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ABSTRACT In this article, the solution to the inverse and forward kinematics of a novel three-legged, serial-
parallel, compliant robot are presented. The design of the robot aims to combine properties from serial
and parallel architectures, thereby targeting an agile, yet precisely controllable robot that possibly allows
both for dynamic locomotion and accurate manipulation tasks. The robot embodies the series connection
of two parallel architectures, a planar and a spherical mechanism, realized in a highly dense mechanical
assembly, allowing for lightweight, functionally redundant and compliant 4-DOF legs. A hybrid compliance
behaviour is achieved, serving as a threshold between a stiff and compliant systemic state of the robot.
Based on the mechanism design, the study involves the derivation of an alternative, yet complete solution
for the inverse and forward kinematics of the spherical parallel manipulator (SPM). The approach utilizes
spherical trigonometry and spatial vector geometry and yields a unique solution, while being both easy to
implement and numerically efficient, thereby being applicable to real time implementations. Conceptually,
a reduction of the mechanism assembly and working modes was directly integrated into the solution terms,
drastically simplifying the expressions as they only represents the mechanically meaningful configuration
relevant for actual physical systems. In addition to the active joint coordinates, the solution yields a unique set
of all passively driven joints. The derived robot kinematics are furthermore verified through a 3D simulation
model, showing the robot performing several motions. Thereby, the simulations portray the characteristics
of the motor units by means of their corresponding phase profiles, revealing a balanced utilisation.

INDEX TERMS Forward kinematics, inverse kinematics, legged robot, mechanical design, serial-parallel
mechanism, spherical parallel manipulator.

I. INTRODUCTION
Legged locomotion presents itself as a fascinating challenge
in the field of legged robots. Over the years, a wide range
of conceptually different mechanical designs was considered,
modelled, simulated, and built in the vast literature of legged
robots. Noticeably, many robots showed impressive results
and are very capable to even traverse rough terrain, yet still
strive to recreate the seemingly efficient and natural gait of
biological beings.

With this work, we further explore the design of a novel
legged robot, which is of rather atypical design due to
its odd number of legs, if compared to examples from
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nature. However, the robot features the intricate combination
of several mechanical ideas, which—as future work will
investigate—might prove itself sufficient to allow for energy
efficient legged locomotion. In this regard, as the robot design
and a selection of its properties were discussed in our previous
works [33], [34], [35], this article solely focusses on the
complete inverse and forward kinematics of the robot. Since
the robot consists of a large number of manifoldly connected
mechanical parts in multiple interwoven closed loops, the
kinematics of this robot are rather involved.

A. THE ROBOT CONCEPT
The five key concepts (I-V) [33] of the robot model—
as depicted in Fig. 1—can be summarised as follows:
Primarily, the three-legged design (I) marks the most
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FIGURE 1. CAD model of the legged robot.

distinguishing factor in comparison to many other robots.
A three-legged layout naturally requires dynamically bal-
anced locomotion, considering only small contact sur-
faces per foot, yet does allow for statically stable object
manipulation tasks in a tripodal posture. Crucially, min-
imizing the number of legs reduces the total weight of
the robot, and may thus benefit agility during locomo-
tion and allows for a better performance-weight-ratio. For
reference, other three-legged designs were proposed in
the literature [1], [10], [24], [26], [60], [62], [66], [68], [70];
however, those have largely different properties and target
applications, as discussed in [33]. Similarly, the serial-
parallel (II) actuation layout is an important property, which
features a 3-degrees-of-freedom (DOF) motion of the hip
joints via a spherical parallel mechanism, and a 1-DOF
knee joint, connected in series. This hybrid design possibly
allows for precise and strong hip motions, while still
allowing for a suitable workspace due to the large range
of motions provided by the knee joints. Furthermore, the
hip joint features an internal load support structure (III)
in a non-overconstrained design, which decouples external
forces from motor torques. Thereby, due to the functional
separation, a compact mechanism is achievable. Passive
constraint forces and impacts from the locomotion cycle are
captured in isolation by the internal universal joint, while
only the required joint torques are transported through the
hip parallel linkages. A similar approach was employed
for the surgery robot in [14] that is based on a spherical
parallel mechanism architecture and can support large load
forces through an additional spherical joint placed in the
manipulator centre. In a similar manner, our initial design

