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ABSTRACT Deep convolutional neural networks have significantly enhanced the performance of single
image super-resolution in recent years. However, the majority of the proposed networks are single-channel,
making it challenging to fully exploit the advantages of neural networks in feature extraction. This paper
proposes a Multi-attention Fusion Recurrent Network (MFRN), which is a multiplexing architecture-based
network. Firstly, the algorithm reuses the feature extraction part to construct the recurrent network. This
technology reduces the number of network parameters, accelerates training, and captures rich features
simultaneously. Secondly, a multiplexing-based structure is employed to obtain deep information features,
which alleviates the issue of feature loss during transmission. Thirdly, an attention fusion mechanism is
incorporated into the neural network to fuse channel attention and pixel attention information. This fusion
mechanism effectively enhances the expressive power of each layer of the neural network. Compared with
other algorithms, ourMFRN not only exhibits superior visual performance but also achieves favorable results
in objective evaluations. It generates images with sharper structure and texture details and achieves higher
scores in quantitative tests such as image quality assessment.

INDEX TERMS Super resolution, multiplexing-based, attention fusion mechanism, recurrent network.

I. INTRODUCTION
Single Image Super Resolution (SISR) has found widespread
applications, including object tracking and detection [1],
scene classification and reconstruction [2], medical image
analysis [3], [43], remote sensing [39], [40], [41], [46],
[47], [48], [49] and face hallucination [42], [44]. Notably,
the quality of the reconstructed images has a direct bearing
on the accuracy of the aforementioned applications. By
employing sophisticated algorithms, SISR can upsample Low
Resolution (LR) images to produce High Resolution (HR)
images, thereby enhancing image quality in a hardware-
independent manner. Given its significant practical utility,
SISR has emerged as an active area of research.

The associate editor coordinating the review of this manuscript and
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With the rapid advancement of convolutional neural
networks and deep learning technology, traditional models
such as [7] and [13] have been shown to be inadequate in
feature extraction. The introduction of SRCNN [4] represents
the first attempt to incorporate a convolutional neural
network in SISR. Subsequently, FSRCNN [5] is proposed
to expedite the training process of SRCNN. ESPCN [6]
is explored to upsample LR images using subpixel-based
techniques. Despite improving reconstruction performance,
these algorithms suffer from limited network depth and
significant information loss. Deep networks are capable of
extracting deep features, but training them is challenging
due to the problem of gradient information vanishing during
transmission. The residual network [22] effectively addresses
this issue. VDSR [8] utilizes the residual network to generate
SISR results that produce clear images under different

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98653

https://orcid.org/0000-0003-2873-2636
https://orcid.org/0000-0001-8831-1994
https://orcid.org/0000-0002-3345-9665
https://orcid.org/0000-0002-7662-9126


Q. Kou et al.: Single Image Super Resolution via MFRN

FIGURE 1. The simplified network architecture of the SISR system based on multi-attention fusion recurrent network (MFRN).

magnification factors. The Deep Laplacian network, namely
LapSRN [14], gradually zooms images to avoid feature loss
caused by direct scaling. EDSR [15] is a refinement of
the residual network that eliminates the unnecessary batch
normalization component to enhance the model’s feature
representation capabilities. Owing to its simplicity and
superior expressiveness, EDSR has become the benchmark
model for the SISR task.

Despite the impressive performance of deep convolutional
neural networks in SISR, existing algorithms face several
unresolved issues. Firstly, to achieve superior performance,
many algorithms add more convolutional layers to their
network structure, which increases the training time sig-
nificantly. Secondly, single-channel network architecture
may result in the unreasonable utilization of information
resources. Thirdly, most deep models process features
indiscriminately, and this equal processing results in the
waste of valuable feature information extracted from previous
layers, leading to high computational overhead and low
efficiency. To address these limitations, researchers have
developed various methods, such as Recurrent Neural
Network (RNN) [16], [17], [19], [20], [25], [31], [32],
[35], [45], feature attention mechanisms [9], [10], [34],
[37], sparse representation [33], and knowledge distillation
[23], [36] to improve the information utilization and feature
representation.

