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ABSTRACT Looking for available parking slots has become a serious issue in urban mobility, since it
influences traffic and emissions. This paper presents a set of metrics and techniques to predict the number
of available parking slots in off-street parking facilities. This study deals with deep learning model solutions
according with a mid-term prediction of 24 hours, every 15 minutes. Such a mid-term prediction can be
useful for citizens who need to plan a car transfer well in advance and to reduce as much as possible
any computational effort. Since most solutions in literature are focused on 1-hour ahead prediction, the
proposed solution has been also tested in these conditions. The proposed solution is based on Convolutional
Bidirectional LSTM models. Results have been compared in terms of precision metrics based both on
occupancy and free slots. The paper also provides a framework to pass from an assessment model based on
occupancy to models based on free slots and vice-versa. The obtained results have improved those already
available in literature. A formal study has been conducted to perform feature relevance analysis by using
explainable AI technique based on gradient and integrated gradient and proposing new heatmaps which
highlighted the difference fromLSTM and Bidirectional LSTM, feature relevance (base line, weather, traffic,
etc.) and the impact of seasonality on predictions, namely the temporal relevance of features. The comparison
has been performed on the basis of data collected in garages in the area of Florence, Tuscany, Italy by using
Snap4city platform and infrastructure.

INDEX TERMS Smart city, available parking lots, prediction model, machine learning, deep learning,
explainable AI.

I. INTRODUCTION
Traffic management and sustainable mobility are central
topics for intelligent transportation systems (ITS) so as to
monitor and reduce vehicular traffic congestion [1], [2] and
emissions [3], [4], [5]. Services providing available parking
slots (in real time or as predictions) are becoming relevant for
urban mobility management due to the increment of vehicles
which need to park in cities. Drivers do waste a considerable
amount of time while trying to find a vacant parking lot,
especially during peak hours and in specific urban areas
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(e.g., hospitals, stations, parks, sport stadium). Searching for
available parking spots can be a time-consuming task that
simultaneously increases traffic congestion, thus leading to
a peak of 25-40% of the traffic flow [6], [7] and greenhouse
gas pollution.

Parking slots can be located on the street (they are called
on-street parking) or in parking garages with gates (named
as off-street parking). Searching for an available parking
space has a harmful impact on both transportation system
efficiency within the urban tissue and sustainability. Actually,
any car parking searching activity generates unnecessary traf-
fic workload and may affect the environment negatively due
to increased vehicle emissions. These issues are surely valid

101678
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6947-762X
https://orcid.org/0000-0001-8992-2084
https://orcid.org/0000-0003-1044-3107
https://orcid.org/0000-0001-7084-2439


S. Bilotta et al.: Predicting Free Parking Slots

when it comes to searching on-street parking, and they can
be also considered in the context of off-street parking. More
precisely, off-street parking with gates can be full in certain
area and time slots; while in other areas, they may become
full unexpectedly or due to conditions unknown to drivers.
Recently, it is possible to collect real-time parking informa-
tion - i.e., capacity, garage prices, number of empty parking
slots in the silos or in the area - in order to realize predictive
models. In terms of prediction models, there is a substantial
difference between parking garages (i.e., off-street) and on-
street parking. In fact, in parking garages, the total number
of available slots can be estimated by considering the total
tickets produced at the entrance gate, and the number of
outputs from exits. On the other hand, as to on-street parking,
it could be necessary to detect the occupancy by means of
some distributed sensor systems. Thus, two distinct research
lines can be found in the literature [8], [9], focusing on
either on-street parking prediction or predicting free/available
parking slots inside garages (off-street).

The car park selection performed by a driver is influenced
by multiple factors, for instance: walking distance to desti-
nation, driving and waiting time, parking fees, service level,
parking size, safety [10], [11], availability and accessibil-
ity [12]. In particular, two important attributes in a parking
decision-making process of any driver are: the number of
available parking spaces (if known), and past experience in
finding available slots.

In this paper, a solution to predict the number of available/
free parking slots (not occupied) in the parking garages with
gates (e.g., silos, or on flat, or under railway station) is
proposed. Predictions can be usually short-term (from 15 to
60 minutes in advance), and mid-term as 24 hours (1 day in
advance). Most of the studies in literature have considered
1-hour time horizon, as short-term predictions to reduce local
traffic and redirect drivers towards available services at short
distance. Nevertheless, literature is quite poor with respect to
mid-term predictions which can be more useful for citizens
to program a dedicated car trip. For example, to know the
number of available hospital parking slots 1-day in advance
could be of significant value for patients who have scheduled
medical examinations (or need to visit an admitted family
member) at the hospital, so as to program within a day in
advance any related transfer by car. Moreover, the predictive
capability may be influenced by different characteristics of
parking place locations. More precisely, different behaviors
are registered in terms of free spaces for different kinds of
parking places serving different areas: suburb hospital, shop-
ping places area as well as down-town entertainment areas
within historical and pedestrian city area; plus any possible
combination of those aspects. As a result, it is expected that
the produced predictions should be more accurate for cases
presenting regular free slots trends and seasonality (daily,
weekly, monthly, etc.), thus resulting in more predictable
services, with respect to cases having strongly randomized
behavior and trends. A partial solution to improve precision
could be to consider additional information and real time

data variables such as: the description of the parking area
neighborhoods, the real time or predictions about traffic flow,
and the information related to weather conditions and/or
forecasts [13], [14], [15].

This paper is focused on presenting an approach for
short- and mid-term prediction of the number of free slots
on off-street parking area which overcome the solutions from
literature in terms of precision in critical conditions. The
solution proposed in this paper is based on convolutional
bidirectional deep learning. In addition, the paper is present-
ing a new approach for reasoning on feature relevance of
deep learning which addressed the aspects of feature and pre-
diction seasonality, thus, contributing to improve techniques
for explainable artificial intelligence, XAI, with feature rele-
vance magnitude and time.

The next subsection is devoted to recall the relatedwork to
allow readers to better contextualize this research topic. After
that, a more detailed description of the research with its aim
and goals is reported. Finally, the paper structure is presented
and commented.

