
Received 3 August 2023, accepted 3 September 2023, date of publication 12 September 2023,
date of current version 15 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3314694

A Novel Semi-Supervised Dynamic Classifier
Selection Method for HSI Classification
Based on SP Segmentation
XIANG GE 1, XUEXIANG YU2, AND XU YANG2
1Huainan City Construction and Development Planning and Design Institute, Huainan 232001, China
2School of Spatial Information and Surveying Engineering, Anhui University of Science and Technology, Huainan 232001, China

Corresponding author: Xiang Ge (543658314@qq.com)

This work was supported in part by the Key Research and Development Plan of Anhui Province, in 2021: Construction of public service
platform for coordinated monitoring, analysis and decision-making of mining subsidence disasters under Grant 202104a07020014; and in
part by the 2021 Anhui Province Science and Technology Major Project: ‘‘Beidou +’’ cloud platform collaborative monitoring and rapid
warning of typical geological disasters research and development and demonstration application under Grant 202103a05020026.

ABSTRACT This paper proposes a novel hyperspectral image classification method that combines dynamic
semi-supervised multiple-kernel collaborative representation ensemble selection with superpixel (SP) con-
sistency constraints. The method is based on the consistency principle of labels within SP blocks, where
the hyperspectral image is divided into different SP blocks, and each block is treated as an independent
classification task. It applies a dynamic ensemble selection strategy to select high-confidence samples from
the unlabeled data and assigns pseudo-labels to expand the available training sample set. Additionally,
it employs a multiple-kernel collaborative representation classifier as the base classifier to better capture
sample similarities and correlations, thereby improving the classification performance. Experimental results
demonstrate that the proposed method achieves superior classification accuracy on various datasets such as
Indian Pines, Purdue, and KSC, outperforming the traditional Meta-DES method significantly.

INDEX TERMS Hyperspectral image classification, superpixel segmentation, semi-supervised, dynamic
classifier selection, ensemble learning.

I. INTRODUCTION
Hyperspectral remote sensing is considered an advanced
remote sensing technology, holding significant importance
[1]. Through the collection of continuous spectral informa-
tion of surface objects, detailed information regarding the
intrinsic attributes and conditions of these objects can be
obtained [2]. Its application is wide-ranging and includes
geological exploration, agricultural monitoring, environmen-
tal protection [3], and wetland [4] research. Hyperspectral
image (HSI) classification is a technique used to finely distin-
guish surface features based on spectral information, which
is deemed crucial for various applications such as geological
exploration, environmental monitoring, urban planning, and
agricultural management [5], [6], [7]. Important implications
are brought about by this technique as it allows for a better
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understanding and monitoring of various changes on the
ground, enabling effective resource optimization and envi-
ronmental protection. However, in practical applications,
an important problem is often faced by HSI classification,
known as the ‘‘small sample problem’’ [7], [8], [9]. In large-
scale remote sensing images, certain types of land cover
(e.g., specific minerals or rare vegetation) may only be rep-
resented by a few pixels, leading to a scarcity of training
samples. As a consequence, traditional supervised learning
methods may not perform well on this type of problem,
as they typically require a large number of samples for effec-
tive training. Thus, the key challenge that HSI classification
needs to overcome is how to be modeled with limited labeled
samples.

In HSI classification tasks, the limitations of tradi-
tional supervised learning methods in adequately exploiting
classification performance arise due to the high dimension-
ality of data and the limited number of samples available.
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As a resolution, semi-supervised learning provides an effec-
tive approach, amalgamating labeled and unlabeled data
for learning purposes. Within the realm of HSI classifica-
tion, semi-supervised learning can be broadly categorized
into four methodological approaches: graph-based methods
[10], [11], [12], generative adversarial networks (GANs)
[13], [14], [15] and variational autoencoders (VAEs) [16],
transfer learning and domain adaptation, and active learn-
ing. Graph-based semi-supervised learning methods employ
data similarity for the construction of graph representations
[17], [18], where nodes represent data samples, and edges
indicate relationships between data instances. In the context
of HSI classification, these methods leverage the similar-
ity between labeled and unlabeled data to facilitate label
propagation across the graph. Commonly used techniques
for graph construction encompass k-nearest neighbors and
graph-cut-based approaches. Subsequently, graph propaga-
tion [19] algorithms are employed to iteratively propagate
labels on the graph, thereby endowing unlabeled data with
labels. The utilization of graph-based methods not only
enhances the training sample size for the classification model
but also fosters the development of more accurate models
of classification boundaries through the exploitation of unla-
beled data, leading to improved classification performance.
GANs and VAEs [20] constitute two potent generative mod-
els, capable of producing high-quality samples, which are
harnessed in semi-supervised learning for the augmentation
of labeled data. In the context of HSI classification, GANs
generate realistic unlabeled data akin to genuine samples,
thereby enriching the dataset. VAEs [21], on the other hand,
learn latent representations of samples and perform inter-
polation in the latent space, yielding new samples. These
generated samples can be amalgamated with labeled data
to train the classification model more effectively, thereby
resulting in enhanced performance. The realm of HSI classi-
fication may be confronted with domain differences among
various datasets, wherein the data distributions vary, lead-
ing to diminished generalization performance on novel data.
Addressing the issue of limited sample size, transfer learning
and domain adaptation methods encompass the acquisition of
knowledge from the source domain and its application to the
target domain. Transfer learning ameliorates the performance
of the target task by facilitating the sharing of features or
knowledge from the source domain. In contrast, domain adap-
tation endeavors to mitigate the domain disparities between
the source and target domains, thereby fostering the model’s
improved adaptation to new unlabeled data. Active learning,
as a semi-supervised learning approach, empowers the model
to actively select the most informative samples for labeling,
thus reducing the dependency on labeled samples. In the
context of HSI classification, active learning facilitates the
selection of the most representative and discriminative sam-
ples to optimize model training. Active learning algorithms
often accomplish the active labeling of samples based on
measures of uncertainty or boundary samples. In summary,

