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ABSTRACT In the last decade, users have been able to access their applications, data, and services via
the cloud from any location with an internet connection. The scale of heterogeneous cloud environments is
continuously growing due to the development of computing-intensive smart devices. The cloud computing
system ismanaged by a data center, which consists of physical machines (PMs) or servers and software-based
emulation of PMs called virtual machines(VMs). The deployment of a huge number of physical servers as a
result of the exponential development in demand for cloud services has resulted in high energy consumption
and ineffective resource usage. Efficient utilization of resources and minimizing power consumption in any
data center have become crucial challenges. Virtual machine consolidation (VMC) is a method of optimizing
computing resources by consolidating multiple VMs onto a reduced number of PMs. By consolidating
VMs and running fewer physical servers, VM consolidation can reduce power consumption and improve
resource utilization. This review paper presents a comprehensive analysis of cloud computing virtual
machine consolidation, exploring various strategies, benefits, challenges and future trends in this domain.
By examining a wide range of literature from the year 2015 to 2023, this review attempts to provide insight
into the current state of VM consolidation and its possible effects on the performance and sustainability of
cloud computing. The main flaw in the articles is that the various authors focused on different assessment
metrics when the emphasis should have been on increasing cloud system service quality and energy
efficiency. Future research can be aimed at developing a multi-objective system that emphasizes minimizing
cloud energy usage without sacrificing service quality and preventing service level agreements with cloud
users from being compromised.

INDEX TERMS Cloud computing, energy efficiency, power consumption, service level agreement, virtual
machine consolidation.

I. INTRODUCTION
Cloud computing (CC) is a type of computing that shares
computing resources instead of a local server or personal
device to handle any application [1], [2]. CC provides a vari-
ety of services based on the needs of the user. A service level
agreement (SLA) specifies the services and functionalities
that the provider will deliver to the user. It specifies what
is included and what is not covered by the agreement. If the
service provider fails to meet the agreed-upon performance
metrics or targets outlined in the SLA, then it is called a
violation of the service level agreement [3].
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FIGURE 1. Models of cloud computing service [18].

CC provides three types of services to the users, which
are called service models as represented in Figure 1, named
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [4], [5].
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IaaS provides access to a group of computing resources
such as servers, storage, and networking infrastructure. The
infrastructure’s software and applications must be managed
and maintained by the user [4]. e.g. Microsoft Azure Virtual
Machines, Google Cloud Platform Compute Engine.

PaaS provides a platform for building, deploying, and
managing applications. The user is responsible for develop-
ing and running applications on the platform [6]. e.g. IBM
Cloud Foundry, Salesforce Platform (force.com), etc. Users
can access software programs through SaaS via the Internet.
The underlying infrastructure must be managed and kept up
to date by the service provider [7]. e.g. Google Workspace,
Dropbox, Slack.

Cloud services can be provided in a homogeneous or
heterogeneous environment [8]. In a homogeneous cloud
environment, the cloud infrastructure is built using a uniform
or standardized set of technologies and components, while in
a heterogeneous cloud environment, the cloud infrastructure
consists of diverse technologies, components, and platforms.
Due to the variety of end user’s platforms and technology
choices, heterogeneous clouds are most frequently deployed.

CC is gaining popularity as a result of important features,
which include [9]

• On-demand scalability [10]: Users can easily increase or
decrease their computing resources based on their needs.

• Cost-effectiveness: CC is a cost-effective choice for
users because they only pay for the resources that they
utilize [11].

• Reliability [12]: Due to its distributed system architec-
ture and multiple redundant resources, it is reliable.

• Agility: It allows businesses to quickly adapt to chang-
ing market conditions [13].

• Security [14]: It offers high levels of security through
encryption and data backups [15].

• Efficiency [16]: CC enables businesses to access com-
puting resources and optimize their IT infrastructure
more efficiently.

• Flexibility [17]: Users can access their data and applica-
tions from anywhere, anytime.

