer [1], [2], [3], [4], [5] shows perfect
performance in image classification and segmentation, NPL
tasks based on stronger global modeling ability, which can
solve the problem of elemental dependencies with large
spanning in sequence models effectively. With the gradual
fusion of the local sensing capability in CNNs with the global
coding capability of ViT networks, the hierarchical structure
has begun to receive widespread attention in the problem
of reducing the computational effort. However, if the CNN
focuses too much on local correlations, it may instead impair
the model’s ability to capture long-term dependencies. If we
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just use the global relations, the Transformer networks will
be unconstrained by local neighborhoods with lacking the
structural inductive bias. The result is that the Transformer
is more data-dependent and more susceptible to over-fitting
on the small datasets.

The self-attention layer [6] is used as the complement of
backbone or header network, which can enhance the inter-
action ability of heterogeneous model. The single attention
mechanism is modeled using a strict induction bias, which
affects the performance and convergence speed of the model.
Due to the acquisition of more adaptive inductive biases,
the switching mechanism of multiple attention can greatly
improve the efficiency and generalization of data, such as
Funnel-Transformer [7] and Swin Transformer [8] etc. It is
because of the ViT networks have strong performance in
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computer vision, we propose a new visual transfer network
based on hierarchical attention transformation. The proposed
network, denoted as “HAT”’, is used to further enhance the
performance of computer vision. HAT use the hierarchical
pooling to adjust the feature map. We purify the feature
to construct a multilevel hierarchical representation. And
we decrease the sampling length gradually to generate a
high-resolution feature image.

However, there is a encoding failure problem of feature
position in the traditional ViT network by the separate class
token. We will maximally pool the remaining sequences in
each transformer block to solve this problem, which contain
more distinguishing information. The pooling vector is then
turned into an additional positional encoding. We will use
the positional encoding instead of class token to predict the
output.

The traditional ViT networks used the normalization
layer [9] to accelerate the speed of training. And it can avoid
the disappearing or exploding of gradients in ViT. However,
the normalization layer could increase the risk of over-fitting
due to the bias and gain [10]. To address this issue, we will
reduce the feature breakage problem due to normalization by
changing the normalization layer to train model, which can
improve the expressive performance of proposed HAT model.

To sum up, our contributions are three-fold as follows:

(1) We propose a new framework HAT with a
non-normalization hierarchical attention transformer for
image recognition. HAT realizes the serial conversion
between multi-head and threshold attentions under a
progressive pyramid structure. It enhances the feature
learning ability and reduce the computational cost.

(2) We compare the different attention efficiency of
the hierarchical visual transformer. We also discuss the
influence f the layer normalization in the hierarchical visual
Transformer. We quantitatively analyze the reasons why
the proposed HAT is beneficial form the removing the
normalization layer.

(3) The proposed HAT achieves the state-of-the-art per-
formance of image classification and segmentation on the
ImageNet and CIFAR100 datasets.

Il. RELATED WORKS

Visual Transformers use the hierarchical structure to deal
with long feature sequences effectively [11]. For example,
The HVT [12] used a hierarchical stacking approach to
construct a hierarchical Transformer. And it used the
progressive pooling instead of a single class token to obtain
more location information. It gradually merges the visual
tokens to improve the accuracy and training efficiency with
the depth of the network increasing.

On the other hand, the global and local attention derive
from the soft and hard attention, which are widely used
in machine vision. The soft attention focuses on regions
and channels with a high determinism. Whereas the hard
attention emphasizes more on stochastic prediction process
and dynamic changes. In contrast, the global attention focuses
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on the global hidden layer state. which will calculate a
weighted average of all input feature sequences and then fed
them into the neural network to generate the vectors. The
local attention selects a local data in the input sequence,
which only considers a subset. Therefore, the introduction
of attention in ViT has become the most common practice.
For example, the RegionViT [13] proposed a region-to-local
attention with a pyramidal structure, which received global
information in all tokens by paying attention to local token.

In order to solve the problems that the larger of
feature map size in shallow networks and the higher of
computational complexity Vit, academics have proposed
many innovative methods, such as the spatially separable
self-attention [14] and the local-global feature interaction
method [15]. However, as the network layers deepen, the
attention graphs of each layer will gradually become similar
or even identical [16]. To balance the relationship between
local and global information attention, Yang et al. [17]
decomposed self-attention into Local and Context term. The
two terms calculate the activation by observing itself and
other respectively, and then extract the weights from the soft-
max layer. To study the effect of global information on Local
Transformer, some scholars have proposed multi-resolution
overlapping attention (MOA) module [18], inductive bias soft
transfer [19], gate position self-attention (GPSA) [20] and
focal self-attention [21].