A. RELATED WORKS
In literature, the problem of parking predictions has
been addressed through different approaches, most of the
recent proposals are using deep learning techniques [13],
[16], [17], [18]. Most of them are grounded on time-series
predictions, and in particular with deep recurrent neural net-
works, because of their capability of exploiting previous data
observations. Data are typically collected from parking slots
in constrained areas (off-street parking), for example, parking
garages/facilities with gates where the number of offered slots
is typically high, and the whole status is clearly reported in
real time at the garage entrance gate. Therefore, they offer a
strong appeal to drivers that may arrive all together, especially
when parking facilities are located closer to attraction cen-
ters such as commercial centers, hospitals, railway stations,
theatres, and multiservice areas. Differently, the turnover is
faster for on-street parking, whichmay be reserved to specific
categories (e.g., resident, shops, wheelchairs). The availabil-
ity of the remaining free slots on-street is more unpredictable
than the availability on off-street parking areas no matter if
public or private. The parking occupancy is defined as the
fraction of slots that are occupied by vehicles as part of the
total number of potentially available parking slots for the
parking area/facility. A number of representative papers deal-
ing with various aspects of on-street and off-street parking are
reviewed and discussed in details in [9].

In Table 1, a comparative summary of the state-of-the-art
solutions is reported for slots predictions in off-street parking
facilities, since this is the focus of the paper. Such a com-
parison highlights the predictive goals, the adopted features,
the used techniques, and the obtained results in terms of
metrics: RMSE (Root Mean Square Error), MAPE (Mean
Absolute Percentage Error),MSE (Mean Squared Error) and
MAE (Mean Absolute Error). The definition of some of these
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metrics is reported later in this paper, others are discussed
here as follows.

Please note that, in some cases reported in the literature,
assessment metrics have been provided in terms of occupancy
(defined as (parking capacity - number of free slots) / parking
capacity ∗ 100), in others in terms of free number of slots. The
twomentioned assessment approaches are not equivalent. For
example, in terms ofMAE :

MAE =

∑n
i=1 |obsi − pred i|

n
(1)

According to the definition of occupancy, the estimation of
MAE occupancy,MAEo, depends on the parking size, that is,
the Capacity:

MAEo =

∑n
i=1 |obsi − pred i|
n Capacity

100 (2)

Thus, the relationship between MAE assessed on free slots,
MAEf , and MAEo results to be:

MAEf =
MAEo Capacity

100
. (3)

For MSE :

MSE =

∑n
i=1 (obsi − pred i)

2

n
(4)

We have the following relationship betweenMSE assessed on
free slots,MSEf , and that based on occupancy,MSEo:

MSEf =
MSEo Capacity2

1002
(5)

Similarly, for RMSE which is calculated as: RMSE =
√
MSE, thus:

RMSEf =
RMSEo Capacity

100
(6)

Unfortunately, similar relationships cannot be derived for
other metrics (MAPEo, MAPEf ), since they are un-linearly
dependent on the parking Capacity. Therefore, the compar-
ison of results by using a set of standard metrics should
be carefully performed. Reasons are: (i) the usage of
non-comparable metrics depending on capacity and lack of
details, (ii) the usage of different parking data sets, (iii) the
adoption of additional variables such as weather, traffic, etc.,
(iv) the computation of assessment metrics as average in the
day or week period, instead of providing precision metrics in
critical conditions, which typically occur when the parking
facility risks to become empty (the observation becomes close
to zero). Thus, when performing the analysis of the state of
the art, the identification of the best model has to take into
account the results obtained in the same paper, using the same
metrics and data. Moreover, an additional analysis should be
derived from the explainability of machine learning and deep
learning techniques, in relation to additional variables and
seasonality, as discussed hereafter.

In [14], classic machine learning and predictive models
have been used for off-street parking, such as Bayesian
Regularized Artificial Neural Network (BRANN) [19],

Support Vector Regression (SVR) [20], Recurrent Neural
Network (RNN) [21], and Autoregressive Integrated Mov-
ing Average (ARIMA) [22]. The adopted feature space has
included historical data, seasonal information (day, day of
the week, etc.), weather aspects, and traffic flow data. Both
model and comparison assessment has been performed to
provide short- and mid-term predictions, every 15 minutes
for the next 24 hours, in different parking context (e.g.,
parking lots serving markets, hospital, railway stations). The
metric to assess such a performance was mainly MASEf
(Mean Average Scaled Error) on free slots which can pro-
duce reliable assessment without falling in singularity when
the number of free slots is close to zero. Experiments have
demonstrated a better performance for BRANN with respect
to other models. More recently, in [23], models based on
Neural Network (NN) [25], Convolutional NN (CNN) [24],
and Random Forest (RF) [26], have been compared with the
aim of predicting off-street occupancy in the range of 15’-60’
minutes in advance. The exploited features are similar to the
ones presented in [14].

The results in [23] could demonstrate the validity of NN
for any occupancy prediction (from 15 to 60 minutes in
advance) in terms of MSEo, MAEo and RMSEo (which are
dependent on the size of the parking areas), with respect to
CNN, RF. In [23], the model performance has been evaluated
in the parking areas of Arnhem (NL) having capacity of
1050 spaces, not reported in the paper.

In [27], a comparison of RF and CatBoost [65] has been
proposed as to parking predictions. CatBoost is based on
the ensemble learning method called gradient boosting and
it combines different learners to get a stronger learner. The
assessment has been conducted in the city of Split where
parking areas are equipped with sensors and the predic-
tion is related to the concerned area. The city of Split has
50 parking areas equipped with ground parking sensors, or a
total 1516 parking areas. The study has been conducted on
44 areas and the CatBoost resulted to be the best model for
predicting park utilization/occupancy. Moreover, a feature
relevance analysis has identified the most important features:
the historical data of parking capacity, weather conditions.
In [27], the model performance has been evaluated in parking
areas having an average capacity of 25 slots.

In [28], a set of statistical models, machine learning and
deep learning approaches have been tested: vector regres-
sive (VAR) [29], Gated Recurrent Units (GRU) [30] which
is a class of RNN, Graph Convolutional Neural Network
(GCNN) [31]. The assessment performed on a number of
data sets has identified the GCNN as the best results in terms
of RMSEo for predicting short-term occupancy of parking
areas. Models have been tested on three different datasets:
76 on-street parking areas in Italy with an average capacity of
32.69 lots; 420 on-street parking area in San Francisco with
an average capacity of 9.29 stalls; 17 off-street parking area
in Birminghamwith an average size/capacity of 676.88 stalls.
In this case, the model has considered temporal features and a
distance among stalls for on-street parking and an interesting
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TABLE 1. Related work solutions for off-street parking predictions.

feature relevance analysis on distance for on-street parking
has been provided.