This paper is structured as follows: A basic introduction to
cloud computing and related service paradigms is presented
in the first section. The motivation for writing a paper is
outlined in the second section. Virtual machine consolidation
and its process are covered in the third section. Section IV
describes the methodology used to conduct the literature
review. SectionV summarized the study onVMconsolidation
that has been conducted since 2015. Section VI discussed
cloud environments based on resources, evaluation parame-
ters, methodology, and the number of PMs and VMs based
on the literature review. Section VII presented the open issues
proposed by the literature. The conclusion and further work
are covered in Section VIII.

II. MOTIVATION FOR REVIEW
The motivation behind conducting a comprehensive review
of VMC stems from the increasing significance of resource

TABLE 1. Abbreviations and their description.

FIGURE 2. VMC process [34].

management and energy efficiency in large-scale cloud
environments. The demand for cloud services has led to
the deployment of a vast number of physical servers,
resulting in high energy consumption and inefficient utiliza-
tion of resources. To address these challenges, VMC has
gained considerable attention as a technique to improve the
overall performance and sustainability of cloud computing
systems.

The various abbreviations and their descriptions are pre-
sented in Table 1.

III. VIRTUAL MACHINE CONSOLIDATION
Virtualization is the process of creating a virtual version of
hardware, software, storage, or network resources. VM con-
solidation is the process of combining or consolidating
multiple VMs onto a smaller number of physical servers
or machines [19], [20]. It allows IT administrators to run
multiple applications and operating systems on the same
physical hardware, reducing hardware costs and improving
resource utilization. Consolidation is done to make better
use of physical resources like CPU, memory, and storage.
To achieve this, virtualization software like VMware can be
used to create and manage virtual computers on a physical
host [21].
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VM consolidation has several benefits, which include [22]:

• Lower hardware costs by reducing the number of phys-
ical servers.

• Improved server utilization and efficiency by running
multiple applications and operating systems on the same
hardware.

• Increased flexibility and scalability through the easy
addition or removal of virtual machines.

• Lower energy and cooling costs by reducing the amount
of physical hardware.

• Improved disaster recovery capabilities by enabling the
quick replication of virtual machines.

The steps involved in VM consolidation (VMC) are as fol-
lows, as represented in figure 2.

A. VM ALLOCATION TO THE PHYSICAL MACHINE (PM)
VMs can be allocated to PMs to limit resource waste
and increase the computation efficiency of physical
machines [23]. This is beneficial because it helps to save on
hardware and energy costs while also allowing users to access
multiple applications and services without having to purchase
multiple physical machines. Several algorithms are used for
VM allocation to PM in virtualized environments. The choice
of algorithm depends on the specific requirements of the
system, workload characteristics, and the goals of resource
utilization and performance optimization.

Here are some common algorithms for VM allocation to
PM [24]:

• First Fit (FF) [25]: It is a simple and quick algorithm that
allocates a VM to the first available PM that has enough
resources to accommodate it. It reduces the search time
for a suitable PM, but it may lead to suboptimal resource
utilization as it may not consider better-fitting PMs later
in the list.

• Best Fit (BF) [26]: It selects the PM that has the least
amount of unused resources after allocating the VM.
It aims to minimize fragmentation and make efficient
use of resources. However, this algorithm can be more
computationally intensive than First Fit due to the need
to search for the best-fitting PM.

• Worst Fit (WF) [27]: It allocates the VM to the PM
that has the most available resources after the allocation.
It can be useful in scenarios where there is a preference
for keeping larger contiguous spaces free for future allo-
cations.

• Next Fit (NF) [28]: Next Fit is similar to First Fit but
remembers the last allocated PM. It starts searching
from the last allocated PM, which can be useful for
sequential allocation patterns or when dealing with real-
time workloads.

• Random Fit (RF) [21]: It randomly selects a PM for the
VM allocation. While it is simple to implement, it may
not be suitable for situations that require careful resource
balancing or workload optimization.