Although the above related works effectively improved the
performance of ViT in image classification and recognition,
there are still the problems of large computational overhead,
global and local features interacting with each other, and
insufficient coverage of network layers by self-attention.
In order to solve the above problems, our propose a
hierarchical attention transfer network (HAT) based on the
different roles of the attention at different stages. And we
introduce the threshold attention (TSA) and the multi-head
attention (MHSA) after pooling at each layer in HAT,
respectively. We use the MHSA to construct the global
relationships of sequence blocks and the TSA to model the
localization of convolution layer. And the HAT will regulate
the degree of attention to location and content information
through learnable control parameters. In this paper, we also
fuse the normalization layer in the HAT to further improve
the performance of computer vision.

Ill. HIERARCHICAL ATTENTION TRANSFER NETWORK
(HAT)

In this section, we will first define the hierarchical attention
transfer mechanism and the hierarchical normalization in the
HAT. And then, we will describe the structure of HAT in
detail.

A. HIERARCHICAL ATTENTION TRANSFER MECHANISM

The attention mechanism in ViT is used to extract dependen-
cies between parts within in a feature sequence by combining
different behaviors, which is based on a trainable associative
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FIGURE 1. The framework of hierarchical attention transformer network.

memory for vectors. There are two typical mechanisms of
attention in ViT, the multi-head attention (MHSA) and the
threshold attention (TSA) mechanism.

1) THE MULTI-HEAD ATTENTION MECHANISM (MHSA)

ViT uses the MHSA to focus on multiple regions by merging
individual attention heads. And MHSA adaptively decides the
weight of each input item by inter-playing whitin input term.

2) THE THRESHOLD ATTENTION MECHANISM (TSA)
TSA can be initialized like a convolutional layer and sum the
content and location terms after softmax.

Since the relative importance of the two attention is
controlled by the learnable threshold A € (n,m) in each
attention head, we define a novel hierarchical attention
transfer mechanism for balancing between focusing on local
features and recovering global features. And the mechanism
finally normalizes the sum of the resulting matrices to make
the data feature distribution more stable. The definition
of the hierarchical attention transfer mechanism and the
normalization layer in the HAT are as followings.

3) THE HIERARCHICAL ATTENTION TRANSFER MECHANISM
(HAT)

We assume that the input image X has been initially divided
into N blocks. And there are I — th stage in our HAT. At each
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stage ST;, We first use the TSA to calculate the threshold
attention weight TSA(X) at the first block b1. And Then
we calculate the multi-head attention weight MHSA(X) in
another b(n — 1) blocks. We use a linear transformation to
calculate the query matrix Q(W;, W}), the key representation
K, and the value matrix V in each attention mechanism from
the feature vector X. So the hierarchical attention weight
HAT (X) is defined as following.

HAT(X) = STPN(TSA(X)) + ST D(MHSAX)) (1)
where the TSA(X) and MHSA(X) are described as the
equations (2) and (3).

TSA(X) = norm[ i, (softmax(Q x KT))
+ Am(softmax(VL % R; )1XM

pos (2)
where the M is the weight matrix, Vs is a trainable
embedding vector, and R;; is a fixed relative position encoding
which is only related to the distance between pixels i and j.
The A, and A,, are the upper and lower limits of the threshold
A, respectively. We sum the attention weights with A, by
calculating the pairwise similarity between query matrix Q
and key representation K, and with A, by calculating the
pairwise similarity between VpTos and R; ;. Finally, the sum of
the attention weights is normalized and multiplied by X and
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M to obtain the TSA(X).
T

0K

MHSA(X) = concat((softmax( /D

where we first calculate the attention weight between Q and

K for each head by softmax. d is the vector dimension, and

/D is the scaling of the attention weights. Then, we connect

the attention weights of each head and multiple by X and M
to get the MHSA(X).

WL.XM - (3)

4) THE LAYER NORMALIZATION (LN)

We use the ‘LN’ to count the values of all dimensions and
channels, means p and standard deviation o for each sample
X = {X1...X,}. And we use the b and g in the current layer
to denote the deviation and gain obtained from the “LN”
vector, respectively. The b and g is used to ensure that the
normalization operation does not deviate from the previously
information in the current layer. We define the feature z;,
which is transmitted between different layers in HAT, as the
equations (4), (5) and (6).