RNN offers the advantage of parameter sharing across
different time steps, resulting in a more lightweight model
architecture. Furthermore, RNNs have the ability to capture
complex feature dependencies, allowing for spatial interac-
tions between different layers. These characteristics make
RNNs well-suited for tackling SISR problems, and it is
adopted in DRCN [20], DRRN [17], RDRN [25], DRUDN
[19], MCSR [16], CARN [31], IMDN [32] LBNet [35]
and HDRN [45]. These models are distinguished by their
use of different recurrent structures. For instance, DRUDN
[19] and LBNet [35] employ up-down sampling blocks and
transformer blocks as the recurrent structure, respectively.
Thus, the design of the recurrent structure not only serves as
an effective means to distinguish different models but also
represents a critical innovation point for diverse models.

The attention mechanism [9] has become a widely
utilized technique in the field of SISR, as evidenced by its
extensive applications in various studies [10], [34], [37].

This mechanism is introduced by RCAN [10] with the
aim of enhancing the channel representation characteristics
of SISR models. However, RCAN [10] tends to overlook
the interplay between local and global features, which can
potentially lead to a reduction in the brightness and fidelity
of the reconstructed images. To address this issue, pixel
attention [37] has emerged as a viable solution. In addition
to mitigating the aforementioned challenges, pixel attention
can also enhance the interpretability and robustness of the
model, thereby enabling it to effectively handle diverse
scenes. The organic combination of these two attention
mechanisms can enable the neural network to selectively
allocate computational resources to modules that have a
greater impact on reconstruction performance, resulting in a
significant enhancement of themodel’s overall reconstruction
capability.

In this study, a novel Multi-attention Fusion Recurrent
Network, namely MFRN, is proposed. Our contributions can
be summarized as follows. Firstly, the issue of improper uti-
lization of information in single-channel network structures
is addressed by introducing a multiplexing-based network
structure. This approach can acquire more comprehensive
feature information and enhance the reconstruction capabil-
ity. Secondly, the concept of recurrent networks is leveraged
to optimize the training time of neural networks by reusing
feature extraction modules. Thirdly, the attention fusion
mechanism is integrated into themultiplexing-based network.
Specifically, channel and pixel attention mechanisms are
incorporated synergistically to facilitate feature information
transfer in deep networks.

II. METHODS
The network’s structure is depicted in Figure 1 and can
be broadly categorized into three parts, a shallow feature
extraction component comprising the first convolutional
layer, a non-linear feature mapping element realized by
the Multi-attention Fusion Recurrent Network (MFRN), and
the image reconstruction component that employs the pixel
shuffle technique.

A. SHALLOW FEATURE EXTRACTION
The shallow feature extraction part is the first step in the
neural network. For instance, when dealing with an input
image I, a convolutional layer is used to extract its shallow
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FIGURE 2. The net architecture of multi-attention fusion recurrent network (MFRN).

FIGURE 3. The net architecture of recurrent residual attention network (RRAN).

FIGURE 4. The net architecture of residual attention network (RAN).

features, which can be represented by Equation 1. In this part,
Conv(·) stands for the convolution operation, whose kernel
size is 3 × 3 , and Fin is the output feature map.

Fin = Conv(I ) (1)

B. MULTI-ATTENTION FUSION RECURRENT NETWORK
Feature extraction primarily captures low-frequency features,
while more complex high-frequency features require a
nonlinear feature mapping approach. In this study, MFRN is
utilized to fit the nonlinear feature mapping part.

Based on Figure 2, MFRN can be characterized as a deep
learning network comprising three channels, each of which
encompasses four Recursive Residual Attention Network
(RRAN) layers along with one 3 × 3 convolutional layer.
In Figure 3, the RRAN layer is constructed from four
Residual Attention Networks (RANs), a 3 × 3 convolutional
layer, a 1 × 1 convolutional layer, and a feature activation
unit Sigmoid(·). The 1 × 1 convolutional layer and feature
activation unit Sigmoid(·) are particularly noteworthy, as they
function as pixel attention mechanism that facilitates the
system’s ability to learn the supervised mask of features,
thereby reducing the loss function value and reconstructing

superior high-frequency information. The internal structure
of the RAN layer is depicted in Figure 4, where the red
dashed box denotes the Channel Attention Block (CAB) [10]
structure. This structural element enables the system to
process channel features differently, thus augmenting the
ability of channel information representation.