within the domain of HSI classification, semi-supervised
learning encompasses a range of methodological approaches,
including graph-based techniques exploiting data similar-
ity for label propagation; GANs [22], [23] and VAEs for
data augmentation; transfer learning and domain adaptation
to address domain disparities; and active learning, which
reduces the reliance on labeled samples through the active
selection of informative data points.

In the aforementioned semi-supervised learning methods,
data augmentation is a commonly employed technique, which
enables the enlargement of training datasets through the gen-
eration of novel samples, thereby enhancing the model’s per-
formance. Nonetheless, several scientific issues demand care-
ful attention during the data augmentation process. Firstly,
in graph-based semi-supervised learning approaches, the crit-
ical concern lies in the selection of appropriate similarity
metrics and the determination of the number of neighboring
samples for constructing the graph. Such choices may lead
to distinct graph structures and varying outcomes in label
propagation. Secondly, when employing GANs and VAEs
for sample generation, striking a balance between sample
diversity and realism is crucial. Overemphasizing realism
may result in excessively conservative samples, lacking cov-
erage of the entire data distribution. Thirdly, the effectiveness
of transfer learning and domain adaptation methods hinges
upon resolving domain discrepancy issues. However, during
the process of data augmentation, the introduction of further
domain disparities may impinge upon the model’s general-
ization capabilities. Finally, the success of active learning
relies on the judicious selection of representative and dis-
criminative samples for annotation. Yet, the sample selection
strategy may be influenced by factors such as data distribu-
tion imbalance and label noise, leading to non-representative
choices.

To address the issue of low confidence in augmented
samples in the above semi-supervised methods, this paper
proposes a dynamic semi-supervised multi-kernel collabora-
tive representation ensemble selection with superpixel (SP)
[24], [25], [26] consistency constraints for HSI classification.
The method is based on the principle of label homogeneity
within SP blocks, where the HSI is divided into different SP
blocks. Each SP block is treated as an independent classifica-
tion task, and constraints are applied using these SP blocks.
Furthermore, amulti-kernel collaborative representation clas-
sifier (CRC) is used as the base classifier to better capture the
similarities and correlations between samples. The classifier
selection idea is introduced to select high-confidence sam-
ples from unlabeled data and assign pseudo-labels to them
for augmenting the available training sample set. The main
innovations of this paper are as follows:

A. INTEGRATION OF DYNAMIC ENSEMBLE SELECTION
WITH SP SEGMENTATION
The paper combines the concept of dynamic ensemble selec-
tion with SP segmentation. Through SP segmentation, the
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HSI is divided into different SP blocks, each treated as a
separate classification task. Then, the dynamic ensemble
selection strategy is applied to select high-confidence sam-
ples from the unlabeled data and assign pseudo-labels to
augment the available training sample set.

B. DYNAMIC MULTI-KERNEL CRC CLASSIFIER SELECTION
To better capture the similarity and correlation between sam-
ples, the paper adopts the multi-kernel CRC as the base
classifier. This classifier effectively utilizes multiple fea-
ture representations of samples and collaboratively expresses
them during the classification process, thereby improving
classification performance.

C. SP BLOCK LABEL CONSISTENCY
The paper considers the consistency of sample labels within
SP blocks and further enhances classifier accuracy through
dynamic multi-kernel CRC classifier selection. This aids in
better utilizing the informationwithin SP blocks and strength-
ening classifier robustness.

D. JOINT MULTI-SCALE SP SEGMENTATION FOR SAMPLE
AUGMENTATION
By utilizing SP segmentation at different scales for sample
augmentation, and the diversity and generalization ability
of sample augmentation is enhanced. Finally, the ensemble
learning method is used to combine the augmentation results
at different scales to obtain the final classification result.