Most recent studies are focused on the application
of hybrid deep learning techniques, in particular Long
Short-Term Memory (LSTM) models [32], [34], by using
the (baselines) features related to parking data time-series
only. In [33], SVR, Multiple Linear Regression (MLR) [35],
SARIMAX (which is seasonal ARIMA with exogenous vari-
ables) [36], and RNN-LSTM [37] have been compared. The
experiments performed on several off-parking structure have
demonstrated that RNN-LSTM outperformed the other mod-
els. The used dataset contained data regarding occupancy of
27 parking lots, representing a total of 18180 parking areas.
The performance assessment has been conducted in Parking
Euralille (center commercial) and Parking Gare Lille Europe
(railway station) in the North of France, with a capacity close
to 2500 and 500 stalls, respectively.

In [16], several models have been tested: LSTM, CONV-
LSTM (convolutional LSTM), BI-LSTM (Bidirectional
LSTM), CONV-BI-LSTM, and DWT-BI-LSTM which inte-
grated a wavelet transform with BI-LSTM, as proposed
in [38]. Such a transform divides the entire time domain into
equally spaced local regions, each of which is approximated

as smooth, and then the Fourier series is computed. It decom-
poses the signal into multiple wavelet functions according to
two parameters, displacement and scale factor, in order to
carry out a better extraction of time-frequency components
and reduce any noise effect in the data for short-terms pre-
diction. The described techniques are used to predict free
slots of off-street parking in the next 10 minutes using the
parking historical data. The used dataset includes data about
the occupancy of 2 off-street parking in Chongqing. In [16],
the model performance is evaluated in one of them, having its
capacity close to 250 spaces.

In [17], few models have been compared: LSTM, GRU,
SVR, KNN, etc., and the proposed dConvLSTM-DCN (dual
Convolutional Long Short-Term Memory with Dense Con-
volutional Network, DCN). The latter turned out to be better
to predict time slots from 5’ to 60’ minutes. It consists of
two parallel ConvLSTM components and a DCN [39] to fully
exploit the spatial-temporal correlations in the historical data
related to free parking spaces considering 9 parking lots.
In such a study the target is the availability of prediction
related to free off-street parking spaces, up to one hour in
advance. In [17], the used dataset contains the free parking
spaces of 9 off-street parking lots in California. The model
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performance comparison is evaluated on parking (St7) with
capacity close to 800 slots.

In [18] a hybrid CNN-LSTM model is proposed with mul-
tilevel parking occupancy percentage prediction via different
time steps (up to 100) where no additional information in
terms of external data is considered. However, the adopted
model has a best fit with respect to a set of compared models:
ARIMA, MLP, CNN, LSTM and GRU for off-street occu-
pancy rate prediction in terms ofRMSEo andMAEo. The used
dataset contains data about the occupancy rate of an off-street
multilevel parking which is formed by 3 floors having the
following capacity: 300, 317 and 480 slots, and it is not clear
which parking area results are referring to. The prediction is
conducted via time steps (from 1 to 100 time-steps) and a
time window is not formally defined. As results, it is reported
the average percentage of parking occupancy rate accuracy at
k time steps (k-Average Percent).

In [13], the used dataset is enriched with weather data,
events, parking fees and public transport lines data leading
to both short-term prediction (60 minutes in advance) and
long-term prediction (6 months ahead) for 57 off-street park-
ing occupancy. In such a work, the comparison of models
is among: SARIMAX (seasonal ARIMA with exogenous
variable) [40], ETS (exponential smoothing) [41], LSTM.
As described in [13], external variables, which affected park-
ing occupancy, are related to weather conditions and events.

In [13], the used dataset contains data about the occupancy
of 57 off-street parking lots in Amsterdam. The model perfor-
mances have been evaluated for 6 of them having the capacity
respectively close to: (1) 260, (2) 360, (3) 450, (4) 350,
(5) 400, (6) 1000 (numbers corresponding to the assessment
in Table 1).

B. PAPER’S AIM AND ORGANIZATION
This work is focused on presenting research results related
to a solution for predicting the number of available parking
slots (free slot of off-street parking facilities) for garages in
the city of Florence. Prediction of available parking spaces
is a complex non-linear process whose dynamic changes
involve multiple factors. Parking facilities provide several
different working conditions. Some of them are dedicated to a
specific facility (football stadium, hospital), others are meant
for multipurpose (station, expo, downtown, etc.), and others
are located on city outskirts. Variability and performance are
one of the main problems to be addressed, together with the
precision in critical time slots, which is when the parking is
getting full, running out of available slots.

The major focus of this paper is on:
• Identification of the best prediction models among a
number of machine and deep learning techniques cov-
ering what has been presented in the literature, for
example: BRANN, RNN, CNN-GRU, CNN-LSTM, and
CNN-BI-LSTM.

• The production of predictions, not only few minutes in
advance, but for the next 24 hours, with 15-minute
sampling with satisfactory precision. This would

drastically reduce the computing prediction costs, since
prediction is performed only once per day and not every
few minutes, as typically proposed in literature. In addi-
tion, it may be of help for drivers planning their travel the
day before. Most of state-of-the-art solutions produce
predictions 1-hour ahead.

• Clarify how the different solutions can be compared
one another and compare the results on the basis of
assessment metrics. Compare the results in terms of
Occupancy rate and Free slots according to their corre-
sponding metrics, in the 1-hour slot prediction.

• Provide prediction results with respect to critical condi-
tions for parking occurring when the parking facility is
almost empty or full. This factor has been neglected in
most solutions of related literature.

• Propose explainability techniques (XAI, explainable
artificial intelligence) for assessing feature relevance
(among the several ones identified in the literature)
in terms of their magnitude and temporal impact,
or seasonality. This approach has been adopted for the
proposed deep learning solution and can be used for
almost all ML and AI models in literature.

The proposed prediction model has been created in the con-
text of a national center on sustainable mobility (MOST,
in Italy) within the spoke on urban mobility and funded by
theMinistry of Research, and by exploiting data and facilities
of Snap4City, https://www.snapcity.org, infrastructure in the
Florence / Tuscany area, Italy for Smart City [42], [43].

The paper is organized as follows. Section II considers
the data description and the features definition applied to
our field of research. In Section III, the deep learning model
definitions are presented with their hyper-parameters tuning.
Section IV presents the obtained results with short and mid-
terms prediction of 1-hour and 24-hours in advance, respec-
tively. The feature relevance analysis for the best model
is described in Section V by applying gradient-based tech-
niques. Finally, conclusions are drawn in Section VI.