To provide a clear depiction of each network’s structure,
signal transmission expressions are provided for each net-
work module. In Equations 2 to 4, the following notations
are used: GPl(·) represents global pooling, Conv1×1(·) and
Conv(·) denote the convolution operations using 1 × 1 and
3 × 3 kernel size, δ(·) means the nonlinear activation unit
ReLU (·) [21] and Sm(·) is the activation function Sigmoid(·),
which outputs values between 0 and 1.⊕ and⊗ are adopted as
element-wise sum and product symbols. Additionally, H0 ∼

H3 represent high-dimensional feature maps and CAB(·) is
short for Channel Attention Block. Specifically, H2 = H1 ⊗

CAB(H1) and H3 = RAN (H0).

H1 = Conv(δ(Conv(H0))) (2)

CAB(H1) = Sm(Conv(δ(Conv(GPl(H1))))) (3)

H3 = RAN (H0) = H0 ⊕ (H1 ⊗ CAB(H1)) (4)
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FIGURE 5. The net architecture of image reconstruction.

Figure 3 shows the transmission details in a RRAN, and
Gk+1 = RANk+1(Gk ) when k ranges from 0 to 3. Specially,
G5 = Conv(G4), G6 = G0 ⊕ G5, G7 = Conv1×1(G6) and
G8 = G6⊗Sm(G7). In particular, when the RRAN is the first
network module of each channel, G0 = Fin, and when the
RRAN network locates in row i and column j in MFRN in
Figure 2, G0 = Fi,j−1, G8 = Fi,j, and Fi,j = RRANij(Fi,j−1).
In this subsection, the value of i and j ranges from 1 ∼ 3 and
1 ∼ 4 , respectively.

In convolutional neural networks, using too many layers
can lead to loss of feature information and degraded
reconstruction quality. Additionally, the convolutional layer’s
computationally-intensive nature is a primary reason for slow
program execution. This paper presents a novel multiplexing-
based information reuse method called MFRN, which retains
a more comprehensive set of feature information and enables
parameter sharing between different channels to avoid
redundant computations. Equations 5 ∼ 7 illustrate the signal
multiplexing technique, where Fin is the input signal of the
MFRN, and F11, F12, F14, F21, F22, F24, F31, F32, and F34
are node signals in the MFRN network used to fuse feature
information across different channels, thereby enabling the
reuse of information from other channels. Out1, Out2, and
Out3 are the MFRN’s three-way signal outputs.

Out1 = Conv(F14) ⊕ Fin ⊕ F11 ⊕ F21 (5)

Out2 = Conv(F24) ⊕ F21 ⊕ F22 ⊕ F32 (6)

Out3 = Conv(F34) ⊕ F32 ⊕ F33 ⊕ F12 (7)

The RRAN not only preserves more feature information
but also enhances network training efficiency. The experi-
ments indicate that the recurrent approach is about 30% faster
than that of non-recurrent networks in training time.

C. RECONSTRUCTION MODULE
Figure 5 showcases the process of image reconstruction,
which is described mathematically in Equation 8. In this
equation, Out1, Out2, and Out3 denote the three outputs of
the MFRN network, while Fin refers to the shallow feature
map of the input image I. The upsampling operation is carried
out using pixel shuffle PS(·) and Fout represents the super-
resolution result of I.

Fout = Fin ⊕ Conv(PS(Conv(Out1 ⊕ Out2 ⊕ Out3))) (8)

Shi et al. mentioned in their paper [6] that using
deconvolution layers for image upsampling can generate

FIGURE 6. The pixel shuffle mechanism used for image reconstruction.

a significant amount of redundant information between
pixels. This can result in a suboptimal upsampling effect
or even negatively impact the gradient descent algorithm in
severe cases. Therefore, pixel shuffle is adopted for image
reconstruction.