The remainder of this paper is organized as follows.
Section II introduces related works. Section III proposes
the dynamic semi-supervised multi-kernel collaborative rep-
resentation ensemble selection algorithms. In Section IV,
experiments and analysis with three real hyperspectral data
are presented. Finally, Section V draws the conclusion and
perspectives.

II. RELATED WORKS
A. COLLABORATIVE REPRESENTATION CLASSIFIER (CRC)
Collaborative Representation-based Classification (CRC)
[27], [28] is a powerful technique used in face recognition and
hyperspectral image (HSI) classification. The method aims
to find the optimal linear representation of testing samples
based on a training set and a testing set [29]. By minimiz-
ing the reconstruction error and a regularization term, CRC
calculates collaborative representation coefficients that act as
weights to reconstruct the testing samples using the training
data. This approach effectively leverages the collaborative
information among the training samples to enhance the clas-
sification performance, making it particularly suitable for
scenarios where the data may be linearly inseparable [30],
[31]. CRC has shown outstanding performance in various
image classification tasks due to its ability to capture the
underlying relationships and achieve accurate and robust
classification results.

CRC is described in detail as follows. Give a training
set X and a testing set Y The collaborative representation
coefficients α is obtained as the following formula,

α = argmin
α∗

||Y − Xα∗
||
2
2 + λ ||α∗

||
2
2 (1)

where ||Y − Xα∗
||
2
2 is the reconstruction error, λ is the reg-

ularization parameter, and λ ||α∗
||
2
2 controls the complexity

of α∗. The analytical solution can be easily obtained,

α =

(
XTX+λ I

)−1
XTY (2)

where I denotes the identity matrix.

1) SP SEGMENTATION (SP)
In the field of hyperspectral image classification, SP seg-
mentation [24], [25], [26] plays a crucial role, particularly
in preserving spatial information. Hyperspectral images con-
tain rich spectral information, but the spatial relationships
between pixels are also essential for accurate classification.
Traditional pixel-level classification may overlook the spatial
correlations among pixels, leading to less precise classi-
fication results. SP segmentation effectively preserves the
spatial locality by grouping neighboring pixels into com-
pact and correlated SP regions. This approach maintains
the spectral information of the hyperspectral image while
utilizing the spatial correlations to improve classification
accuracy. By clustering similar pixels together, the SP regions
enable classifiers to more easily discern the spatial distri-
bution of different categories during classification. Through
SP segmentation, complex textures and spatial variations in
hyperspectral images are better captured and represented,
enhancing the classifier’s ability to recognize various land
cover categories in the image. Consequently, in the domain of
hyperspectral image classification, SP segmentation proves
to be a beneficial and effective preprocessing technique, sig-
nificantly improving classification accuracy and providing a
more reliable foundation for tasks such as remote sensing
image analysis and land cover identification.

B. DYNAMIC ENSEMBLE SELECTION
Dynamic Ensemble Selection (DES) [32], [33] is an advanced
approach in ensemble learning, aiming to discover an opti-
mal combination of base classifiers to outperform using the
entire ensemble. A crucial aspect of DES is defining a reli-
able classifier confidence index, which falls into two main
categories: supervised and unsupervised methods. In super-
vised methods, DES leverages techniques such as K-Nearest
Neighbors (KNN) [34] and clustering to establish a region of
competence (RoC) for each test instance. The RoC comprises
training instances that are most similar or closest to the
test instance. Base classifiers exhibiting strong performance
within each RoC are selected to make predictions, thereby
enhancing the ensemble model’s accuracy and generalization
ability. The confidence of each base classifier is determined
based on its classification performance within the RoC, and
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FIGURE 1. Flow chart of proposed methods.

then an optimal subset of base classifiers is chosen accord-
ing to their confidence. Conversely, unsupervised methods
approach DES as an optimization problem. The selective
ensemble is formulated as an optimization challenge, and the
classifier confidence index is computed by solving this prob-
lem. These techniques utilize optimization-based approaches
to dynamically select the most competent base classifiers for
each test instance.

III. PROPOSED METHOD
A. SP SEGMENTATION FOR HSI
SP segmentation [24], [25] is an important technique in the
field of image processing, which divides an image into con-
tiguous, compact, and similar regions. In this paper, the Sim-
ple Linear Iterative Clustering (SLIC) method is employed
to perform SP segmentation on the HS. Additionally, the
homogeneous property of SP regions is utilized for sample
augmentation. The specific process is as follows.

1) DATA PREPARATION
In SP segmentation, the HSI is first transformed into a 2D
spatial representation, integrating spectral information with
spatial information into a two-dimensional matrix. This step
allows each pixel in the image to be represented as a vector
with spatial coordinates.

2) INITIALIZATION OF SP CENTERS
To initiate the SP segmentation process, K initial SP centers
are uniformly selected on the image, where K represents the
number of SPs. The choice of K should consider the image
size and the desired SP density. These initial centers serve as
seeds for pixel assignment.