of the robot in [34] utilized a passive spherical support joint
as well. However, by replacing this spherical joint with an
universal type mechanism that rotates with respect to the
robot torso—equivalent to a serial RRR-joint—we can take
advantage of the space within the hip centre, as it is required
for the torque transmission from the actuators towards the
knee joints. Furthermore, with the inclusion of a pre-stressed
spring inside the upper leg, a planar 4-bar mechanism was
realized in the leg plane, allowing for passive compliance
(IV) of the leg, after passing a certain threshold. This
yields a hybrid behaviour, and possibly allows the robot to
perform object manipulation tasks in a statically determined
and stiff configuration, while active locomotion transitions
into a compliant, yet underactuated state. In addition, the
overall design targets a dense mass concentration (V), which
was achieved by placing all 12 actuators inside the robot
torso, locating the robot centre of mass in the torso as
well. Consequently, the robot legs may allow for fast and
agile motions, as those embody only very small masses and
inertias. Combining (I–V), the robot targets a behavioural
similarity to the Spring-Loaded-Inverted-Pendulum (SLIP)
template [11], [37], [77], which is studied in depth in the
literature and may allow the application of corresponding
control laws.

Consequently, as possible control laws implemented in the
future work will require to express or reconstruct a body
posture for either locomotion or precise object manipulation,
the underlying kinematics based on the full body-joint
structure must be explored.

B. RELATED WORK
Multiple aspects of the robot presented in this article were
investigated in our previous works; however, the mechanical
design of the robot was improved iteratively with each study,
with the CAD model in Fig. 1 depicting the current version.

Initially, in [34] we presented a conceptual design of the
robot, showing that legged locomotion over flat terrain is a
feasible task with the general topology, utilizing a rigid-body
simulation and a joint space PID control scheme. In [35]
we substantially reworked the overall design and built a real
world prototype of one of its legs. This iteration of the robot
introduced the serial-parallel layout, featured a passive leg
compliance and a dense mass concentration inside the robot
torso, allowing for lightweight and agile legs. Furthermore,
the general linearity of the leg compliance mechanism was
shown. Recently, in [33], we examined multiple properties
of the robot, including performance, dexterity and workspace
analyses, with a particular focus on the hip joint conditioning,
closeness to optimum isotropic postures and the potential
risk to overload the actuators. Table 1 summarizes general
properties of the robot.

C. ARTICLE SCOPE
The focus of this article lies on the complete mathematical
derivation of the solution to the inverse and the forward
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TABLE 1. Properties of the robot, derived from CAD based calculations,
practical measurements and previous works [33], [34], [35].

kinematics of the robot model presented. These solutions
were already implicitly used in the previous works in order
to realize the according robot motions. To elaborate, the
inverse kinematics yields the solution to all joint coordinates
based on a given spatial position and orientation of the
robot end-effectors. In this case, the location and rotation
of the robot torso and of the feet points are given, which
means that the inverse kinematics delivers the actuator angles
for the corresponding robot posture. Likewise, the forward
kinematics yield the current robot posture, based on the
measured angles of the robot actuator joint axes.

Noticeably, a key part of the robot is the spherical parallel
manipulator (SPM) utilized for the hip joints. Hence, in this
article, the inverse kinematics specific to the general SPM
are solved by the application of spherical trigonometry.
In addition, the approach delivers the angular position of all
active and passive joints inside the mechanism. Similarly,
the SPM forward kinematics rely on spatial vector geometry.
Both approaches differ from the usually utilized solutions
from the literature. The implications and the comparison
of these rather different approaches to the existing methods
thus are important aspects, e.g. regarding numerical accuracy,
complexity and execution speed; however, these analyses—
more centric to the algorithms themselves—cannot be
portrayed regarding the scope of this article. Still, multiple
aspects made the usage of the geometric approaches benefi-
cial for this specific application, as discussed in the following.