BFD (best-fit decreasing) and MBFD (modified best-fit
decreasing) are the most common algorithms that are often
used in the context of VM allocation to PM in virtualized
environments [29]. MBFD is an extension of BFD. The main
difference between BFD and MBFD for VM allocation lies
in the refinement step of MBFD. BFD performs the initial
placement of VMs based on the best-fit decreasing strategy
without any additional rearrangement. On the other hand,
MBFD adds an extra step to consolidate resources within
PMs after the initial placement to potentially achieve a more
compact and efficient VM-to-PM allocation.

The MBFD algorithm is the most widely used technique
for allocating VMs [6], [30].This algorithm places VMs in
decreasing order of CPU usage capacity before assigning the
VM to the host that uses the least amount of power. This
algorithm allows for the initial selection of the most energy-
efficient PM.

MBFD works as follows [6], [31]:
Step 1: Sort the list of virtual machines according to their

resource requirements in decreasing order.
Step 2: Start with the first virtual machine in the sorted list.

Check if the physical machine has enough capacity to host the
virtual machine.

Step 3: If the PM has enough capacity, then allocate the
VM to this PM.

Step 4: Otherwise, go to the next physical machine and
check if it has enough capacity.

Step 5: Repeat steps 3 and 4 until the VM is allocated to a
PM.

Step 6: Continue with the next virtual machine in the sorted
list and repeat steps 2-5 until all the virtual machines are
allocated to PMs.

B. SELECTION OF VM
VMs will be assigned to PMs based on their resource needs.
According to research, an ideal PM has been found to use
70% of the energy required for the peak process [10], [33],
[34]. This kind of PM is known as an ‘‘underutilized’’ PM.
Similarly, some PMs might be overused and use more power.
The underutilized PM eventually loses all of its pertinent
VMs in order to conserve power. The PM’s under and
overutilization conditions are determined by CPU usage and
dual-threshold policies. The dual threshold policy makes use
of the variables ‘‘x’’ and ‘‘t,’’ where ‘‘x’’ may be the average
of the evaluating parameter, which is CPU utilization, and ‘‘t’’
is the threshold margin, which should be a finite amount. The
PMs that reach the upper threshold are considered to be over-
utilized.

To migrate VMs from overloaded PMs, selection proce-
dures must be used [35]. To choose a VM to migrate from one
PM to another, various selection policies are offered. Some of
the policies for selection are as follows [36], [37]:

• Random Choice: Pick a VM at random to be migrated
using the random choice policy.
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• MinimumUtilization Policy: VMs are selected depend-
ing on CPU utilization. VMs that consume the least
CPU power are selected.

• Minimum Migration Time Policy: The VM that
migrates in the least amount of time is selected in
comparison with the other VMs.

• Highest Potential Growth Policy: In order to reduce the
likelihood that PM usage would increase and prevent
a breach of the service level agreement, the policy
migrates the VMs with the lowest CPU utilization in
comparison to the CPU capacity specified by the VM
parameters when the upper threshold is reached.

• Minimization of Migration Policy: Once the higher
threshold has been attained, the policy selects a small
number of VMs to migrate to reduce CPU usage. This
policy only takes into account CPU usage.

FIGURE 3. Policies for selecting virtual machines [38], [36].

C. MIGRATION OF VMS
VM migration is the process of transferring a VM from one
PM to another without any disruption in its operation or ser-
vices [13], [39]. It reduces the amount of energy consumed by
the cloud data center while enhancing performance, balanc-
ing the load across physical servers, and effectively managing
resources [8]. There are two methods of VM migration, as
represented in figure 4: hot migration (live migration) and
cold migration (non-live migration).

• Cold Migration: This is a type of VM migration in
which the virtual machine is powered off before being
moved to the new host. It is also known as a ‘‘non-live’’
or ‘‘offline’’ migration [24].

• HotMigration: It is the process of migrating a VM from
one host to another while keeping theVM running. This
is done by transferring the memory state and contents
of the VM from one host to another. It is also known as
a ‘‘live’’ or ‘‘online’’ migration [24].