3) SP ASSIGNMENT
For each pixel, its closest SP center is determined by com-
puting the distance between the pixel and all the SP centers.
Typically, the Euclidean distance or other distancemetrics are
used to measure the similarity between pixels. The pixel is
then assigned to the nearest SP center, forming the initial SP
regions. The formula for calculating the distance (Euclidean
distance) from a pixel to a SP center is as follows.

D = [(L−Lc)2 + (a−ac)2 + (b−bc)2 +
m2

S2
(x−xc)

2

+
m2

S2
(
y−yc

)2]12 (3)

where, L, a, b represent the high spectral resolution values
of the pixel, (x, y) denotes the pixel’s position, Lc, ac, bc are
the high spectral resolution values of the SP center, (xc, yc)
represents the position of the SP center, S is the preset SP size
(used to control compactness), and m is the weight parameter
between spatial distance and color distance.

4) UPDATE OF SP CENTERS
For each SP, the center position and spectral values are
re-computed by calculating the average position and spectral
values of all pixels within that SP region. This step aims
to adjust the SP center to the mean feature values of its
constituent pixels, providing a better representation of local
image features. The formula for updating the SP center is as
follows.

Xc =
1
N

∑N

i=1
xi,Y c =

1
N

∑N

i=1
yi,Lc =

1
N

∑N

i=1
Li, ac

=
1
N

∑N

i=1
ai, bc =

1
N

∑N

i=1
bi, (4)
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where, (Xc, Y c) represents the updated position of the SP
center, N is the number of pixels assigned to the SP center,
and Li, ai, bi are the high spectral resolution values of the
pixels assigned to the SP center.

5) ITERATIVE OPTIMIZATION
The process of pixel assignment and updating of SP centers
is repeated iteratively until the positions of the SP centers
no longer exhibit significant changes or the predefined max-
imum iteration count is reached. The objective of iteration is
to progressively optimize the shapes and positions of the SPs,
achieving more accurate SP segmentation results.

6) POST-PROCESSING
Upon completing the SP segmentation, post-processing steps
can be performed to further optimize the segmentation
results. For example, similar SP regions can be merged to
reduce over-segmentation, or smoothing can be applied to
the boundaries to eliminate discontinuities. Post-processing
improves the quality and continuity of the SP segmentation
results, making them more suitable for practical applications.

B. DYNAMIC MULTI-KERNEL CRC CLASSIFIER SELECTION
(DKCRCS)
1) MULTI-KERNEL CRC CONSTRUCTED
Based on CRC, a kernel function is introduced to project the
data into a high-dimensional feature space, and the so-called
kernel CR (KCRC) is formulated as

α = argmin
α∗

||8 (X) − 8 (Y) α∗
||
2
2 + λ ||α∗

||
2
2 (5)

where 8() projects X and Y to a high-dimensional space,
respectively.

The coefcient α can be calculated as

α = (8 (X)T 8 (X) + λ I)−18 (X)T 8 (Y) (6)

This paper introduces three different kernel methods to
improve the CRC algorithm and employs them as alterna-
tive classifiers for multi-classifier selection. The first kernel
method is the most common Gaussian kernel, which can be
represented as follows,

KGaussian
(
xi, xj

)
= exp(−

∥∥xi − xj
∥∥2

2σ2
) (7)

The second kernel method is the Laplacian kernel, which
can be represented as follows,

KLaplacian
(
xi, xj

)
= exp(−

∥∥xi − xj
∥∥

σ
) (8)

The third kernel method is the linear kernel, which can be
represented as follows,

KLinear
(
xi, xj

)
= xTi xj (9)

2) ROC DEFINED BASED ON K-NN
K-Nearest Neighbors (K-NN) methods are commonly used
for ROC definition in DES. The primary concept behind these
methods is to leverage the correlation between validation
and test data. The dataset is partitioned into regions with
similar characteristics using clustering techniques. Subse-
quently, the classification performance of each classifier is
assessed within these homogeneous regions. Specifically, the
K-NN method identifies k samples around each test point by
computing their distances from the samples in the dataset.
These selected samples form a validation set, which provides
essential prior information for training each classifier. Firstly,
calculate the distance between each test sample and all the
training samples. The distance metric commonly used is
Euclidean distance, given by.

d
(
xi, xj

)
=

√∑n

k=1
(xik − xjk)2 (10)

where xi and xj are two feature vectors from the dataset, n is
the number of features, xik and xjk are the k-th features of xi
and xj , respectively.

Then select the k-nearest neighbors to each test sample
based on the calculated distances. These k-nearest neighbors
form the validation set for that test sample. By adopting
this approach, K-NN enables the evaluation of classifier per-
formance within local regions, capturing localized patterns
and nuances in the data. This methodology offers valuable
insights into how classifiers perform under varying condi-
tions, ultimately aiding in the comprehensive analysis of
classification results in DES scenarios.