D. DISTINCTION TO OTHER METHODS
Despite there exist well known solutions to the kinematics of
the SPM, the solution to this type of manipulator presented
in this proposal is visually expressive and easy to implement
in controller hardware. Both solutions to the inverse and
the forward kinematics presented in the literature yield

eight possible configurations of the manipulator; yet in
practise, calculating the full set of solutions may not be
required. In this regard—due to the geometric approach
utilized in this article—the solution presented is unique,
therefore it returns just one set of values, clearly defining
the angular position for each axis in the case of the inverse
kinematics problem. Correspondingly, a unique orientation
of the tool platform is delivered in the forward kinematics
case. Conceptually, the utilization of the geometric approach
predetermines the physical configuration of the manipulator,
and reduces the set of possible solutions, which corresponds
to only one assembly mode for the forward solution and one
working mode for the inverse solution. Consequently, the
approach is practically motivated, as it considers only the
actual mechanical structure of the manipulator, and may be
considered as a special case that can be deduced from the
more general literaturemethods. Since the produced solutions
are simple expressions and display only first order root
finding problems, the numerical requirements may be similar
or possibly less demanding than the existing approaches.

1) INVERSE KINEMATICS
For reference, the often referred solution for the inverse
kinematics in the literature was proposed in [38] and [44] with
an algebraic approach. This approach was used for various
applications, as e.g. in [74]. Alternatively, in [51] a solution
based on spherical analytical theory was proposed. Recently,
a solution based on projective angles was shown in [59].
In [61] a different geometric approach was shown specifically
for the optimal SPM. In addition, related and similar solutions
to the aforementioned methods were applied in [16], [27],
[67], and [80].
Considering the geometrical approach—despite partial

works were made in [48] and [49]—to the best of our
knowledge, there has not been published a completely
formulated solution for the general SPM, which is applicable
to an arbitrary shape and is based on spherical trigonometry.
This furthermore includes the representation of all nine
joint coordinates and the initial embedding of a specific
manipulator working mode that corresponds to the physically
intended configuration of the mechanical system. However,
the general application of spherical trigonometry for spher-
ical mechanisms is a natural approach, as it was shown
e.g. in [63]. Regarding other related spherically shaped
robot mechanisms, spherical trigonometry was performed
e.g. in [29] for the inverse kinematics solution of a dextrous
robotic hand. Similarly, spherical trigonometry was used
for the inverse and forward kinematics analysis of an eye
surgery robot with spherical architecture [65]. In addition,
the application of spherical trigonometry for similar problems
was shown in [22], [25], [30], [75], and [76].

2) FORWARD KINEMATICS
Similarly, several methods were proposed for the solution
to the forward kinematics problem of the SPM, as e.g.
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reviewed in [9]. In [41] a polynomial approach was shown,
which yields the Euler angles of the orientation matrix.
In [51] the joint angles along the linkage chains were
incorporated, also resulting in a polynomial expression.
Furthermore, in [7] a solution based on input-output-
equations (I/O) was proposed, which expresses the problem
by two closed loops, connected by the same linkage part. All
the aforementioned approaches yield polynomials of eight
order due to the utilisation of trigonometric tan-half-angle
identities. Alternatively, an interval propagation method was
derived in [15]. A direct algebraic solution was presented
in [54]. A geometric formulation yielding results for the
individual assembly modes was shown in [61] for the optimal
SPM. Basically, the problem solution can also be found by
numerically solving a system of nine equations, expressing
the constraint conditions of the assembly, as e.g. shown in [6],
[78], [80], and [23]. Other related methods were applied
in [53], [4], [12], [27], and [80].