II. DATA DESCRIPTION AND FEATURE DEFINITION
The main goal of current work is to find a solution to pre-
dict the number of available parking slots (free slots) in
parking garages/facilities, for example controlled by a gate
(off-street parking facilities). This study concerns off-street
parking located in the municipality of Florence so as to
identify a common predictive and flexible model for different
parking areas. Such areas are of different capability and
provide different behaviors in different days of the week,
as well as moments of the day. Some of them may expe-
rience critical conditions when the available parking slots
are close to zero. Figure 1 reports the typical daily trends
of available slots for the considered parking garages, where
workdays and weekends are examined. Trends are signifi-
cantly different, and their related behaviors depend on the
city areas and services. Therefore, there is clearly a daily
and weekly seasonality. More precisely, we have considered
three different representative parking areas: a suburb hospital
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parking location (namely Careggi car park) the behavior
of which is reported in Figure 1(a), with its corresponding
confidential trend considering the related standard deviation,
and a capacity of 514 slots; a central parking location (namely
Beccaria car park) which is very close to the historical and
pedestrian city area, having its related behavior reported in
Figure 1(b) and a capacity of 203 slots; a parking garage
located in the historical center of Florence (namely S. Lorenzo
car park) having its related behavior reported in Figure 1(c)
and a capacity of 179 slots. Please note that trends (working
days and weekends) have been reported with their standard
deviations. This permits to stress their corresponding noise
level. Among them the noisiest one is S. Lorenzo car park
due to the daily hours of market activities and the evening
hours of movida and restaurants.

The used data refer to the period from March 1, 2022,
to June 5, 2022. For each parking facility, the number of avail-
able slots has been checked and registered every 15 minutes.

FIGURE 1. Typical daily trends (and std. dev) of available lots for different
parking garages in Florence, where workdays and weekends are
examined.

According to the state-of-the-art analysis, three groups of
features have been identified as possible predictive metrics
and they are briefly discussed in the following (see Table 2).
The features related to the Baseline category consider mea-

sures related to direct observation of parking data and derived
information over time. This category is ordered on the basis
of date and time when measures are taken. The latter include
number of available slots, working day or not, etc. Values
are recorded every 15 minutes. These variables are used

to consider the data seasonality, which may have different
trends – i.e., the workdays with respect to the weekends, etc.
Two other features have been included in the model:

• POD: difference between the actual and previous num-
ber of available spaces at the same time, recorded one
week before;

• SOD: difference between the actual number of parking
spaces and the next one at the same time, recorded one
week before.

TABLE 2. Overview of the exploited features that can be of help in
describing the context of parking usage with their: category, features and
description.

Features belonging to Weather are also collected every
15 minutes, that is, temperature and humidity. According to
our analysis, the most significant values are those related to
the hour before the parking time in the context of 1-hour
prevision time horizon. Therefore, in order to predict the
number of free slots in a garage at 3 pm, weather features
at 2 pm are relevant. In fact, weather conditions typically
affect decisions, when it comes to taking the car or the public
transportation. For example, the expected behavior held by
citizens when it rains (according to an appropriated value of
humidity and temperature), is to drive a car, instead of the
motorcycle. By doing so, more parking lots will be occupied.
On this line, one would suppose exploit long term weather
forecasts (6 hours or days in advance), since they could also
impact on decisions (they are accessible on the Snap4City
smart city platform).
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Features related to Traffic Sensors refer to values of traffic
recorded by sensors which are in the neighborhood of the
parking area, and mainly on the streets that can be used to
reach the area [44]. Not unlike from weather data, traffic
sensors values seem to be relevant if available for the previous
hour with respect to the time of prediction. Typical values are
the ones related to vehicle flow, concentration, average time
and average speed [45]. They are estimated every 15 minutes.
These metrics adopted for traffic flow estimation are those
that typically are accessible from city traffic flow sensors.
In this context, the value of traffic flow is used for assessing
traffic conditions, and thus average values are satisfactory.
Traffic sensors which are relevant for each garage may be one
or more and they should be chosen considering the direction
of travel and the most likely route to reach the garage. On the
other hand, for other applications, such as routing path find-
ing or what-if analysis in traffic reconstruction, more precise
data and predictions should be used [46], [47], [48], [49].

III. DEFINITION OF THE PREDITING MODELS
This study can be divided into different steps: data collection,
pre-processing, model training, evaluation, and deployment.
In this process a large amount of data about parking occu-
pancy must be collected, cleaned, normalized and imputed.
Data missing is an unavoidable problem when dealing
with real-world sensors. Parking data sensors may suffer of
problems such as detector malfunction and communication
failure, while there could be also some problems during every
data acquisition process. All these problems can affect the
monitoring of the parking state and may limit the predictive
capability of the predictive models at runtime. In general,
approaches of data imputation for producing surrogate data
may help in creating dense data in training and execution [50].

The settings used the temporal data explicitly as the input
for models, therefore it was necessary to have observations
consistent and complete. Temporal data has been so rear-
ranged to have 96 timestamps per day (24 hours and samples
every 15 minutes). Missing observations of parking data have
been imputed as follows: at a timestamp t of the day d a miss-
ing observation has been imputed using the average of the
timestamp t of the most similar 3 days to the same day d . The
model used for the imputation is K-NearestNeighbours [51]
with k equal to 3, where the similarity is computed as the
Euclidean distance with the nearest neighbors. More pre-
cisely, in training, we consider the imputation of missing free
car parking data which corresponds to 1.1% of the measured
(original) dataset.

In our general framework, different approaches are
tested: BRANN, RNN, CNN-LSTM, CNN-BI-LSTM and
CNN-GRU models applied well to the features presented
above. More precisely, BRANN is the model producing the
most reliable results according to the previous study carried
out in [14] by considering data in the same car parks in
Florence as it occurs in this study. Then, we have consid-
ered the most recent deep learning techniques by applying

CNN-LSTM, CNN-BI-LSTM and CNN-GRU models to the
datasets to improve the prevision performance.

A. ARTIFICIAL NEURAL NETWORKS WITH BAYESIAN
REGULARIZATION
The Artificial Neural Network (ANN) is a supervised learn-
ing technique and it inspired by theories about how the
human brain works [52], [53], [54]. Usually, ANNs tends
to overfit, which in substance means to have trained the
NN (Neural Network) to fit the noise trend without pro-
ducing a good generalization, as expected by the ANN.
However, Bayesian Regularized ANNs (BRANNs) attempts
to overcome the overfitting problem by incorporating Bayes’
modeling into the regularization scheme [19]. In general, the
risk of overfitting increases when a neural network grows
through additional hidden layer neurons. BRANN approach
avoids the overfitting because regularization pushes unneces-
sary weights towards zero. On such grounds BRANNmethod
is more robust and efficient than classical ANNs and net-
work weights are typically more significant in modeling the
phenomena [19]. BRANN model fits a three-layer neural
network as described in [55] and [66]. The layer weights the
network, which is initialized by the Nguyen-Widrow initial-
ization method [56], and thus, the model is given by:

yi = g (xi) + ei

yi =

∑s

k=1
wkgk

(
bk +

∑p

j=1
xijβ

[k]
j

)
+ ei, i = 1, . . . , n

(7)

where:
• ei ∼ N

(
0,σ 2

e
)
;

• s is the number of neurons;
• wk is the weight of the k-th neuron, k = 1, . . . ,s;
• bk is a bias for the k-th neuron, k = 1, . . . ,s;
• β

[k]
j is the weight of the j-th input to the net, j = 1, . . . ,p;

• gk (·) is the activation function: in this case:

gk (x) =
e2x − 1
e2x + 1

(8)

The objective function consists in minimizing F = αEW +

βED, where EW is the sum of squares of network parameters
(weight and bias), and ED is the error (sum of squares),
α and β are the objective function parameters.