Zo = [xc;x;,E;x;E; ---X;}] + Epos 4)

i—1 — Hi—1

X,
LN(Zi—1) = gi-1 © (& o )+ b (5)
i

Zi = A(LN(Zi-1)) 6)

where A denotes the different attention mechanism MHSA or
TSA. The z; is the features extracted from the i—th layer of the
Transformer encoder. After blocking and position encoding
of image in our HAT, we feed the features x = {x1...x,}
into the Transformer encoder for analysis. We use the linearly
projecting E for the block x;, to get the embedded vectorx, E,
the class token x. and the embedded location Ej,;. HAT
get the Z; in the i;h layer by transmission the image feature
between each stage.

B. HIERARCHICAL ATTENTION TRANSFORMER NETWORK
The proposed hierarchical attention transformer network is
described as FIGURE 1, which constructs a hierarchical
representation by adding a maximum pooling layer. The
maximum pooling layer is used to gradually reduce the length
of the feature sequences. The hierarchical representation is
used to reduce the redundancy of full length patch feature
sequences.

Give an input image H x W x C, where H, W and C
denote the height, width, and channel number of the input
image, respectively. Similar to the ViT [6], HAT processes
the data first by slicing the input image into 16 x 16 non-
overlapping patches, and the size of each patch is 14 x
14 pixel. Then, we use the convolution to embed these patches
into vectors, which the channel number is 64. HAT spread
each patch into a 1D vector. After linearly transforming
and encoding each vector, the sequence of these patches is
propagated into 12 structural blocks with same dimension.
The HAT is then divided into M stage, each containing
multiple Transformer blocks. The local attention module is
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TABLE 1. The feature size and parameters of the HAT network.

Input Type Sequential Number Output Size The parameters
Conv2d 1 [1,384,14,14] 295,296
PatchEmbed 2 [1,196,384] 0
Dropout 3 [1,196,384] 0
LayerNorm 4 [1,196,384] 768
Linear 5 [1,196,768] 295,680
TSA 11 [1,196,384] 0
MLP 19 [1,196,384] 0
MaxPoolld 21 [1,384,97] 0
Block 22 [1,97,384] 0
LayerNorm 23 [1,97,384] 768
Linear 24 [1,97,1152] 443,520
MHSA 28 [1,97,384] 0
MLP 36 [1,97,384] 0
MaxPoolld 38 [1,384,97] 0
Block 209 [1,11,384] 0
Linear 210 [1,200] 77,000

introduced at the beginning of the first stage, and HAT recover
the perception of the global features at the rest of the stages.

Since ViT get the sequence position information by
concatenating an additional learnable vector for classification
with the input vector. In this paper, a new positional encoding
replaces the position embedding class labeling. HAT uses a
1D hierarchical maximum pooling, which the kernel size is
k and the step size is s, to gradually reduce the sequence
length and the computational cost. We predict and train with
non-layer normalization to improve the model performance.
Then our network is activated by GELU and calculate the loss
by soft target cross entropy loss function. Finally, we use the
MLP header for classification.

we use the @(Block(n,d)) to calculate the FLOPs cost
of TSA and MHSA, where n is the number of labels in
the sequence and d is the dimension of each label. The
PLOPs of TSA include the projections of Q \ K \ V matrices
3nd?, the computation of the attention map (A, + Amn?d,
the self-attention operation n’d, and the computation of
output linearly projecting nd?, respectively. Similarly, the
FLOPs of MHSA include the projections of Q \ K \ V
matrices 3nd?, the computation of the attention map n’d,
the self-attention operation n’d, and the computation of
output linearly projecting nd?, respectively. The FLOPs of
MLP consist mainly of two fully connected layers, and
each computation is 4nd>. We can control the size of block
computation by adjusting the threshold in the attention
switching, thus reducing the cost of computation. So, the
FLOPs of our HAT is described as equation (7).

@(TSA(n, d)) + (MLP(n, d))

_ 2 2
o(Block(n. d)) = | ~ 12nd“+(1 + A, + Ap)n-d )

@(MHSA(n, d)) + o(MLP(n, d))

= 12nd*+2n%d

IV. EXPERIMENTS

A. EXPERIMENT SETTINGS

We train and test the proposed HAT network with PyTorch
in Linux. The size of input image is 224 x 224 x 3, and the
size of patch is 16 x 16. The batch size is 128 in the training.
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FIGURE 2. The visualization comparison of linear projection features of HAT-B with ResNet101 and DeiT on the ImageNet-1K dataset.