Contrarily, in this work we propose a method for the
forward kinematics that relies on a first order root finding
problem with a single unknown variable. This is possible
based on the restriction to a known assembly mode and the
application on the optimal structural shape of the SPM. In this
regard, the method has the drawback that it does not return
all solutions to the SPM orientation, yet this might not be
required under practical conditions, which will not switch
assembly modes and may require short calculation times
suitable for high speed real time applications. A different
formulation by means of a unique solution to the forward
kinematics problem was shown in [56], which similarly
assumes that the manipulator remains in its current assembly
mode; thus, does not cross a singularity configuration.
However, in contrast to [56] the solution in this article is based
on simple vector expressions. In [19] the idea was proposed
to start the numerical solution from the initial guess of the
last known posture. Similarly, this pre-assumes the actual
posture of the manipulator and leads to a faster convergence
of the numerical solution; however, the basic equations
utilized in the approach were still formulated in a lengthy
expression to support all theoretically attainable postures.
Similarly, in order to obtain a unique solution from the
numeric solver, in [81] the assembly mode was pre-assumed
by starting from a specific guess vector. In [71], [72], and
[50] an extra sensor was employed, shortening the required
execution time by incorporating the additional information of
the manipulator posture into the polynomial equations. In this
regard, in [84] it is shown how the employment of additional
sensors can greatly simplify the general polynomial solution
to a forward kinematics problem of a parallel mechanism.
However, in this article, due to the geometric approach, the
proposed method fundamentally allows the variation of just
one parameter, expressing the confined rotation of the tool
platform, which only yields a feasible posture under specific
constraint conditions. In a related manner, in [5] a geometric
method based on a circle-line intersection problem of general
four bar linkages was proposed. Crucially, the method in

this article relies on a mechanical contextualization of the
SPM orientation. By this measure, the set of unknowns is
embedded into a expression of constrained motion, as there
exist mechanical couplings between all variables. Thus,
actually solving the forward kinematics problem can be
thought of performing a constrained 1-DOF motion of the
manipulator tool platform with one of the linkages being
mechanically cut, until the required error tolerance at the joint
axis is met.

E. ARTICLE STRUCTURE
The rest of the article is organized as follows: Sec. II briefly
describes the robot model, initially presented in our previous
works [33], [34], [35] and derives the representation model
for the kinematics analysis. Sec. III then presents the solution
for the full inverse kinematics of the legged robot. This
section is partitioned in three subsections III-A, III-B and
III-C as a result of the separation into smaller sub-problems.
Specifically, Sec. III-C presents the solution to the inverse
kinematics of the spherical parallel manipulator including
all active and passive joints based on spherical trigonometry,
which might be considered as a rather general solution, valid
for any robot including the general SPM. Correspondingly,
Sec. IV covers the complete forward kinematics solution
of the robot model, including the geometrical approach of
the forward kinematics for the SPM. For completeness, Sec.
V shows the robot performing motion sequences based on
the implemented solutions for the inverse and forward robot
kinematics. Finally, Sec. VI discusses results and Sec. VII
draws a conclusion. Additional mathematical expressions and
figures are located in the Appendix.

II. THE ROBOT DESIGN
Fig. 1 depicts the CAD model of the three-legged robot,
mostly composed of lightweight 3D-printed parts. The robot
consists of 55 rigid bodies connected by 69 joints in total. The
complete topology of the robot is shown in Fig. 2, visualizing
the internal connections between the robot parts.

The general mechanical layout of the robot legs can be
considered as a series connection of a spherical parallel
manipulator—transmitting torque from the torso to the upper
leg through the hip joint—and a planar parallel manipulator—
defining the leg structure—which drives the knee joint. The
hip joint is a spherical 3-DOF system and each actuator
with the axes û1, û2 and û3 is located inside the robot
torso by a dense spatial arrangement. In addition, the
knee actuator with axis û4 was placed inside the torso as
well; however, this actuator is connected via a bendable
homokinetic transmission axis to the actual knee mechanism,
reaching from axis û4 to axis ĉ9. Thus, the knee actuator is
connected in series to the set of the three hip base actuators,
despite the knee actuator is not part of the moving leg itself.
Furthermore, a passive torque around axis ĉ3 is produced by
an internal spring located inside the upper leg, which is—
beside the knee actuator—the other input force of the leg
parallel mechanism.
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FIGURE 2. Topology of bodies and joints inside the robot model, based upon the diagram presented in [33]. Red joints are
actively, blue joints passively actuated.