Figure 6 depicts the usage of the pixel shuffle for
upsampling. For an input feature map with resolutionH×W ,
the number of convolution kernels is r2, and the output image
resolution is rH × rW . For SISR tasks with magnification
factors of 3 or 4, themethod proposed in paper [15] is utilized.
By leveraging the pre-trained network, the training efficiency
of the model can be improved for larger factors, and the
overall model’s operation time can be reduced.

D. LOSS FUNCTION
In the training process, the L1 loss function is used to
constrain the learning of the MFRN network, as it is sensitive
to data fluctuations and can effectively guide the update of
model parameters. The L1 loss function with parameter set Θ
is represented by Equation 9.

Loss(Θ) =
1
N

N∑
i=1

||FSR(xi) − Xi||1 (9)

In Equation 9, [xi,Xi]Ni=1 is the training set, where N is the
number of training image patches. Xi represents one high-
resolution image patch, which is regarded as the ground
truth of the low-resolution patch xi. FSR(xi) represents the
reconstructed super-resolution image patch of xi.
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TABLE 1. Quantitative tests: The average PSNR/SSIM values for ×2, ×3, ×4 SISR results are reported on Set5 [26], Set14 [27], BSD100 [28], Urban100 [29]
and Manga109 [38], comparing the performance of MFRN with other methods. The best and second-best results are shown in black bold and blue bold,
respectively.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENT SETTINGS
The programming framework is Pytorch1.0 in Ubuntu18.04.
The processor is Intel(R) Core (TM) i7-7800 with 32GB
memory. The graphics card is GTX1080Ti and the CUDA
version is 8.0. The optimizer is Adam, with its parameters
set to empirical values, specially ϵ = 10−8, β1 = 0.9,
and β2 = 0.999. Last but not least, the initial learning rate
is set to 0.0001, with a reduction to half of the previous

value every 200 epochs, and the number of the training epoch
is 1000.

Our model is compared with sixteen state-of-the-art
methods, and they are SRCNN [4], DRCN [20], LapSRN
[14], EDSR [15], DRRN [17], CARN [31], RDRN [25],
IMDN [32], DRUDN [19], RFDN [36], HDRN [43], SMSR
[33], MCSR [16], ARRFN [34], LBNet [35], respectively.
Their codes are available for free download from Github, and
their default parameter settings are followed.
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FIGURE 7. The green rectangle marks a 118 × 52 × 3 patch from barbara.png in the dataset Set14 [27]. On the right side are its ×4
super-resolution results, and the names of the corresponding super-resolution algorithms are marked below the results. HR is the high
resolution patch, or known as the ground truth.

FIGURE 8. The green rectangle marks a 69 × 63 × 3 patch from 8023.png in the dataset BSD100 [28]. On the right side are its ×4
super-resolution results, and the names of the corresponding super-resolution algorithms are marked below the results. HR is the high
resolution patch, or known as the ground truth.

B. DATASETS
The training dataset is DIV2K with data augmentations. The
DIV2K is a high-quality 2K dataset that contains 800 training
images, 100 validation images, and 100 testing images.
Four public benchmark datasets, namely Set5 [26], Set14
[27], BSD100 [28], Urban100 [29] and Manga109 [38] are
used to verify the training model. The use of the datasets
is in accordance with internationally accepted guidelines,
and the images in these datasets contain complex textures,
challenging structures, and rich information in the frequency
domain.

C. COMPARISONS WITH OTHER ALGORITHMS
1) PSNR AND SSIM COMPARISONS
In this study, Peak Signal-to-Noise Ratio (PSNR [11]) and
Structural SIMilarity (SSIM [12]) are primarily employed to
evaluate image reconstruction quality. PSNR is a widely used

metric for image reconstruction evaluation, which measures
pixel loss between two images. SSIM is also used to assess
image quality and mainly measures the structural similarity
between two images. In our objective quality assessment
tests, only the Y-channel component of a single image is
used, and the results are presented in Table 1. The PSNR and
SSIM are calculated as shown in Eq. 10 and Eq. 11, where
m×n represents the size of the images, specifically the ground
truth image Igt and the result image I ′. µx , µy and δ2x , δ

2
y are

the mean and variance of Igt and I ′ respectively, δxy is the
covariance of Igt and I ′, and c1 and c2 are very small constants
and their values are set to 0.001 in the paper.