The weight decay coefficient is 0.025. We use the AdamW
optimizer [22] to perform back propagation to optimize the
network. The feature size and parameters of the HAT network
are shown in TABLE 1.

1) DATASETS

In this paper, we evaluate our HAT network on the
ImageNet-1K dataset [23]. And we also evaluate the
classification performance on the CIFAR-100 [24] and
ImageNet200 [25] datasets. The ImageNet-1K dataset is a
sub-set of ImageNet, which is conducted on 1k categories.
Each category of ImageNet-1K consists of 1300 images for
training and 50 images for testing. And the ImageNet200
dataset contains 100000 images of 200 classes images.
Each class has 500 training images, 50 validation images
and 50 test images. The CIFAR-100 dataset consists of
60000 images. The 100 classes in the CIFAR-100 are grouped
into 20 superclasses, which each class has 600 images. There
are 500 training images and 100 testing images per class.
We use the ADE20K dataset [26] with 150 targets to validate
semantic segmentation for the proposed HAT. The ADE20K
dataset contains more than 20K scene-centric images with
150 semantic categories.

2) EVALUATION METRICS

We evaluate the performance of our HAT network based
on Top-1 and Top-5 accuracy in this paper. We evaluate
the pixel accuracy using IoU of overlapping to joint areas
between predicted segmentation and labels. And we use the
FLOPs(G) to measure the computational cost and the number
of Params(M) to evaluate model size.
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TABLE 2. The semantic segmentation performances of HAT-A and HVT on
the ADE20K validation dataset (Iteration = 40K).

class HVT HAT-B
ToU (%) [ Acc (%) | IoU (%) | Acc (%)
wall 50.94 79.85 52.52 77.90
building 63.88 87.06 64.85 89.69
sky 88.41 94.34 88.87 94.84
floor 49.61 76.61 52.03 78.27
ceiling 59.37 74.52 61.50 82.05
road 58.52 82.31 59.59 82.44
windowpane | 36.44 57.68 38.44 59.54
grass 53.64 70.92 59.16 78.75
Average 57.60 7791 59.62 80.44

3) BASELINES

We evaluate our proposed method HAT with
ResNet50&101 [27], DeiT [19], Swin Transformer [8],
HVT [13] and ConViT [20]. In order to conduct the ablation
study, we evaluate the hierarchical network with single-
head attention, denoted as ‘““HAT-base’’. Based on HAT-base,
we add the threshold attention TSA and the multiple attention
MHSA to different blocks after pooling, denoted as “HAT-T”
and “HAT-M”, respectively. We introduce the hierarchical
attention transformation mechanism on HAT-base, denoted as
“HAT-TM”. Finally, we remove the normalization layer on
the HAT-TM, denoted as “HAT’’. On the other hand, we set
different number of attention head to test the performance of
network. The number of attention head are 9 and 6, which the
network is noted as “HAT-A” and “HAT-B”, respectively.

B. FEATURE VISUALIZATION COMPARISON
We first compare the feature vectors of HAT-B with
ResNet101 and DeiT on the ImageNet-1K dataset. We show
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FIGURE 3. Accuracy and loss comparison of HAT-B with HVT and DeiT networks on the ImageNet200 datasets (Epoch = 200).

TABLE 3. The Classification performance comparison between HAT-B and other networks on ImageNet200 and CIFAR100 datasets (Epoch = 200).

Network Embedding | Patch Heads | Blocks FLOPs | Params ImageNet200 CIFAR100

Dim Size (G) (M) Top-1 Acc.(%) | Top-5 Acc.(%) | Top-1 Acc.(%) | Top-5 Acc.(%)
DeiT 768 16 6 12 16.86 85.95 52.51 74.81 65.29 88.52
HVT 768 16 6 12 2.29 21.67 54.74 78.14 63.10 88.40
HAT-B 768 16 6 12 2.29 22.19 59.17 81.76 69.40 91.60

the feature visualization comparison with those networks as
FIGURE 2. As can be seen from the visualization comparison
results, the features of HAT are more diverse than DeiT, and it
contains richer local information. The feature mapping output
after convolutional layer of ResNet tends to retain more edge
information for discrimination specifically. In contrast, the
image resolution reduces from 32 x 32 to 14 x 14 by linear
projection layer in DeiT. So DeiT could learn more structural
information than ResNet. On this basis, the proposed HAT
down-samples the hidden sequences through a pooling layer,
which can construct clearer structural information even at a
shallow level.