The connection between the application of the spring
torque and the actual internal linear spring—composed
of four pre-stressed springs in parallel arrangement—was
realized by a high strength string, guided inside the upper leg
over a system of multiple pulleys, finally connecting to the
tool platform. This design was chosen to accommodate to the
generally compact mechanical design. Applying the spring
force through this string transmission results in a relative
torque between upper leg and tool platform. The parallel leg
system is composed of a planar four-bar mechanism—by the
axes ĉ3, ĉ4, ĉ5 and ĉ6—that contains one side which can be
length-adjusted by a slider mechanism via the prismatic axis
ĉ7, driven by the knee actuator. The transmission of rotation
from axis ĉ9 to translation on axis ĉ7 is realized by a screw
joint on axis ĉ8.
The implemented leg compliance constitutes to a hybrid

behaviour, which was shown in [35]. Thus, if external forces
are below a certain threshold, the leg four-bar mechanism is
effectively a 1-DOF manipulator based solely on the knee
actuator. However, if external forces exceed the internal
spring forces, the four-bar linkage deforms due to the angle
between upper leg and tool platform on axis ĉ3 decreasing,
resulting in a 2-DOF system. Thus, expressed by the spring
slot angle ϕs, ĉ3 is allowing for a relative DOF between upper
leg and tool platform. Consequently, in the relaxed posture of
the leg, without external forces, the internal spring pulls the
upper leg against the lower boundary of the slot that is carved
into the tool platform.

Importantly, the axes ĉ1, ĉ2 and ĉ3 resemble a rotatable
universal joint like support structure that allows spherical
motion of the hip joint. Noticeably, axis ĉ3 is shared between
both the universal joint and the spring DOF. Consequently,
this RRR centre joint captures all forces introduced into the
leg and allows the integration of an outer non-overconstrained

3-CCC parallel structure, transmitting the hip motor torque
over the cylindrical axes û1−3, v̂1−3 and ŵ1−3.

To be able to fully reconstruct the robot posture, 21 joint
sensors were included into the robot model. The absolute
angular position of the base actuators are measured by the
encoders E1−3, connecting the measurement axes over TH via
helical gears of ratio 1.3, located inside the base platforms.
The motion of the proximal universal joint structure around
axis ĉ1 is measured over a miniature belt transmission TB
of ratio 23.5/7 by sensor E4, which is actually partially
redundant to the sensor data of E1−3. In future work, this may
allow for an improvement of the forward kinematics accuracy
in the case that the hip joint moves closer towards a singular
posture.

The slider position, controlling the knee angle, is captured
by two sensors in tandem, E5 and E6. Sensor E6 is an
analogue linear potentiometer connecting with ratio 1 over
TL , and sensor E5 is a single-turn, absolute high resolution
contact-less encoder, directly connecting over TR with ratio
1 to the lead screw axis. The implementation of two sensors
stems from the requirement for absolute position information,
which can only be assembled via the combination of E5 and
E6. While E5 is delivering the fine and absolute rotation of
the lead screw, yet only as relative information, E6 gives the
broad, yet absolute slider position.

The compliant compression of the leg is observed with a
linear potentiometer E7, following the motion of the internal
spring string, which yields a non-linear relationship TN to the
rotation axis ĉ3.
Currently, the robot does not include a battery or electron-

ics; thus, it is dependent on a wired connection to both its
power supply and its controller hardware. A complete real
world prototype of this iteration is currently build in our
laboratory.
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FIGURE 3. Simplified kinematics representation of the robot model,
occluding the complexity of the internal mechanism.

A. NOTATION
Naturally, the formulation of the inverse and forward
kinematics requires a description of the relative spaces
between elements.