D. PLACEMENT OF VM
VM placement refers to the process of choosing the opti-
mal physical host or server on which to deploy a VM after

FIGURE 4. VM Migration classification [40].

migration [41]. VM placement algorithms consider factors
such as the number of applications running on the VM, the
amount of memory and computing resources needed, the
expected workload, and the availability of physical servers
[42]. The goal of VM placement is to maximize the perfor-
mance of the cloud computing environment whileminimizing
the cost of operating it. There are numerous methods, like
simulated annealing, evolutionary algorithms, and heuristics,
that are used to address the VM placement problem [43].
These algorithms can be used to optimize the placement of
VMs, improving the performance and cost-effectiveness of
the cloud computing infrastructure.

The VM placement process can be classified as [44]:

• Static Placement: VMs are assigned to physical hosts
based on predefined rules or manual decisions. Rules
can be designed based on resource requirements and
service level agreements between the user and service
provider. This approach is simple but not suitable for
dynamic workloads.

• Dynamic Placement: VMs are placed in real time
based on current resource usage and demands. It con-
siders factors like resource utilization, network latency,
and historical data to make optimal placement deci-
sions.

• Load-Based Placement: VMs are placed on hosts
based on current load levels to balance resource usage
and avoid overloading any particular host.

• Power-Aware Placement: Placement decisions take
power usage into account and try to combine VMs
on fewer hosts to shut down idle servers whenever
possible.

IV. PROCESS OF PAPER SELECTION
The objective of this paper is to present a review
of virtual machine consolidation in cloud computing.
To accomplish this, a comprehensive assessment of the
literature is required. To examine the most significant
publications on VM consolidation, a selection procedure
was applied and put into practice. The method used
to select the literature is explained in depth in this
section.
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FIGURE 5. Paper selection.

FIGURE 6. Percentage of selected total articles.

A. INCLUSION AND EXCLUSION CRITERIA FOR PAPERS
The first step in selecting relevant publications is to search
the Web of Science database for research papers with
the keywords ‘‘virtualization,’’ ‘‘consolidation,’’ and ‘‘cloud
computing’’ in the title of the article. The logical combi-
nation of the words ‘‘virtual,’’ ‘‘machine,’’ ‘‘consolidation,’’
‘‘cloud,’’ and ‘‘computing’’ more precisely defines the key-
words. A total of 1067 research papers were made available
as a result of the evaluation of the logical expression ‘‘virtual
machine consolidation in cloud computing’’. Filtration of
1067 papers is done at different levels to select the most
appropriate papers for review. Figure 5 represents the strategy
used for inclusion and exclusion criteria for papers. The
percentage of selected articles is depicted in figure 6.

• Filtering 1: Papers are selected based on a time frame,
i.e. from the year 2015 to 2023. 910 papers were
selected for further evaluation.

• Filtering 2: Based on article type, the selection results
were reduced to 506 papers from 910. Article type
includes papers from journals and IEEExplore. It did
not include book chapters or papers, which are not
indexed anywhere.

• Filtering 3: 315 papers were filtered based on the
publisher’s reputation. Articles from IEEE, Elsevier,
Springer, and ACM were given preference. Figure 6
displays the proportion of each publisher’s articles.

• Filtering 4: The most significant papers that dealt with
virtual machine consolidation were selected by read-
ing the abstracts, conclusions, and methodology of
315 publications. The selection resulted in 204 papers.

• Filtering 5: Out of 204 papers,119 papers were found
to be relevant for review. The selection is done based
on removing common papers after the fourth level of
filtration.

V. RELATED WORK
Several research studies have investigated the various aspects
of VM consolidation, such as optimization techniques,
resource allocation strategies, and energy efficiency. The
research studies specify two types of consolidation, i.e., static
and dynamic VM consolidation. In static VM consolidation,
the aim is to maximize the number of VMs that can be hosted
on a single physical machine. This is done by optimizing the
resource allocation and scheduling of VMs [45]. On the other
hand, dynamic VM consolidation is aimed at minimizing the
total energy consumption while still satisfying the perfor-
mance requirements of the VMs [41].
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FIGURE 7. Number of publications made by publishers.