C. THE ABLATION EXPERIMENTS

In order to verify the validity of the proposed HAT,
we conduct the ablation experiments with different modules
in addition to the visual comparison with the classical
networks.

We first compare the proposed HAT-B, which tje number
of attention head is 6, with HVT on the DE20K Validation
dataset. The IoU and accuracy results are show in TABLE 2.
A We can see that the IoU of “glass” Wall in HVT is higher
1.95% than HAT-B. Comparatively, HAT-B has higher IoU
and accuracy than HVT in all other categories. So, we can
determine that the performance of HAT-B is better than HVT.

The comparative experiments are conducted for the
classification performance of HAT-B and other networks
following. TABLE 3 shows the classification results of each
network on the ImageNet200 and CIFAR100 datasets with
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the same parameter settings. Compared to the DeiT network,
HAT-B improves the Top-1 and Top-5 accuracies on the
ImageNet200 dataset by 6.66% and 6.95%, respectively.
Top-1 and Top-5 accuracies of HAT-B also improved by
4.43% and 3.62% relative to HVT, respectively. HAT-B
similarly achieves the best accuracy on the CIFAR100
dataset. At the same time, The HAT-B is also optimal for
both FLOPs and Params on the two datasets. To further
analyze the performance of the proposed HAT-B, we compare
the accuracy and loss during training on the ImageNet200
dataset. The comparison results are shown in FIGURE 3.
As the number of training rounds Epoch increases, the Top-1
and Top-5 accuracies of HAT-B are significantly highest than
the corresponding DeiT and HVT. On the other hand, the loss
of HAT-B decreased significantly with the increase of Epoch
in contrast. In general, the accuracy of HAT-B is improved
and the loss is significantly reduced.

The reduction of computational complexity makes HAT
highly scalable in terms of network width, depth and
tile size. When the network parameters are increased, the
computational cost of HAT is still lower than that of the
traditional model. In order to confirm the above conclusion,
we compare the proposed HAT-A and HAT-B with Swin
Transformer and ResNet50. On the one hand, the comparative
experiment is to confirm that the proposed HAT is more
reasonable in network parameters and cost than other
transformer networks. On the other hand, it is also to verify
that the accuracy of the proposed HAT is higher when it has
an approximate size and cost with a traditional conventional
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FIGURE 4. Attention-aware heatmaps comparisons between our HAT and other different networks on the ImageNet-1K dataset.

TABLE 4. Comparison of classification performance, network parameters and cost of HAT and other transformer network and traditional conventional

network on the ImageNet200 dataset (Epoch = 50).

Top-1 Accuracy / Epoch (%)
Model FLOPs (G) | Params (M) 0 70 0 70 55
Swin Transformer 15.14 86.95 11.04 | 19.26 | 24.60 | 30.49 | 35.70
ResNet50 4.12 23.92 12.95 | 23.02 | 30.67 | 34.93 | 39.13
HAT-B 1.34 21.95 17.06 | 27.14 | 33.13 | 37.00 | 40.96
HAT-A 1.56 22.00 1647 | 26.66 | 33.22 | 37.51 | 41.55

TABLE 5. The classification performance comparison of HAT-B under
different number of stages on the CIFAR100 dataset (epoch = 150).

Number of Top-1 Top-5
stages FLOPs(G) | Params(M) Acc.(%) | Acc.(%)

1 2.29 22.15 64.93 89.62

2 1.86 22.04 66.69 90.28

3 1.56 21.96 67.74 91.19

4 1.34 21.91 68.71 91.13

network. The comparative results are shown as TABLE 4.
As the number of attention heads increases, the cost and
parameters of the HAT gradually increase from the TABLE 4.
The proposed HAT-A and HAT-B require significantly less
floating-point computations (FLOPs) compared to Swin
Transformer, and the Top-1 accuracies of the top 50 selected
Epochs are all improved. On the other hand, HAT-A and
HAT-B have similar parameter sizes to the classical CNN
model ResNet50, but the computation is reduced by62.14%
and 67.48%, respectively. At the same time, the classification
accuracies of both HAT-A and HAT-B are higher than that of
ResNet50.