B. RECURRENT NEURAL NETWORK
Neural Networks have been the focus of great interest for
many decades, due to the desire to understand the human
brain and to build learning machines. Recurrent Neural Net-
works (RNNs) are basically a Feedforward Neural Network
with a recurrent loop [21]. RNNs are considered a pow-
erful model for sequential data and they are applied to a
wide variety of problems involving time sequences of events
and ordered data. RNN are neural networks that consists
in a hidden state h and an output y that operates on a
sequence of variables x = (x1, . . . , xT ). At each time step t ,
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the hidden state of the RNN is updated by h(t) =

f
(
h(t−1), xt

)
, where f is a non-linear activation function.

Note that, while in principle the recurrent network is a
simple and powerful model, in practice, it is hard to train
properly [57].

C. CNN-LSTM
Long short-term memory (LSTM) network is an improved
recurrent neural network (RNN). Many studies have shown
that CNN-LSTM, which is based on a combination of a
CNN layer followed by an LSTM layer, shows better pre-
diction performance than single CNN or LSTM models
[58], [59], [60]. A CNN layer normally computes input data
via a convolution layer and a pooling layer and then com-
putes the characteristic descent. The result value is obtained
based on the characteristic descent. As soon as the CNN
layer computation is completed, the outcome is calculated
via the LSTM layer, and result values are determined. The
addition of a convolutive layer is grounded on the advantage
of combining powerful feature extraction of CNNwith LSTM
capability in capturing temporal dependencies. Two main
customization techniques can be considered to optimize the
model performance. They concern both architecture of the
CNN-LSTM network and tuning of the hyper-parameters
used during the training phase. Generally, to determine the
LSTM network structure, the following variables are con-
sidered: number of layers, number of neurons and dropout
function.

Moreover, as to hyper-parameters tuning of the mentioned
network, several items also are considered, namely: type of
optimizer, learning rate, momentum, etc. Regarding CNN
network, hyper-parameters tuning is primarily related to the
following items: number of filters and kernel size. In the case
of study, CNN-LSTM has a 6-layers architecture structured
such as:

• the first two layers are made of CNN unit layer and
average pooling layer;

• the other four layers are made of LSTM network having
2 hidden layers, a dropout layer and a last layer which is
a Dense layer with 96 units.

The implementation of recurrent neural networks is stateful
with a number of timesteps considered equal to 96, which
corresponds to the data of one day prior (24 hours) to the
observation/prediction time in the case of mid-term prevision
of 24 hours in advance.

The training process has been made with early stopping
with patience set to 60 and weights restored to the best
model. Hyperparameters, that have been optimized through
a Random Search, are reported in Table 3.
The structure of the defined CNN-LSTM network is made

up of the following 2 components:
• The first component is made up of a Convolutional
1dimensional layer with 16 filters and a kernel size of 3,
and a AveragePooling 1dimensional layer.

• The second component consists in LSTM layers, in par-
ticular: 2 hidden layers with 1024 and 32 units,

respectively, a dropout layer of 0.3 and a dense layer with
96 units.

The considered activation function is ReLu. The used opti-
mizer is Adam Optimizer with learning rate equals to
0.001 and momentum equals to 0.9.MAE was selected as the
loss function to be monitored during optimization. The batch
size has been set to 16 and the number of epochs was set to a
maximum value of 600, because the training strategy used the
Early Stopping method with patience parameter set to 60 to
determine the optimum epoch number, restoring the weights
of the best model at the end of the learning process.

TABLE 3. Hyperparameter optimized.

D. CNN-BI-LSTM
The LSTM layers in the above model are improved by means
of aBidirectional approach. The idea of Bidirectional LSTMs
(BI-LSTM) is to aggregate input information in the past and
future of a specific time step in LSTM models. In BI-LSTM,
at any point in time, it is possible to preserve information
from both past and future. In particular, the structure of the
defined CNN-BI-LSTM network is made up of the following
2 components:

• The first component is made up of a Convolutional
1dimensional layer with 16 filters and a kernel size of 3,
and a AveragePooling 1dimensional layer.

• The second component consists in BI-LSTM layers,
in particular: 2 hidden layers with 2048 (1024 +1024)
and 64 (32 + 32) units, respectively, a dropout layer of
0.3 and a dense layer of 96 units.

All model settings in CNN-LSTM are preserved in the
CNN-BI-LSTM model.

E. CNN-GRU
For the sake of completeness, we have also considered the
described model for Gated Recurrent Units (GRUs) appli-
cation. GRUs are a gating mechanism in recurrent neural
networks introduced in [61] and they are considered as a
LSTM variation, because both are designed similarly. In par-
ticular, GRU can be seen as a long short-term memory
(LSTM) with a forget gate, then GRU has fewer parameters
than LSTM, as it lacks an output gate.

F. CONSIDERATIONS
Actually, LSTM, BI-LSTM and GRU are improved recurrent
neural network (RNN) and we are going to compare them
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in our case of study preserving the same model setting (as
described above). In short, the structure of the advanced RNN
network has a CNN component, 2 (LSTM/BI-LSTM/GRU)
layers, a dropout layer of 0.3 and a dense layer of 96 units,
respectively. The architecture of the adopted CNN-BI-LSTM
model and the related graphical representation is depicted in
Figure 2.

FIGURE 2. The adopted CNN-BI-LSTM model architecture.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
According to the data and considerations reported above,
the identified challenge was to create a model and tools
able to predict the number of free slots in off-street parking
facilities with a resolution of 15minutes for the next 24 hours,
primarily. Each predictive model produces 96 predictions for
the next day and it can be executed for updating them every
24 hours. Therefore, updating every 15’, not even every hour,
would not be strictly needed.