3) CLASSIFIER SELECTION
Based on the RoC defined in 2), the optimal classifier is
assigned to each unknown region through certain evaluation
indicators and selection methods.

C. CONSISTENCY CONSTRAINED SAMPLE
AUGMENTATION (SP-SA)
Firstly, in the DKCRCS method, a most suitable classifier is
selected for each RoC. Secondly, based on the principle of
SP segmentation, the unknown labeled samples within each
RoC are expected to be similar. Therefore, SP-SA utilizes
this similarity assumption and estimates the labels for each
RoC based on the results of the dynamically selected clas-
sifiers. Specifically, it aggregates the classification results
for each RoC and selects the class with the highest occur-
rence as the more confident classification result. Finally,
to complete the semi-supervised learning process, SP-SA
propagates the highly confident classification results as labels
to the unknown samples within each RoC, assigning them
to the corresponding classes. This is equivalent to using
a portion of the RoC samples for supervised learning to
improve the classifier’s performance. After the label prop-
agation, the newly labeled RoCs are added to the original
training samples, forming an augmented training set. These
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additional RoC samples will help the classifier better learn
specific features and decision boundaries, thereby enhancing
the classification performance.

D. DYNAMIC MULTI-KERNEL CRC CLASSIFIER SELECTION
BASED ON AUGMENTED SAMPLES (DKCRCS-SA)
1) MULTI-KERNEL CRC CONSTRUCTED
The process of classifier pool construction is the same as the
DKCRCS algorithm.

2) ROC DEFINED BASED ON AUGMENTED SAMPLES
The difference here compared to DKCRCS is that we use
the augmented samples as new training data to construct the
Receiver Operating Characteristic (RoC), thereby increasing
the reliability of RoC.

3) CLASSIFIER SELECTION
The process of classifier selection is the same as the
DKCRCS algorithm.

E. MULTI-SCALE SP SEGMENTATION SEMI-SUPERVISED
ENSEMBLE (MS-SP-SSE)
While the combined approach of SP segmentation and
dynamic classifier selection for data augmentation can par-
tially address the small sample problem in hyperspectral
image classification, different numbers of SP segments can
lead to some negative effects on data augmentation, mainly
in the following aspects:

1) IMBALANCED SAMPLE PROBLEM
If the number of SP segments is too small, it may result in an
imbalanced sample problem. Some classes of SP blocks may
be highly prevalent in the images, while others may be very
rare. This could lead to an unequal distribution of samples
during data augmentation, with some classes having toomany
samples and others having too few, potentially affecting the
training and performance of the model.

2) INFORMATION LOSS
A low number of SP segments may cause information loss. If
the SP blocks are too large, data augmentation may lead to the
loss of fine-grained details and local information. This could
result in the model performing poorly on tasks that require
fine-grained classification.

The paper proposes a multi-scale SP segmentation ensem-
blemethod to further improve data augmentation and enhance
the performance of the model. This approach overcomes
the limitations of a single SP segmentation result while
utilizing ensemble techniques to merge multiple scales of
SP segmentation results, thereby improving the stability and
generalization ability of the classificationmodel. The specific
steps are as follows:

3) CONSTRUCTING DIFFERENT-SCALE SP SEGMENTATION
MODELS
Firstly, multiple SP segmentation models are built using dif-
ferent SP segmentation parameters, such as SP block size
and the number of SPs. Each model generates a set of SP
segmentation results at different scales, reflecting various
levels of features in the image.

4) DATA AUGMENTATION
For each scale of SP segmentation result, corresponding aug-
mentation methods are employed to increase the number of
samples in the dataset. Various data augmentation techniques,
such as translation, rotation, mirroring, and color transforma-
tions, can be used to generate more training samples.

5) ENSEMBLE OF MULTI-SCALE SP SEGMENTATION
RESULTS
The SP segmentation results from different scales are inte-
grated. This can be achieved through a simple voting scheme
or a more complex weighted voting method to determine the
final SP segmentation result. The integrated result will com-
prehensively capture the image features and may alleviate the
deficiencies of a single scale.

By constructing a multi-scale SP segmentation ensemble
method, it becomes possible to leverage different scale fea-
ture information and increase dataset diversity through data
augmentation. This helps to improve the issue of imbalanced
data, reduce information loss, and enhance the model’s per-
formance in high-spectral image classification tasks. Addi-
tionally, the ensemble method contributes to improving the
model’s robustness and stability, further enhancing the relia-
bility of the classification results.

IV. EXPERIMENTS AND ANALYSIS

FIGURE 2. (a) False-color image and (b) ground truth of the Indian Pines
data set.

A. DATASET DESCRIPTION
The Indian Pines dataset comprises 224 spectral bands col-
lected by the AVIRIS sensor situated in northwest Indiana.
These spectral bands cover wavelengths ranging from 0.4 to
2.5 um. After eliminating water absorption bands, the dataset
is left with 200 effective bands. The image encompasses
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TABLE 1. Sixteen classes of the indian pines data set.