The number of stages is also an important factor that
affects the performance of the proposed HAT. So, we validate
the performance of HAT-B under different of stages on the

100048

TABLE 6. Comparison of classification performance with different
attentions in HAT-B on the ImageNet200 dataset (Epoch = 300).

Model Top-1 Acc. (%) | Top-5 Acc.(%)
HAT-B-T 54.56 77.21
HAT-B-M 57.38 79.44

HAT-B-TM 62.24 82.88

CIFAR100 dataset. The experimental results are shown as
TABLE 5. The comparison results show that the accuracy
of the HAT-B gradually increases and the computational cost
decreases as the number of stages increases. For example, the
accuracy of HAT-B at the 4-th stage is increased by 3.78%,
and PLOPs is reduced by 0.95G compared to the first stage.

D. COMPARATIVE EXPERIMENTS ON HIERARCHICAL
ATTENTION

In order to resolve the problem that the features of the ViT
model will gradually decrease with the construction of the
hierarchical network, our HAT first gradually adjusts the
number of layers and performs down-sampling at the pooling
layer. The first Transformer block in each stage of HAT
implements adaptive features and correlated local features
using a threshold attention mechanism. The other blocks
within the same stage use the multi-head attention mechanism

VOLUME 11, 2023
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FIGURE 5. Feature visualization of HAT-A under the conditions with and without LN.

to obtain global information, transforming the local to global
range of classification predictions.

We first use the Grad-CAM [28], [29], [30] method
to localize regions of the image, which are critical for
classification, by averaging gradient-weighted activation.
FIGURE 4 is the attention-aware comparisons between our
HAT and other different networks on the ImageNet-1K
dataset. The ResNet50 only localizes a small area of the
test image. HVT is focusing on the global features of the
test image. Although DetiT focuses on the global features
of the test image, the distribution of the global features is
scattered and does not describe the category information of
the test image well. Swin Transformer’s attention map is more
focused on the main features of the category of the test image
compared to other transformer networks. To better describe
the attention map changing belong with different transformer
stages in our HAT, we draw the attention-aware heat-maps of
the 1-th, 2-th and 3-th stages as FIGURE 4(e), (f) and (g). The
attention maps of HAT varies with the hierarchical stages.
As the hierarchy progresses in HAT, the scope of attention
to features gradually expands from the local to the global.
In other words, our HAT enables a transformation of the scope
of attention from local to global.

On the ImageNet200 dataset, we also conduct the compar-
ative Experiments in HAT-B between hierarchical attention
and threshold attention, multi-head attention. The classifica-
tion accuracy comparisons are described as TABLE 6, where
the “HAT-B-T” means HAT-B with threshold attention,
and so on for the rest. From the comparison results,
compared with the single attention mechanism, the attention
switching mechanism proposed in this paper effectively
changes the attention range and can significantly improve the
classification performance.

We further verify the effect of different attention head
number on the classification performance for the proposed
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TABLE 7. Top-1 and Top-5 accuracy of HAT with different attention heads
on the ImageNet200 dataset (Epoch = 300).

Heads | FLOPs (G) | Params (M) | Top-1 Acc.(%) | Top-5 Acc.(%)
4 0.704 9.95 60.66 83.02
8 2.74 38.77 62.23 82.36
12 6.10 86.47 62.48 81.85

HAT. We compare the FLOPs, Params, Top-1 accuracy
and Top-5 accuracy on the ImageNet200 dataset, when the
number of attention heads is 4, 8, and 12, respectively. The
experimental results are shown as TABLE 7. The FLOPs and
Parmas increased with the number of attention head in HAT,
while Top-1 classification accuracy gradually increases.
TABLE 7 shows that increasing the number of attention
heads improves the HAT efficiency, and HAT obtains better
performance with increasing network width.

E. NORMALIZATION VERIFICATION EXPERIMENTS

To explore the effect of layer normalization (LN) on the
transformer network, we validate our HAT-A (the attention
heads is 9) versus HVT and ConViT on the ImageNet200
and CIFAR100 datasets, respectively. The comparison results
are shown in Table 8. In our experiments, we first remove
the LN of HVT and ConViT, denoted as HVT-Non LN
and ConViT-Non LN. And our HAT-A, which is added
the LN, is denoted as HAT-A-TM. Table 8 shows that for
HVT and HAT with hierarchical structure, if the LN in the
network is removed, the classification accuracy of them will
be significantly improved. For example, HVT raises Top-1
accuracy by 0.5% and 1.73% on the two datasets, and HAT
raises it by 0.76% and 1%, respectively. On the other hand,
the ConViT, which does not have a hierarchical structure,
is improved the performance by the layer normalization.
This is because there are same 12 blocks in ConViT, and
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TABLE 8. Experiments of normalization operation on HAT-A and other Networks on the ImageNet200 and CIFAR100 datasets (Epoch = 200).