As usual, the dataset is split in several parts used for model
training in the learning phase and testing it, that is comparing
the forecasts obtained with the trained model with the actual
data contained in the testing set. As a training dataset we
have elected a sample of three months, fromMarch 1st, 2022,
to June 1st, 2022. The test set has been composed by 96 daily
observations (every 15 minutes) recorded during the weeks
from May 23th (Monday) to June 5th (Sunday).

A. ERROR MEASUREMENT DEFINITION
As discussed in the Introduction, to calculate the prediction
error, in literature most researchers have adopted the occu-
pancy approach using MAEo, MSEo and RMSEo. In this
paper, we prefer the use of metrics based on free slots to
produce measures which are independent of the parking area
capacity.

The identification of the model for measuring the error is
very relevant, since it has to work well close to zero. This is
due to the fact that on the particular issue of street-parking
predictions, critical cases occur when the available parking
slots are close to zero. For this reason, we have chosen
the Mean Absolute Scaled Error (MASE) by Hyndman and
Koehler, 2006 in [62]. The Mean Absolute Scaled Error is
calculated as follows:

MASE = mean (|qt |) , t = 1, . . . , n (9)

and

qt =
obst − pred t

1
n−1

∑n
i=2 |obsi − obsi−1|

(10)

where:
• obst = observation at time t
• pred t = prediction at time t
• n is the number of the values predicted over all test sets
(96 daily observations per 7 days).

Note that, as it can be easily verified, MASEf is identical to
MASEo and is clearly independent of both scale of the data
and capacity. When MASE is used for comparing predictive
models, the best model is the one presenting the smaller
MASE . Therefore, the MASE should be the best solution to
compare solutions assessed on the basis of occupancy or free
slots.

Additional metric, with respect to those presented above
and, in the introduction, can include Mean Absolute Percent-
age Error (MAPE), which is calculated as follows:

MAPE =

∑n
i=1

∣∣∣ obsi−pred iobsi

∣∣∣
n

∗100. (11)

Relationship among metrics MAPEo, MAPEf cannot be
easily computed a posteriori, since they are un-linearly
dependent on the parking Capacity. Also, R-squared (R2) is
not linear and for this reason has not been taken into account
in the comparison.

B. PREDICTION MODEL RESULTS
The comparison has been carried out by considering
BRANN, RNN, CNN-GRU, CNN-LSTM and CNN-BI-
LSTM on the set of car parks in Florence, a set composed
by (a) Careggi car park (Hospital) having its capacity closed
to 514 spaces; (b) Beccaria car park (market and down-
town access) having its capacity closed to 203 spaces;
(c) S. Lorenzo car park (historical center) having its capacity
closed to 179 spaces. As a result, Table 4 reports the compar-
ison in terms of MASE, MAE and RMSE over the predicted
week, considering a target of 24 hours in advance, for the
number of free parking spaces applied to different locations.
Moreover, a specific estimation for daily periods: morning
(from 06:00:00 to 11:59:59), afternoon (from 12:00:00 to
17:59:59), evening (from 18:00:00 to 23:59:59) and night
(from 00:00:00 to 05:59:59) is also considered in order to
evaluate the daily moment having greater accuracy. The most
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critical day window is the afternoon to get access to restau-
rant areas and to pay a visit to the hospital.

The comparison of predictive models has been estimated
on a training period of 3 months and the dataset is scaled
with respect to the mean value. Error metrics have been
estimated on a testing period of 1 week after the 23rd of
May 2022 by considering the next 24 hours. More precisely,
each input (test) set gives a prevision according to the next
96 timestamps (having 15 minutes of resolution) starting
from the next hour related to the last time observation in the
considered input set. Each input test set admits 1 week data
observation sampled each hour (168 samples or timestamps)
and two consecutive input tests are progressively defined.
Given two consecutive input sets A,B then A is defined in
the time interval [t0, . . . , t167] and B is defined in the time
interval [t0 + 15′, . . . , t167 + 15′]. Then, each input test
admits a prevision in different moment of the day. In order to
evaluate the error according to a specific day moment, we are
going to collect together previsions belonging to a specific
timewindow accordingwithmorning, afternoon, evening and
night.

The comparison has highlighted that CNN-BI-LSTM
approach produced the most reliable results. Please note that
metrics are reported according to the daily time slots, where
the most critical one is the afternoon since in that slot some
of the parking facilities may reach zero free slots.

The above-presented results are related to mid-term fore-
casts for the next 24 hours in terms of MASE, MAEf, MSEf
and RMSEf. The computing of predictions for each hour for
the next 24 hours reduces computational costs and energy.
When data are very noisy, the results obtained with CNN-BI-
LSTM are not the best ones, but still comparable with best
results. In the critical daily moment, which is the afternoon,
best results are obtained in most cases in terms ofMASE and
MAEf by CNN-BI-LSTM.

In Table 5, according to literature, we have assessed the
results with respect to 1-hour horizon consisting in the first
timestamp prevision of our output model, at 24 hours. Also
in this case, CNN-BI-LSTM turned out to be the best model
for almost all parking cases. Good results have been also
obtained by CNN-GRU.

Furthermore, the studied models have been also trained
for producing 1-hour prevision, by modifying the number
of units of the dense (last) layer, appropriately. So that,
we specifically trained the models to produce 1-hour pre-
diction only. Results are reported in Table 6. In this case,
the CNN-BI-LSTM turned out to be unequivocally the best
model. Moreover, as expected, the estimation of a specif-
ically trained model has produced better results than the
model trained for 24hours predictions. On the other hand,
differences are limited. CNN-BI-LSTM model obtained a
MAEf equals to 14.8, 10.3 and 9.6 and RMSEf equals to 17.7,
12.3 and 11.7 for Careggi, Beccaria and S. Lorenzo car parks
respectively (in the context of 1-hour forecast target).

According to the specific error estimation for daily periods
(morning, afternoon, evening and night) we have obtained

TABLE 4. Comparison among predictive models for 24 hours in advance,
every 15 minutes. Darker cells are the ones presenting better values. The
metrics assessment has been performed over 1 week, with 15 minutes
step.
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TABLE 5. Comparison among predictive models for 1 hour in advance,
assessing precision of the first hour of the 24 hours prevision target
model.

TABLE 6. Comparison among predictive models for 1 hour in advance,
adopting a specific trained model.

Table 7 for MAEf estimations and Table 8 for MAEo esti-
mations, according to the relation between MAEo and MAEf
reported in Section I-A.

TABLE 7. Daily MAEf for CNN-BI-LSTM models for 1 hour in advance,
adopting a specific trained model.

As it can be noticed, best results have been registered for
Careggi park during morning and afternoon daily periods,
which are the most critical ones. S. Lorenzo provided very
noisy trends, thus resulting in less predictable values.