TABLE 2. Sixteen classes of the purdue data set.

FIGURE 3. (a) False-color image and (b) ground truth of the Purdue data
set.

16 classes, and each pixel is represented in a 145 × 145 for-
mat with a spatial resolution of 20 m. A detailed description
of each class is provided in Table 1, and visual representations
of the dataset can be observed in FIGURE 2.

TABLE 3. Sixteen classes of the KSC set.

FIGURE 4. (a) False-color image and (b) ground truth of the KSC data set.

The second set of experimental data is the hyperspectral
remote sensing data of Purdue University’s West Lafayette
campus. This data was collected on September 30, 1999,
using the Hyperspectral Mapper (HYMAP) sensor aboard
an airborne platform. The spectral range of this data spans
from 450 nanometers to 2480 nanometers, with a relatively
high spatial resolution of 3.6 meters. After excluding water-
absorbing bands, a total of 126 spectral bands are provided,
and the spatial dimensions are 377 pixels × 512 pixels. The
main land cover classes include Road, Grass, and Shadow,
among others. The corresponding false-color image of this
hyperspectral remote sensing data is shown in Figure 2.6 (a),
while the ground truth data is presented in FIGURE 3. The
specific land cover types, their corresponding labels, and
sample quantities are listed in Table 2.

The third image employed is the KSC data set, obtained
using theAVIRIS sensor. It comprises 224 spectral bands cov-
ering wavelengths from 0.4 to 2.5 um. Following the elimina-
tion of the absorbent band, the image encompasses 13 distinct
classes and 176 bands, with a resolution of 512 × 614 pixels
and a spatial resolution of 18 m. Table 3 provides a detailed
description of these classes, while FIGURE 4. displays the
corresponding images.
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TABLE 4. Classification accuracy of different methods for indian pines (25 training samples were randomly selected for each class).

TABLE 5. Classification accuracy of different methods for Purdue (25 training samples were randomly selected for each class).

B. EXPERIMENT SETUP
To ensure the comparability and fairness, the compared
and proposed algorithms are under the same experimental
conditions.

1. The number of SP N is set {1000, 1500, 2000, 2500,
3000}. The regularization parameter λ of multi-kernel CRC
is set {1e-1, 1e-2, 1e-3, 1e-4, 1e-5}.

2. In order to assess the effectiveness of the proposed
algorithm, the study employed a variety of classification
algorithms for comparison. The baseline algorithms included

traditional machine learning techniques like SVM [35], RF
[35], CRC, and ProCRC [36], while more advanced ensem-
ble methods, such as GBDT [37]and LightGBM [38], were
also considered. Additionally, the paper utilized the META-
DES [39], [40], [41]algorithm as an advanced comparative
approach.

C. EXPERIMENT RESULTS
Table 4 shows the classification accuracy results for the
Indian Pines dataset, including Overall Accuracy (OA),
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FIGURE 5. Classification maps obtained by different models of Indian Pines.

Average Accuracy (AA), and Kappa index. And The clas-
sification maps generated by the proposed methods and
other comparative algorithms are shown in FIGURE 5. From
the table, it can be observed that the Meta-DES algorithm
achieved the highest OA of 61.06%. However, the three
proposed algorithms, namely DKCRCS, DMCRCS-SA, and
MS-SP-SSE, outperformed Meta-DES with OA values of
65.90%, 72.22%, and 70.13%, respectively. This indicates
that the three proposed algorithms demonstrated signifi-
cant improvements in classification accuracy compared to
the comparative Meta-DES algorithm on the Indian Pines
dataset. Regarding AA, the Meta-DES algorithm performed
reasonably well with an AA of 72.91%. In contrast, the
three proposed algorithms, DKCRCS, DMCRCS-SA, and
MS-SP-SSE, achieved higher AAs of 78.33%, 83.39%, and
81.67%, respectively. This shows that the proposed algo-
rithms surpassed Meta-DES in terms of average accuracy.
Furthermore, looking at the Kappa index, the Meta-DES
algorithm attained a Kappa value of 0.56, while the three
proposed algorithms, DKCRCS, DMCRCS-SA, and MS-
SP-SSE, achieved Kappa values of 0.66, 0.72, and 0.66,

respectively. As Kappa considers the random classification
factor when evaluating classifier performance, increasing
the Kappa index indicates higher stability and accuracy of
the classifier. The three proposed algorithms demonstrated
significant improvements in Kappa index compared to Meta-
DES.In conclusion, the analysis of the classification results
for the Indian Pines dataset highlights the superiority of the
three proposed algorithms, DKCRCS, DMCRCS-SA, and
MS-SP-SSE, over the comparative Meta-DES algorithm in
terms of OA, AA, and Kappa index. Thus, these algorithms
exhibit significant advantages on the Indian Pines dataset and
are expected to achieve excellent classification performance
on other similar datasets.