PSNR = 20log10
255 × mn∑m

i=1
∑n

j=1(Igt (i, j) − I ′(i, j))2
(10)

SSIM =
(2µxµy + c1)(2δxy + c2)

(µ2
x + µ2

y + c1)(δ2x + δ2y + c2)
(11)
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FIGURE 9. The green rectangle marks a 112 × 93 × 3 patch from img_004.png in the Urban100 [29]. On the right side are its ×4 super-resolution results,
and the names of the corresponding super-resolution algorithms are marked below the results. HR is the High Resolution patch, or known as the
ground truth.

FIGURE 10. The green rectangle marks a 142 × 36 × 3 patch from the img_072. png in the Urban [29]. On the right side are its ×4 super-resolution
results, and the names of the corresponding super-resolution algorithms are marked below the results. HR is the High Resolution patch, or known as
the ground truth.

As shown in Table 1, our algorithm outperformsmost of the
other methods in terms of both PSNR and SSIM on the four
commonly-used datasets. This indicates that our algorithm
exhibits superior pixel recovery and structure preservation
capabilities for low-resolution input images. Furthermore,
as the texture complexity increases, from × 2 to × 4 and
from the Set5 [26] to Urban100 [29], the advantages of our
algorithm over other methods are further enhanced.

It is worth noting that when the magnification is 2, both
local and global information play equally important roles
in the image reconstruction process. The LBNet model,
based on transformers, and the RFDN model with enhanced
spatial attention demonstrate a stronger ability to describe
global features. However, due to the limited receptive field,
MFRN struggles to capture effective global features, leading
to slightly weaker reconstruction performance. Conversely,
as the magnification increases to 3 or 4, the importance
of local information in the image reconstruction process
becomes more prominent. The utilization of a multiplexed

structure, along with channel attention and pixel attention,
further enhances the representation of features. In such case,
MFRN exhibits a greater capability to characterize spatial
features, resulting in superior performance.

2) VISUAL PERFORMANCE COMPARISONS
The human eye is the primary means of obtaining infor-
mation, and thus visual effect serves as a crucial measure
of quality. Test results demonstrate that our proposed
algorithmic model is more effective in preserving image
texture without distortion. For instance, in Figure 7, while the
orientation of the book edge is horizontal, only our results
correctly maintain this orientation, while other algorithms
erroneously alter it, which is clearly untenable. The same
holds in Figure 8, where the feather texture of the chickadee
is obliquely upward, and the reconstructed texture in other
algorithms exhibits crossed patterns. It is worth emphasizing
that our algorithmic model is robust even when dealing with
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TABLE 2. MOS comparisons. Top 5 algorithms for scale factor × 2, × 3,
×4 on datasets Set5 [26], Set14 [27], BSD100 [28], Urban100 [29] and
Manga109 [38]. Our model MFRN are shown in black bold.

repetitive and dense textures. As illustrated in Figure 9, only
our algorithm can accurately recover the texture below the
green line, whereas in other models, this texture appears
blurred. Likewise, the same holds in the building support
in Figure 10, further substantiating the superiority and
robustness of our algorithm.

3) MOS COMPARISONS
The Mean score Of the System (MOS) is a subjective
score evaluation metric widely used in visual tasks on an
international scale. This metric involves selecting individuals
with and without professional backgrounds in proportion and
requesting them to evaluate images provided to them for
rating. The evaluation criterion relies solely on the comfort
level of human eyes during the observation of these images.
After the removal of extreme scores, the remaining scores are
averaged in descending order to obtain the final result.

As depicted in Table 2, our algorithm demonstrates a
top-ranking performance in most cases, and a second-place
performance in some cases in the MOS test. This not only
serves as evidence of our algorithm’s ability to generate
natural images with excellent subjective performance but also
illustrates its robustness and proficiency in recovering most
textures present in the datasets.