C. LITERATURE COMPARISON DISCUSSION
As mentioned in the Introduction, the comparison of results
with respect to literature has to be carefully performed. Since

TABLE 8. Daily MAEo for CNN-BI-LSTM models for 1 hour in advance,
adopting a specific trained model.

in most cases we registered: (i) the usage of un-linear met-
rics or the usage of metrics depending on capacity without
providing details, (ii) the usage of different parking data sets
(different noise level and seasonality, see explainability here-
after), which in some cases also means to adopt additional
variables such as weather, traffic, etc., (iii) the computation
of assessment metrics as average in the day or week period,
instead of providing them in the daily hours and thus in
critical conditions.

Our target is related to the availability of free parking slots
prediction in off-street parking which is formally different
from occupancy prediction of free parking spaces in off-street
parking. The most recent deep learning models have been
applied to 1-hour short-term parking prediction or shorter,
which is very computationally expensive.

For these reasons, the performance comparison in terms
of precision can be carried out only with respect to a limited
number of state-of-the-art results. With the aim of comparing
results, it should be noticed that [32], [33] and [Jelen] pro-
vided relevant values for error percentage at 60’ with respect
those presented in Table 8 with our CNN-BI-LSTM, and in
particular MAEo of 6.71 for [32], [33], and a MAPEo > 6%
for [27]. Moreover, according to Table 8, the proposed CNN-
BI-LSTM model provides a MAEo of 1.83 for critical hours,
thus overcoming the NN solution of [23] providing MAEo
of 1.91, and those of [17]. In [17], as reported in Table 1,
ConvLSTM-DCN model for the availability of free parking
spaces prediction at 1-hour in off-street context has been
proposed. Thus, applied on not very noisy car parks, it could
obtain a larger absolute error asMAEf, and comparable results
normalizing its results computingMAEowith the information
provided.

On the other hand, for mid-term predictions of 24-hours,
the literature does not provide specific results, except for the
analysis of [32], [33] which detected a strong increment of
error in increasing the prediction time. As it can be easily
obtained by Table 4 and the definition of MAEo, the results
for H24 prediction are: a MAEo of 8.39 for Careggi park for
the whole day, which is good compromise to avoid computing
24 or 96 estimations, over 24 hours.

D. COMPUTATIONAL PERFORMANCE ANALYSIS
In Table 9, the comparison of execution time performance of
the used techniques in the case of 24 hours predictionsmodels
of Table 4 is reported. The case of study in Beccaria car park
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is considered in the mentioned Table. Deep learning solutions
have been executed on GPU as NVIDIA Quadro GV100 with
32GByte Ram, which has 5120 CUDA Cores, FP64 perf as
7.4 TFLOPS.

Note that, CNN-BI-LSTM model provides a training exe-
cution time shorter than the CNN-LSTM model due to the
used training strategy involving the Early Stopping method
with patience parameter set to 60 to determine the optimum
epoch number. In that case, CNN-BI-LSTMmodel admits the
optimum epoch number equal to 188with a training execution
time of 1162.32s, while CNN-LSTM model admits the opti-
mum epoch number equal to 378 with a training execution
time of 989.95s. Then, for a single epoch CNN-BI-LSTM
model is more time consuming than CNN-LSTM, as already
seen in the results related to the prediction execution.

TABLE 9. Comparison of performance of the deep learning techniques in
the context of parking prediction.

V. PREDICTION MODEL EXPLAINABILITY
The level of relevance of features and time lags for the
multi-step prediction can be analyzed by using the gradient
and integrated gradient technique [63]. Gradient, denoted
byG, is a fundamental concept inmachine learning to identify
both direction and magnitude of the maximum growth of a
function at a specific point. To calculate the Gradients and
the Integrated Gradients, we created xtest dataset consisting
of 672 arrays of timeseries (from data of Table 2) starting
from Sunday to Saturday. Each array includes a timeseries of
1-week data observations sampled each hour (168 samples /
timestamps).

Two consecutive arrays A,B in the xtest set of arrays,
are translated of 15 min. Then, A is defined in the time
interval [t0, . . . , t167] and B is defined in the time inter-
val [t0 + 15′, . . . , t167+15′]. Let 0 be the set of features
such that 0 = {POD, freeParkSlots, SOD, averageVehicle-
Speed, vehicleFlow, averageVehicleTime, vehicleConcentra-
tion, temperature, humidity, dayWeek} from Table 2, then we
are going to consider the j−th feature X j in 0 and X jt,i is the
related i−th observation in the t−th week of the j−th feature,
with 0 ≤ t ≤ 671, 0 ≤ i ≤ 167 and 0 ≤ j ≤ 9. Thus, xtest
can be represented as follows:

xtest =

⋃
j=0,...,9


X j0,0 · · · X j0,167

...
. . .

...

X j671,0 · · · X j671,167

 . (12)

The visualization of the gradient helps us to understand how
the steps of the input features X jt,i affect the output of the
model at each timestep i. In a nutshell, the gradient provides

a representation of the input areas that are important for the
model in predicting.

Formally, for each X j ∈ 0, we have:

Gjt,i =
∂F
∂X j

(
X0
t,i, . . . ,X

9
t,i

)
, (13)

where F is the output function and Gjt,i is the related
i−th gradient in the t−th week of the j−th feature, with
0 ≤ t ≤ 671, 0 ≤ i ≤ 167 and 0 ≤ j ≤ 9.
Figure 3 shows the gradient map for features, while con-

sidering CNN-BI-LSTM and CNN-LSTM models, respec-
tively. The point having coordinates (t, i) in the j−th feature
represents the i−th Gradient value according to t−th week.
The steps of data input which influence more positively the
prediction are reported in green, in red are those that nega-
tively influence the prediction and in white are the steps of
input having a low influence on the prediction output.

FIGURE 3. Gradient for features for the (a) CNN-BI-LSTM and
(b) CNN-LSTM models. In green, red and white are reported the steps
influencing positively, negatively and marginally the predictions,
respectively. (Careggi Car Park).

According to Figure 3(a) with bidirectional layer, the
features having the greatest influence at a higher value of
the prediction are freeParkSlots, averageVehicleSpeed, vehi-
cleflow and dayWeek. While features affecting lower values
of prediction are: humidity, temperature and averageVehi-
cleTime. Humidity and freeParkSlots are the features for
which a larger number of steps affected the prediction of
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the xtest considered. The analysis of Figure 3(b) without the
bidirectional layer, highlighted that predictions are obtained
in a quite different manner, if considering positively POD
and freeParkSlots, and negatively Humidity and DayWeek.
Please note that also scales are different in the two graphs of
Figure 3. InFigure 3(a), the first 30 steps and the last 45 steps
of the input have greater importance in the forecast than the
middle steps. This is related to the bidirectional approach
of taking data. In fact, Figure 3(b), presents relevant fea-
tures only in the last hours. Thus, the white central area the
Figure 3(a) graph could be interpreted as follows: data older
than 45 hours could be less relevant for the models.