In the following, every matrix denoted with R ∈ R3×3

is an orthogonal linear mapping matrix belonging to the
group SO(3); thus, matrices R express rotations. Matrices
named with Q ∈ R4×4 express affine transformations; thus,
Q expresses rotations in addition to translation. In general,
transformationmatricesR andQ describe the relative location
and orientation of the base and follower reference frame
of joints or bodies. In this regard, the joint base (b) and
follower (f) frames are statically attached to different bodies,
respectively. Hence, a vector ax expressed in frame Fa is
mapped into frame Fb by bx =

b
aQ ·

ax, with b
aQ describing

the joint transformation. In this case, vector x is extended
by homogeneous coordinates, without specifically stating the
dimensional change. Otherwise, a spatial vector x is always
considered to obey to x ∈ R3. If not stated otherwise, every
norm ∥·∥ refers to the standard euclidean norm ∥·∥2. A vector
with hat-notation x̂ indicates that its length resolves to ∥x̂∥ =

1. Vectors êx , êy, êz are always parallel to the respective axis
in an orthogonal reference frame F . In some instances, the
abbreviations c and s are used to allow for a short notation of
the cos and sin functions, respectively. Table 4 in the appendix
depicts the symbols and abbreviations used throughout this
article.

B. KINEMATIC REPRESENTATION OF THE ROBOT MODEL
Since the robot is a complex mechanical system comprising
serial and parallel structures, a multi-layered approach was
employed in this work. Therefore, a simplified replacement
model of the robot was defined, as depicted in Fig 3.
In the following, the inverse kinematics of this model and
the solution to the underlying more complex systems are
presented.

FIGURE 4. Naming convention for components of the hip manipulator
employed in this work.

C. MATHEMATICAL SETUP OF THE SPM
The SPM is a 3-DOF orientation device and was examined
in several works [3], [8], [13], [20], [38], [39], [40], [42],
[43], [44], [45], [46], [51], [82] and was used in many
applications [2], [18], [21], [27], [31], [36], [42], [46], [48],
[49], [50], [55], [57], [58], [71], [72], [73], [74], [79],
[83], [85]. Torque applied by the actuators in each of the
three parallel linkages of the mechanism results in spherical
rotation of the end-effector (EE) around the common centre
point. Each part of the mechanism rotates around this centre;
thus, each joint axis intersects in the centre. The linkages
between base and end-effector are comprised of a proximal
and distal link with the base, link and tool axes—called ûj, v̂j
and ŵj—connecting the parts in series. The individual parallel
linkages of the manipulator are distinguished by the index
j ∈ 1, 2, 3. In the following, the SPM end-effector is referred
to as the tool platform. Fig. 4 depicts the naming convention
for the SPM parts.

III. INVERSE KINEMATICS
As stated above, the solution to the inverse kinematics
of the robot can be spilt into two separate problems.
At first, the top-level kinematics of the robot are solved,
considering the hip joint as a simple spherical joint and the
knee as a revolute joint. This approximates the robot leg as a
simple 2-link mechanism, effectively rendering the robot as
a 3-SR system. Thus, for a known position and orientation
of the robot torso and given target positions for each foot,
the calculation of the generalized inverse kinematics yields
a solution to the simplified kinematics substitute model
(Sec. III-A). Based on the resulting transformation matrices
expressing the relationship between joint and body frames,
the calculation of the low-level kinematics is performed for
the more complex underlying SPM and the leg mechanics
(Sec. III-B–III-C). Finally, this yields the corresponding
generalized actuator coordinates vector θ ∈ R12, due to
the robot comprising 12 DC actuators for the actively driven
joints.

A. GENERAL ROBOT INVERSE KINEMATICS
As a starting point, the matrix weeQ—defining the position and
orientation of the robot torso in the world reference frame
Fw—is given. Furthermore, the target positions of each foot
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FIGURE 5. Simplified geometry for the general inverse kinematics.
Variables l0 and l1 denote the lengths of upper and lower leg,
respectively. It holds EL0 ∦ EL1 for the planes spanned inside the leg
geometry if η = 0. Index i is omitted.

point are expressed with wpi for the legs i = 1, 2, 3 in the
world reference frame. From the dimensions of the robot
model, the static intermediatematrices eehbQi are known,which
describe the location of the SPM base platforms in the torso
body. For readability, index i is omitted in the following.