Table 5 presents the classification accuracy of various
algorithms on the Purdue dataset. The classification maps
generated by the proposed methods and other compara-
tive algorithms are shown in FIGURE 6. The evaluation
metrics used are OA, AA, and Kappa index. Among the
comparison algorithms, GBDT achieves the highest OA of
91.68%, followed by LightGBM with 88.84%, and SVM
with 89.55%. However, the proposed algorithms, namely
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FIGURE 6. Classification maps obtained by different models of Purdue.

DKCRCS, DMCRCS-SA, and MS-SP-SSE, outperform the
comparison algorithms. They achieve higher OA values of
90.97%, 93.36%, and 93.66%, respectively. The proposed
algorithms also demonstrate superior AA compared to the
comparison algorithms. The highest AA among the com-
parison algorithms is obtained by SVM with 91.97%, while
the proposed algorithms achieve AA values of 92.93%,
94.01%, and 94.03%, respectively, showing a significant
improvement. Furthermore, when considering the Kappa
index, which measures the agreement beyond chance, the
proposed algorithms again display better results compared
to the comparison algorithms. The Kappa values for the
proposed algorithms are 0.89, 0.92, and 0.92, indicating
substantial agreement, whereas the comparison algorithms
yield Kappa values ranging from 0.77 to 0.90. Overall, the
analysis of the provided data reveals that the proposed algo-
rithms, DKCRCS, DMCRCS-SA, and MS-SP-SSE, demon-
strate notable advantages over the comparison algorithms
SVM, RF, CRC, ProCRC, GBDT, LightGBM, and Meta-
DES in terms of classification accuracy. They consistently
outperform the comparison algorithms in terms of OA, AA,

and Kappa, showcasing their effectiveness in classifying
the Purdue dataset. These results indicate that the proposed
methods have the potential to be valuable and competitive
approaches for classification tasks, offering improved perfor-
mance and accuracy compared to well-known and widely-
used algorithms.

Table 6 presents the classification results for the KSC
dataset using various classification algorithms, including
SVM, RF, CRC, ProCRC, GBDT, LightGBM, Meta-DES,
DKCRCS, DMCRCS-SA, and MS-SP-SSE. The classifica-
tion maps generated by the proposed methods and other
comparative algorithms are shown in FIGURE 7. The eval-
uation metrics used to assess the performance of these
algorithms are OA, AA, and kappa.From Table 5, we can
observe that the proposed algorithms (DKCRCS, DMCRCS-
SA, and MS-SP-SSE) demonstrate competitive classification
performance compared to the traditional algorithms (SVM,
RF, CRC, ProCRC, GBDT, LightGBM, and Meta-DES).
Specifically, the proposed algorithms achieve OA values of
83.26%, 91.44%, and 91.68%, while the best-performing
traditional algorithm, LightGBM, obtains an OA of 86.23%.
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TABLE 6. Classification accuracy of different methods for KSC (25 training samples were randomly selected for each class).

The AA values also reveal the superiority of the proposed
algorithms. They achieve AA scores of 77.96%, 86.21%,
and 86.15%, which outperform all the traditional algorithms,
including LightGBM with an AA of 81.36%. Furthermore,
the Kappa values further emphasize the advantage of the
proposed algorithms. The proposed methods achieve Kappa
values of 0.81, 0.90, and 0.91, respectively, surpassing all the
traditional algorithms in Table 5, where the highest Kappa
value among them is 0.85 for LightGBM. In summary, the
analysis of Table 5 demonstrates that the proposed algo-
rithms (DKCRCS, DMCRCS-SA, and MS-SP-SSE) show
remarkable superiority over the traditional algorithms (SVM,
RF, CRC, ProCRC, GBDT, LightGBM, and Meta-DES) in
terms of overall accuracy, average accuracy, and kappa.
These results suggest that the proposed algorithms offer more
effective and accurate classification solutions for the Purdue
dataset compared to the existing methods.

D. PARAMETER ANALYSIS
1) REGULARIZATION PARAMETER λ FOR DKCRCS
From FIGURE 8, it can be observed that the classification
accuracy (OA) changes with different values of parameter λ

in the Indian Pines, Purdue, and KSC datasets. FIGURE 8 (1)
reveals that for the Indian Pines dataset, the OA generally
increases as λ decreases from 1e-1 to 1e-4, but it slightly
drops when λ reaches 1e-5. This trend suggests that a smaller
λ tends to contribute to better accuracy in this dataset. And
the optimal parameter value of λ is 1e-4. On the other hand,
FIGURE 8 (2) shows that the Purdue dataset achieves higher
OA values when λ is set to 1e-4 and 1e-5 compared to