Figure 4 shows the normalized cumulated gradients for all
features, as a function of hours slots for the CNN-BI-LSTM
andCNN-LSTMmodels, respectively. On the x-axis, the i−th
step of the input week hours is shown and on the y-axis the
value of the normalized cumulated gradient.

FIGURE 4. Normalized cumulated gradient plot for the CNN-BI-LSTM and
CNN-LSTM models, from 1 to 168 samples, Careggi car park.

Again, a different behavior is shown for bidirectional and
non-bidirectional models. In fact, as to Figure 4(b), the
input steps most influential to the prediction are the ones
closest to the prediction, thus the last 75 steps of the input
week. These steps are much more influential than in the
bidirectional model, because they generate larger gradients.
Thus, the structure of CNN-BI-LSTM model allows us to
capture information on the weekly seasonality of the amount
of parking predicted andmay need a shorter timewindow data
to provide predictions.

A. ANALYSIS VIA INTEGRATED GRADIENTS
By estimating the Integrated Gradients, IG [64], is possible to
determine the importance of individual input features for each
time step of the output/prediction. The IG estimates the gra-
dient of the output/prediction with respect to the interpolated
input/features. Thus, features playing a relevant role in certain
prediction sequences are identified. The idea behind IG is
to calculate the weighted average of the gradients of the
output/prediction function with respect to the input/features
using a reference baseline.

IGjt,i =

((
X0
t,i, . . . ,X

9
t,i

)
−

(
b0t,i, . . . , b

9
t,i

))
×

∫
∂F
∂X j

((
b0t,i, . . . , b

9
t,i

)
+ α

((
X0
t,i, . . . ,X

9
t,i

)
−

(
b0t,i, . . . , b

9
t,i

)))
dα, (14)

where: b is the baseline, F is the output function and α is a
scale value between 0 and 1 that allows interpolation between
the baseline and the input. Figure 5 shows the IG maps for
the features and the corresponding time trend, in a week from
Sunday to Saturday (right). The prediction is for the next
Sunday.

Figure 5 reports the typical IG heatmaps computed for
the CNN-BI-LSMT model on Careggi car park. On the other
hand, it can be applied as a generic XAI approach for almost
all ML and AI models in the literature.

For each j−th map, on the x-axis there are the observations
considered in our test dataset, and on the y-axis there are the
predictions considering 1-day observation with time lags of
15 minutes (96 timestamps, 24×4 time slots of 15’). In green
are the steps of the output model that are most positively
influenced in the prediction by means of the j−th feature,
in red are the steps that are negatively influenced and in white
the steps that are slightly influenced.

From the IG heatmaps, we can make several considera-
tions. Please note that, the heatmaps of the features do not
have all the same scale; Humidity and freeParkSlots are those
with large magnitude. Humidity influences the prediction
steps from step 25 up to step 50.

From almost all heatmaps, what is self-evident is the pres-
ence of a week seasonality and a difference in relevance
with a daily seasonality (along y). A different week sea-
sonality has been registered for freeParkSlots with respect
to vehicleConcentration and vehicleFlow, which are data
coming from traffic flow sensors. Moreover, it is also con-
firmed that the predictions on Sunday are based on the values
of previous Saturday, Friday, and Sunday (see averageVe-
hicleTime). The averageVehicleTime feature has a greater
influence on the first part of the forecast series. Temperature
always affects negatively the predictions, withmore relevance
in the central part of the day. Features such as vehicleFlow,
average VehicleSpeed, averageVehicleTime, vehicleConcen-
tration and temperature have a greater influence in the
prediction from step 40 to step 65.

This approach has been adopted for the proposed deep
learning solution CNN-BI-LSMT and could be applied for
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FIGURE 5. Integrated Gradient for predictions with respect to the
features, for Careggi Car Park. In green, red and white are reported the
steps influencing positively, negatively and marginally the predictions,
respectively. In blue is the time trend of the feature.

almost all ML and AI models in literature, with some differ-
ences in the interpretations as occurred in the gradient.

VI. CONCLUSION
TheAvailability off-street parking spaces prediction is a com-
plex non-linear process involving multiple kinds of factors,
as the variety of parking areas (downtown, on hospital and
others on the periphery, close to theaters, airports, etc.).

The present work has been focused to find a solution for
predicting the number of available parking slots in off-street
case in the city of Florence for the next 24 hours in advance,

every 15 minutes. Such a mid-term prevision could be very
useful for drivers to plan their travel and parking the day
before. Moreover, the 24H predictions allow to drastically
reduce the computational costs. To this aim, we have con-
sidered and compared a number of different techniques and
metrics to assessment them. We discovered in the literature
two main approaches for parching prediction assessment.
One based on metrics for assessing occupancy rate as per-
centage of fullness, and the other of absolute measure of
the error in free slot estimation. The assessment approaches
have been analyzed and compared to produce a framework
which allows to compare the results obtained and measured
according to these different methods.

According to the analysis a number of techniques have
been compared: BRANN, RNN, CNN-GRU, CNN-LSTM,
and CNN-BI-LSTM to identify the best solution in terms of
precision, especially for the estimation of free slot in critical
conditions (when the free slot risk to become zero). The
solution identified results the better ranked in these conditions
1-hour in advance, and in producing prediction 24hours in
advance (mid-terms). The comparison has been performed
considering several metrics according to the two different
approaches: occupancy rate and free slots.

In addition, the paper has performed a feature relevance
analysis to identify themost relevant features and their impact
over time since some of them provide different seasonality,
and also the predictions are affected by seasonality over the
week and the 24 hours. To this end, features such as the his-
torical data, the weather conditions and the traffic flow data
have been exploited and analyzed. In almost all predictive
models, the historical data, traffic flow sensors and weather
have demonstrated high predictive capabilities in explaining
the number of free parking slots. The research documented in
this paper demonstrated by using the gradient the differences
from CNN-LSTM and CNN-BI-LSTM. And by using the
integrated gradient and a new heatmap representations impact
of seasonality in the parking predictions. This approach can
be used for almost all ML and AI models in the literature.

The prediction model proposed has been created by
exploiting data in the Snap4city platform and infrastructure
in Florence and Tuscany area, Italy.
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