Model ImageNet200 CIFAR100
Top-1 Acc. (%) | Top-5 Acc. (%) | Top-1 Acc. (%) | Top-5 Acc. (%)
HVT 56.66 79.54 61.66 87.30
HVT-Non LN 57.16 79.75 63.49 87.89
ConViT 55.22 79.68 64.84 89.80
ConViT-Non LN 54.32 79.53 64.69 89.28
HAT-A-TM 59.52 81.47 68.68 91.41
HAT-A 60.28 81.97 69.68 91.38
the embedding of each token of ConViT is generated by Neural Inf. Process. Syst., vol. 33, 2020, pp. 4271-4282.
superimposing other embedding encoding blocks. compared (8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B.
. .y . Guo, “Swin transformer: Hierarchical vision transformer using shifted
to ConVit-Non LN, Convit’s top-1 accuracy improves by windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
0.9% and 0.15%, respectively. pp. 9992-10002.
Consequently, in the hierarchical transformer network, [9] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
after the feature data is not normalized. the process o £ fin ding Y. Lan, L. Wang, and T. Liu, “On layer normalization in the transformer
X K ’ architecture,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 10524-10533.
the optimal solution for each stage becomes less smooth [10] H. Zhang, Y. N. Dauphin, and T. Ma, “Fixup initialization: Residual
and the likelihood of correctly converging to the optimal learning without normalization,” 2019, arXiv:1901.09321.
level is higher. We also visualized the comparison of the [11] P.Nawrot, S. Tworkowski, M. Tyrolski, L. Kaiser, Y. Wu, C. Szegedy, and
. . . H. Michalewski, “Hierarchical transformers are more efficient language
features of HAT-A for the conditions with and without LN, models,” in Proc. Findings Assoc. Comput. Linguistics, NAACL, 2022,
as shown in FIGURE 5. As seen in FIGURE 5, the HAT-A pp. 1559-1571.
clearly visualizes the features better than HAT-A-TM, and the [12] Z.Pan, B. Zhuang, J. Liu, H. He, and J. Cai, **Scalable vision transformers
. with hierarchical pooling,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
corresponding contours of HAT-A are more clear. (ICCV), Oct. 2021, pp. 367-376.
[13] R. Chen, R. Panda, and Q. Fan, “RegionViT: Regional-to-local attention
V. CONCLUSION for vision transformers,” in Proc. Int. Conf. Learn. Represent., 2022,
. .. . . . 1-18.
In this paper, we proposed a non-normalization hierarchical [14] 55 Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia, and C. Shen,
attention transforming Transformer network (HAT) for “Twins: Revisiting the design of spatial attention in vision transformers,”
computer vision. HAT is able to expand the scope of in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 9355-9366.
attention from local to global using serial transformation of [15] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, "Transformer
in transformer,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
threshold attention and multi-head attention. And HAT can pp. 15908-15919.
effectively decrease the computational cost. Compared with [16] D.Zhou, B. Kang, X. Jin, L. Yang, X. Lian, Z. Jiang, Q. Hou, and J. Feng,
. “DeepViT: Towards deeper vision transformer,” 2021, arXiv:2103.11886.
the popu?ar .VIS.IO'H Trans'former network, the p erformance [17] C. Yang, S. Qiao, A. Kortylewski, and A. Yuille, “Locally enhanced self-
of HAT is Slgmflcanﬂy 1mproved. In the follow-up work, attention: Combining self-attention and convolution as local and context
we will further explore more effective methods in terms of terms,” 2021, arXiv:2107.05637.
attention mechanism and loss function. And We will continue [18] K. Patel, A. M. Bur, F. Li, and G. Wang, “Aggregating global features
L. . into local vision transformer,” in Proc. 26th Int. Conf. Pattern Recognit.
to optimize the netwrok structure to improve the accuracy and (ICPR), Aug. 2022, pp. 1141-1147.
Stability for image recognition. [19] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through atten-
tion,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 10347-10357.
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