4) COMPARISONS WITH THE BENCHMARK MODEL
IMDN [32]
IMDN [32] is regarded as the benchmark algorithm for SISR
models, and its effectiveness is evaluated based on the quanti-
fied metrics of PSNR and SSIM. The histogram in Figure 11
illustrates the 1PSNR or 1SSIM values between our MFRN
and IMDN. The results indicate that MFRN outperforms
IMDN across all five commonly-used international texture
datasets and exhibits superior performance on more complex
texture datasets, such as BSD100 [28], Urban100 [29] and
Manga109 [38].

5) COMPARISONS WITH THE RECURRENT-BASED METHODS
As our algorithm is a recurrent-based method, it is necessary
to provide a brief overview of recurrent algorithms. Recurrent

FIGURE 11. Comparisons with the model IMDN [32]. × 2, × 3 and
× 4 tests in Set5 [26], Set14 [27], BSD100 [28], Urban100 [29] and
Manga109 [38]. The objective evaluation metrics are 1PSNR and 1SSIM.
The test results are presented as histograms with the names of datasets
directly below them.

FIGURE 12. × 4 SISR performance comparisons of recurrent algorithms.
The objective evaluation metric is PSNR, and Set5 [26], Set14 [27], BSD100
[28] and Urban100 [29] are test datasets.

algorithms are designed to reduce training time through
module reuse and effectively alleviate the loss of features in
the transmission process, ensuring the optimal utilization of
information. This subsection presents comparisons of recur-
rent networks from two perspectives: network performance
and structures. To make comparisons, ourMFRN is evaluated
against eight SISR recurrent networks, namely DRCN [20],
DRRN [17], RDRN [25], DRUDN [19], CARN [31], IMDN
[32], MCSR [16], HDRN [45] and LBNet [35]. Given the
unavailability of data from the Manga109 [38] dataset for the
CARNmodel, the comparisons are limited to utilizing results
solely from the first four commonly-used datasets, as shown
in Figure 12, with MFRN being the most stable and superior
among them.

Figure 13 depicts a simplified version of eight recurrent
networks that reuse the depth feature extraction module.
The shallow feature extraction and reconstruction modules
are represented in gray and pink, while the remaining
modules form the recurrent network. Notably, Figure 13
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FIGURE 13. Simplified recurrent network structures of DRCN [20], DRRN [17], DRUDN [19],RDRN [25], CARN [31], IMDN [32], LBNet [35] and our
model MFRN. All functional modules are color-coded and annotated. In particular, I is the input image, Fin is the shallow feature, Fout is the
output of the recurrent network, and ISR is the reconstruction result of I .

shows significant differences between the MFRN and other
networks in three aspects. Firstly, MFRN stands out due
to its adoption of a multiplexing-based structure, which
is distinct from the single-channel structure used by other
networks. Secondly, MFRN utilizes a different type and
order of functional modules in each channel. Lastly, unlike
other recurrent networks, MFRN employs an attention fusion
mechanism to process information from each part differently.
This mechanism enhances the feature expression of the neural
network, making it the most significant point that sets MFRN
apart fromMCSR [16]. In conclusion,MFRN stands out from
other recurrent networks due to its unique performance and
network structure.

6) COMPARISONS OF MODEL PARAMETERS
Table 3 illustrates recent SISR models renowned for their
exceptional performance, along with corresponding metrics
such as FLOating-Point operations (FLOP, also known as
Multi-adds), Running time, and Parameter size. The test
images are × 4 SISR results in dataset Urban100 [29], and

TABLE 3. Model parameters comparisons.

the statistics are the mean values of the test images. Among
the different models used, SRCNN [4], LapSRN [14], CARN
[31], IMDN [32], SMSR [33], ARRFN [34], LBNet [35]
and our MFRN are lightweight models since they contain
less than 1M parameters. However, the other models contain
more than 1M parameters, especially EDSR [15], which
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FIGURE 14. Topologies of information flow, and they are plain-based,
residual -based [22], skip connection [24], memory-based [18], dense
connection [30], and our multiplexing-based method.

has 47 times more parameters than MFRN. Furthermore,
our MFRN not only ensures top-notch performance but
also resides within a reasonable range in terms of speed
and FLOP metrics. This substantiates the fact that the
multiplexed structure successfully strikes a commendable
balance between model performance and efficiency.