FIGURE 8. Analysis of resources by different authors.

Table 2 represents a summary of some significant literature
that attempts to address the problems of virtual machine
consolidation in cloud computing by more intelligently allo-
cating and migrating VMs.

It is concluded from the literature that different resources
like CPU, RAM, bandwidth, and disk utilization are used
for VM consolidation. To evaluate the performance of pro-
posed consolidation techniques, several metrics are used, i.e.
energy consumption, SLA violation, number of VM migra-
tions, number of active PMs, number of hosts shutdown,
performance degradation due to migration (PDM), migration
cost, etc. Table 3 represents the resources and evaluation
metrics used by different authors in the literature. It is clear
from Table 3 that many authors who have contributed to
literature surveys have focused on energy efficiency while
ignoring service level agreement breaches. Power usage must
be kept to a minimum in order to conserve energy. Power

consumption can be decreased, but not at the expense of
service level agreements. Thus, in order to reduce SLA-V
and power consumption simultaneously, a multi-objective
function must be developed.

VI. DISCUSSION
The preceding sections covered a variety of techniques
for consolidating VMs. In this section, the suggested
techniques were evaluated concerning the data center
and cloud environments based on resources, evaluation
parameters, methodology, and the number of PMs and
VMs.

A. RESOURCES UTILIZATION ANALYSIS AND
COMPARISON
To meet the demands of numerous applications at cloud
service levels, cloud computing offers access to a variety
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FIGURE 9. Parameters for evaluation by various authors.

FIGURE 10. Consideration of VM and PM based on the dataset.

of resources like CPU, RAM, bandwidth, and disk usage.
The CPU is a fundamental component of all computing
systems, its utilization is regarded as a key resource, and
it influences the VM consolidation procedure [117], [118].
Power consumption and CPU utilization are closely related.
The system is using more energy because of higher CPU
utilization, which results in higher power consumption [119].
The primary goal is to use less CPU to lower the energy
consumption of any cloud. Some papers included network
bandwidth and disk usage as resource parameters in addition
to CPU utilization. Figure 8 shows that the majority of papers
focus on CPU utilization, followed by RAM.

B. EVALUATION PARAMETER-BASED ANALYSIS AND
COMPARISON
A variety of parameters can be used to evaluate the perfor-
mance of a cloud system. This section outlines the methods
used to choose the studies to be examined as well as how to
evaluate the solutions presented in each study. Each metric’s
frequency is shown in Figure 9 for comparison. According to
the statistics in Figure 9, consumption of energy and SLA vio-
lations are the two major concerns of cloud computing during
VM consolidation. The cloud data center must be available
all the time in order to accommodate the user’s changing
demands. As a result, cloud data centers continually use
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FIGURE 11. Methodologies used by various researchers.

electricity to keep their operations running smoothly, which
results in energy consumption and the emission of carbon
dioxide. While accommodating cloud user’s needs, energy
consumption must be prioritized. Service level agreements
(SLA) evaluate the performance of cloud service providers
and user satisfaction [13], [44]. SLA violations occur when
a cloud provider is unable to satisfy user expectations. The
total number of VM migrations is the third parameter that
various researchers have looked at in addition to energy
usage and SLA. It also details the number of VMs that were
moved throughout the migration process. Other considera-
tions include the effect of migration on performance, the
number of hosts that are shut down, the number of PMs in
use, and the migration’s overall cost.

C. COMPARISON AND ANALYSIS DEPENDING ON THE
QUANTITY OF VM AND PM
With the use of virtualization, cloud providers run many
operating systems and applications on a single PM which
helps maximize resource utilization. VMs are frequently built
on top of physical machines. The analysis using the PM and

VM values while taking into account the dataset is shown
in Figure 10. A customized dataset or a dataset from Planet
Lab was utilized in the great majority of papers for cloud
simulation analysis. The analysis can take up to 5,000 and
10,000 considerations for PM and VM, respectively.