λ values of 1e-1 and 1e-2. This indicates that in the Pur-
due dataset, a larger λ value may be more favorable for
obtaining higher classification accuracy. And the optimal
parameter value of λ is 1e-5. Moreover, FIGURE 8 (3)
illustrates that the KSC dataset exhibits a steady increase
in OA with decreasing λ , implying that smaller λ values
are more beneficial for classification accuracy in the KSC
dataset. Overall, the impact of the parameter λ on classifica-
tion accuracy varies across different datasets. And the optimal
parameter value of λ is 1e-3. For the Indian Pines dataset,
the OA generally increases with smaller λ values but slightly
decreases with an extremely small λ (1e-5). For the Purdue
dataset, higher OA values are achieved with larger λ values
(1e-4 and 1e-5). In contrast, the KSC dataset experiences a
consistent improvement in OA with smaller λ values. The
results also highlight the robustness of the proposed algorithm
to its parameters. Although the choice of λ can influence
classification accuracy, the differences in OA for different
λ values are relatively small, indicating that the algorithm
is less sensitive to parameter tuning. This robustness is
advantageous for real-world wetland classification problems,
as the proposed algorithm can achieve high classification
performance without requiring extensive effort in parameter
optimization.

2) NUMBER OF SP N FOR DMCRCS-SA
From FIGURE 9, we can observe the impact of different
values of parameter N on the classification accuracy (OA)
for three datasets: Indian Pines, Purdue, and KSC. FIGURE 9
(1) present the effect of different values of parameter N
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FIGURE 7. Classification maps obtained by different models of KSC.

FIGURE 8. The effect of parameter λ on OA for DKCRCS, with 25 samples of each class in Indian Pines, Purdue and KSC.

on accuracy for the Indian Pines dataset. The x-axis rep-
resents five different values of N , and the y-axis shows
the corresponding classification accuracy (OA). As N varies
from 1000 to 3000, the OA values for Indian Pines dataset are
72.23%, 70.95%, 70.13%, 70.13%, and 70.13%, respectively.

It can be observed that changing the value of N has a signif-
icant impact on the classification accuracy, as the OA values
vary notably along the x-axis.

Similarly, FIGURE 9 (2) illustrate the effect of differ-
ent values of parameter Non the classification accuracy for
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FIGURE 9. The effect of parameter N on OA for DKCRCS-SA, with 25 samples of each class in Indian Pines, Purdue and KSC.

the Purdue dataset. As N changes from 1000 to 3000, the
OA values for Purdue dataset are 89.98%, 91.85%, 92.28%,
92.31%, and 93.68%, respectively. Here, we can observe a
clear increasing trend in OA as the value ofN decreases along
the x-axis.

Furthermore, FIGURE 9 (3) demonstrate the impact of dif-
ferent values of parameterN on accuracy for the KSC dataset.
As N varies from 1000 to 3000, the OA values for the KSC
dataset are 87.64%, 90.93%, 90.36%, 91.45%, and 91.01%,
respectively. Similar to the Purdue dataset, the KSC dataset
also shows an increasing trend in OA as Ndecreases. Overall,
the analysis of FIGURE 9 indicates that parameter N has a
considerable influence on the classification accuracy for all
three datasets. The accuracy improves as N decreases. How-
ever, it is worth noting that the effect of N on classification
accuracy may vary across different datasets, as demonstrated
by the different trends in OA observed for the Indian Pines
dataset compared to the Purdue and KSC datasets.

V. CONCLUSION
In this paper, a novel hyperspectral image classifica-
tion method is proposed, which effectively addresses the
issue of low-confidence sample augmentation in existing
semi-supervised methods by combining dynamic ensemble
selection with SP consistency constraints. The use of SP
block division transforms the hyperspectral image into mul-
tiple independent classification tasks. The dynamic ensem-
ble selection strategy is applied to choose high-confidence
samples from the unlabeled data, and pseudo-labels are
introduced for sample expansion, thereby enhancing the
quality of the training samples. Furthermore, employing a
multiple-kernel collaborative representation classifier as the
base classifier fully utilizes multiple feature representations
of samples, strengthening the classifier’s ability to capture
sample similarities and correlations, and further improv-
ing the classification performance. The experimental results
demonstrate the superior classification accuracy of the pro-
posed method on multiple hyperspectral datasets compared

to traditional methods, indicating its practicality and potential
for application as an effective solution to hyperspectral image
classification problems. However, it is also essential to con-
sider the adaptability of parameter adjustments on different
datasets to avoid risks of overfitting or underfitting. Overall,
this method provides valuable exploration and insights for
research in the field of hyperspectral image classification.
While this study has achieved satisfactory results and made
significant progress on small-scale datasets, we acknowledge
the potential for broader impact and practical applications
when applying this method in larger and more complex
data environments. Future work will be dedicated to opti-
mizing and scaling our model to accommodate large-scale
datasets and addressing various challenges associated with
this endeavor. These efforts will contribute to a deeper
understanding and resolution of significant real-world issues,
thereby providing sustainable and broader value for scientific
research and practical applications.
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