7) COMPARISONS OF TOPOLOGIES OF INFORMATION
FLOW
Various connection methods exist between network modules.
Considering each network module as a transmission node
of information flow, the connection methods between nodes
possess different topologies in space, leading to different
forms of information computation and propagation, thereby
forming distinct features.

In Figure 14, five common information flow topologies
are illustrated. The blue square nodes represent information
flow nodes, and the black lines depict the information
transmission routes. Each topology employs unique forms
of information reuse to generate diverse features. While
Densenet [30] is a common method for information reuse in
single-channel network topologies, it overlooks the potential
of multiplexing-based feature fusion. Our approach uses
information from multiple channels recursively, reducing
training time while enhancing feature information capacity.
Furthermore, the attention fusion mechanism effectively
coordinates the contributions of each module in the network,
leading to more realistic reconstructed images.

8) REAL WORLD COMPARISONS AND DISCUSSIONS
The intricate textures and fine details found in real-world
images present a substantial challenge for SISR tasks. Real-
world images are frequently affected by various forms
of noise and artifacts, such as signal noise, compression
artifacts, and motion blur, all of which have a detrimental
impact on the quality of SISR results. Moreover, the
acquisition of high-quality training data has emerged as a
significant hurdle in real-world SISR tasks, primarily due
to the associated costs and difficulties involved in obtaining
HR images. These inherent challenges have served as strong
motivation for researchers to strive towards the development
of more effective and accurate SISR techniques.

FIGURE 15. 1st visual performance comparisons. HR is the High
Resolution patch from the real-world image, or known as the ground
truth. Other images are ×4 SISR results, with the name of the algorithm
marked at the bottom of each image.

FIGURE 16. 2nd visual performance comparisons. HR is the high
resolution patch from the real-world image, or known as the ground
truth. Other images are ×4 SISR results, with the name of the algorithm
marked at the bottom of each image.

By analyzing Figures 15 and 16, it can be inferred that
our proposed SISR algorithm, namely MFRN, demonstrates
remarkable performance in real-world image processing.
Firstly, MFRN exhibits proficiency in capturing and restoring
intricate textures and details, thereby preserving the authen-
ticity of the images. This proficiency is clearly evidenced by
the precise rendering of the tiger’s fur in Figure 15 and the
intricate texture of the cooler in Figure 16. Secondly, MFRN
upholds exceptional efficiency and accuracywhile processing
large-scale images, successfully executing complex computa-
tional operations within a reasonable timeframe. As a result,
MFRN proves to be well-suited for effectively handling real-
world images.

D. ABLATION STUDY
Our model MFRN consists of three key components: the
shallow feature extraction, nonlinear feature mapping and
reconstruction parts. Omitting any of these components
would render the network unable to complete the SISR task.
Consequently, ablation studies are conducted to evaluate the
impact of the Recurrent Architechture (RA), MultiPlexing-
based structure (MP) and the Attention Fusion mechanism
(AF) on the overall network performance.

Table 4 illustrates three cases that we evaluated by
modifying the structure of channels and incorporating an
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TABLE 4. Ablation studies of the network parts of MFRN.

TABLE 5. Ablation studies of structurally-similar methods with MFRN,
and the test images are × 4 SISR results in dataset Urban100 [29]. MC,
MP, CA, PA, AF are short for multiple channels, multiplexing-based
structure, channel attention, pixel-attention, and attention fusion.

attention fusion mechanism. The test results of these cases
demonstrate variations in PSNR, SSIM, FLOP (also known
asMulti-adds), and running time, highlighting the essentiality
of both a multiplexing-based structure and an attention fusion
mechanism for accurate feature extraction. The test images
are × 4 SISR results in dataset Urban100 [29], and the
statistics are the mean values of the test images.