D. METHODOLOGY-BASED ANALYSIS AND COMPARISON
Many approaches are used in the consolidation of virtual
machines, as shown in Figure 11. The most common method
for creating more effective, energy-efficient cloud computing
models is particle swarm optimization [12], [67], [99], [120].
It is accompanied by an ant colony approach for allocating
VMs with a limited number of active hosts. The detection
of server over and under-utilization, the selection of the
proper VM, and the placement of the proper VM on PM
are all possible using a variety of additional consolidation
mechanisms. These approaches are based onmigration times,
maximum utilization, workload forecasting, consolidation
of virtual machines based on normalization, reinforcement
learning, look-ahead energy-efficient resource allocation, etc.
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TABLE 2. VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.
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TABLE 2. (Continued.) VM consolidation literature review and their findings.

VII. CHALLENGES FOUND IN THE LITERATURE
Although VM consolidation has been extensively researched
in the literature, there are still some open challenges that need
to be addressed.

Some of the open issues found in the literature related to
VM consolidation include:

• Although cloud computing involves varied dynamic
environments, many publications assume only homo-
geneous cloud scenarios for simulation.

• Many studies just consider CPU utilization when cal-
culating energy usage; however, other components like
memory, communication networks, etc. also consume
energy. It is crucial to assess how much energy each of
these components uses.

• Most publications emphasized energy savings without
taking into account SLA violations.

• When multiple VMs are consolidated onto a sin-
gle physical server, there is a risk of performance
degradation due to resource contention, interference,
or bottlenecks. It is challenging to maintain the same
level of performance for consolidated VMs due to the
dynamic workloads of cloud computing.

• All consolidated VMs use the same PM resources,
so there may be an increase in network bandwidth
usage.

• Conflicts and failures may result from some of the VMs
incompatible software.

• VM consolidation can increase the risk of security and
privacy breaches as multiple VMs are consolidated
onto a single physical server. An attacker who gains
access to one VM can potentially access other VMs
on the same physical server. There is a need for more
research to develop secure VM consolidation tech-
niques that minimize the risk of security and privacy
breaches.

• It is essential to come up with an efficient and effective
workload prediction system so that service providers
can foresee forthcoming workloads and employ data
center resources efficiently.

• Several researchers in the literature didn’t evaluate the
suggested algorithms in a real cloud environment. It’s
crucial to assess and compare the performance of the
developed algorithms to the most effective baseline
strategy in a realistic cloud environment.
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TABLE 3. Resources and metrics used to assess the effectiveness of consolidation strategies.
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TABLE 3. (Continued.) Resources and metrics used to assess the effectiveness of consolidation strategies.

VIII. CONCLUSION AND FUTURE DIRECTIONS
This paper presented the findings of a thorough examina-
tion of studies on consolidation approaches for the years
2015 through 2023. The fundamental concepts underlying
VM consolidation have also been explored as a means of
developing green data centers by reducing their power and
energy usage. 119 appropriate research articles were selected
for the review based on inclusion and exclusion criteria
as well as quality criteria. Consolidating virtual machines
for cloud computing can be difficult since it’s difficult to
achieve the right balance between energy usage, resource
usage, and service quality demands. The challenge arises
due to the dynamic nature of cloud workloads and the
varying resource demands of different applications. While
VM consolidation tries to reduce energy consumption, the
energy usage of cloud data centers cannot be reduced without
compromising service quality. To address these challenges,
researchers need to explore more advanced algorithms to
make an energy-efficient cloud system without violating
service-level agreements with the cloud user. Future research
is aimed at developing a multi-objective system that empha-
sizes minimizing cloud energy usage without sacrificing
service quality, preventing service level agreements from
being compromised. Moreover, the cloud system needs to
be empirically tested on a variety of real-world cloud plat-
forms, e.g. open stack, Amazon EC2, etc. In addition, more
research is needed on the open issues that were brought up in
this review, like the need for a common framework for VM
consolidation as well as methods to lessen the burden of VM
migration.
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