Table 5 effectively illustrates several models that have
a similar structure to our MFRN. Notably, CARN [31],
RDRN [25], AFFRN [34], RFDN [36], DRUDN [19] and
other models leverage multiple channel structures for opti-
mizing information transmission, but they all ignore to fuse
information between multiplexes. In comparison, our MFRN
employs a multiplexed-based information flow transmission
structure and finally generates superior features. In addition,
these models are not capable enough of distinguishing
features due to the lack of an effective attention mechanism.
For example, IMDN [32], MCSR [16], LBNet [35], and
other models utilize channel attention mechanisms to learn
differences in information across channels. However, they do
not pay adequate attention to pixel-level features within each
channel. Furthermore, SMSR [33] prioritizes the sparsity of
each feature but indiscriminately treats features of different
channels, which is unreasonable. Our MFRN, however, uses
channel and pixel attention mechanisms to learn better
features globally and locally. Besides, multiplexed-based
architectures and feature fusion mechanisms are explored to
process these features efficiently, and global arithmetic power
is allocated reasonably to achieve better output results.

Classical attention mechanisms encompass channel atten-
tion, pixel attention, and spatial attention. These mechanisms
can be utilized individually or in combination. For instance,
in image classification, the CBAM model [50] integrates
channel attention and spatial attention. However, many
attention studies predominantly focus on high-level visual

TABLE 6. Ablation studies of attention mechanisms. The test images are
× 4 SISR results in dataset Urban100 [29], and the statistics are the mean
values of the test images. CA, PA, SA are short for Channel Attention, Pixel
Attention, and Spatial Attention.

problems, while disparities may arise in low-level problems
such as super-resolution. In essence, the performance of the
same attention module can vary between low-level and high-
level problems. This discrepancy arises because high-level
problems emphasize image semantics, whereas low-level
problems focus on individual pixel values.

Table 6 illustrates three cases: case 1 represents the model
proposed in this study, case 2 replaces pixel attention with
spatial attention, i.e., the CBAM model, and case 3 incorpo-
rates all three types of attention simultaneously. Statistical
data demonstrates that in case 2 compared to case 1,
image reconstruction performance declines, computational
complexity increases, and inference time rises. Case 3 only
exhibits a marginal performance improvement of 0.038%
over case 1, which is quite limited, while simultaneously
increasing running time by 15.79% and FLOP by 21.27%.
Consequently, the overall system performance decreases.
Considering the trade-off between performance and effi-
ciency, this study adopts the fusion of channel attention and
pixel attention.

The underlying reason for this phenomenon is that
the proposed multiplexed structure in this study already
offers spatial features of ample richness. Consequently, the
simultaneous utilization of the multiplexed structure and
spatial attention would lead to redundant spatial information,
which hampers the improvement of system performance.
Furthermore, the coarse nature of spatial features poses
challenges in recovering fine-grained textures. However,
with the aid of pixel attention, the system can effectively
prioritize pixel-level features, resulting in exceptional image
reconstruction performance.

IV. CONCLUSION AND FUTURE WORK
In this study, a Multi-attention Fusion Recurrent Network,
namely MFRN, is proposed. Compared with most SISR
algorithms, this paper adopts a multiplexing-based archi-
tecture to improve the information representation ability
and reduce the loss rate of features. At the same time,
the recurrent reuse of neural networks greatly reduces the
training time. Finally, it is worth mentioning that the attention
fusion mechanisms, including the channel and pixel attention
mechanisms, help to process the feature information of each
layer differently. Numbers of experiments show that the
proposed SISR algorithm can not only output visually nature-
looking reconstructed images but also achieve remarkable
results in the test of objective metrics.

VOLUME 11, 2023 98663



Q. Kou et al.: Single Image Super Resolution via MFRN

We acknowledge that the model proposed in this study
primarily focuses on local features while overlooking the
crucial role of global features. Additionally, it remains uncer-
tain whether there exists an optimal geometric topology in
space for multiplexed architectures. Regrettably, the current
study lacks theoretical investigations in this specific domain.
Consequently, both of these aspects represent essential areas
for future research, with the goal of expanding and refining
the model.
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