Notably, the applicability of the inverse kinematics is
directly related to the knowledge of the accurate position and
orientation of the robot torso, expressed by the matrix w

eeQ.
This matrix is a function of the external sensor information S
depending on the employed hardware, thus:

w
eeQ := f (S). (1)

The value is fully known in the simulation as portrayed in this
article; however, this aspect becomes relevant in the future
real world implementation on an actual robot prototype,
which relies on an estimate, accurate only to a certain degree
in reality.

Based on the simplified robot kinematics model from
Fig. 3 with SR type legs, the general top-level inverse
kinematics of the robot are considered to be solved if the
transformation matrices hf

hbR for the spherical hip (S) joints
and the internal angles α1 expressing the revolute knee (R)
joint orientation are determined. In this regard, the basic
geometrical relationship for each leg can be observed in
Fig. 5.

1) KNEE JOINT GENERAL KINEMATICS
At first, regarding the derivation of the knee joint angle α1,
the problem is projected into the base frames of the respective
hip joints Fhb. Therefore, a foot target position wp with the
component representation:

wp =
wpxwêx +

wpywêy +
wpzwêz (2)

is projected into the hip joint base frame by:
hbp =

hb
w Q ·

wp, (3)

with the transformation matrix:

hb
w Q =

(w
eeQ ·

ee
hbQ

)−1
. (4)

The distance between the hip and feet positions is
determined by the norm d = ∥

hbp∥, which then allows for
the calculation of the angles inside the leg planes EL0 and
EL1. However, as the actual leg is comprised of a complex
mechanism, the length l0 of the upper leg as depicted in Fig. 5
is not a constant parameter. Consequently, this value is the
result of the nonlinear mapping function:

l0 := fL(d), (5)

which is discussed later in Sec. III-B.
Since the hip base reference frame Fhb is located in a

certain orientation with respect to the robot torso to allow
for a collision free arrangement of the individual actuators
(1–4), the hip follower frame Fhf of the tool platform
must compensate for the initial orientation of the SPM base
platform. Thus, as a measure to orient the leg plane upright—
which means that leg and floor planes are orthogonal towards
each other withEL0 ⊥ EF—a target orientation is constructed
by:

eeêy = [0, 0, 1]T , (6)
eeêz =

(
ee
hbQi · [0, 0, 0, 1]

T
)
(1:3)

, (7)

eeêx =
eeêy ×

eeêz, (8)

which is combined to ee
hb∗R =

[
eeêx , eeêy, eeêz

]T . Fig. 5
depicts both frames Fhb and Fhb∗. As a result, we express
vector hbpi with respect to the target orientation:

hb∗p =
hb∗
ee R ·

ee
hbR ·

hbp. (9)

Thus, with the known values for l0, l1 and d , the angles
inside the leg triangle can be computed by the trigonometric
equation, applying the law of cosines:

α0 = acos

(
l20 + d2 − l21
2 · l0 · d

)
, (10)

and similarly:

α1 = acos

(
l20 + l21 − d2

2 · l0 · l1

)
, (11)

which yields the desired knee joint angle that was required as
part of the general leg inverse kinematics solution.

2) HIP JOINT GENERAL KINEMATICS
Consequently, the hip joint orientation hb

hf R is derived in the
following. Regarding Fig. 5, angles β and γ follow with:

β = atan
( hb∗px
hb∗py

)
, (12)

and:

γ = atan2
(
sgn

(
hb∗py

)√
hb∗p2x + hb∗p2y,

hb∗pz
)

. (13)
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The distinction between the atan and atan2 functions was
applied to prevent the leg from accessing mechanically
implausible postures at certain target values hb∗p. Then, the
matrix:

hb∗
hf R = Rz(−β)Rx(−α0 − γ − λ7) (14)

is calculated by the angle–axes–rotation matrices Rx and Rz,
expressing the transformation between the tool platform and
the target frame. The non-constant value λ7 ̸= const is an
adjustment parameter that must be applied as an offset angle
between the upper leg axis and the vertical axis of the tool
platform, which is a consequence of l0 ̸= const . Noticeably,
the axis of rotation applied through matrix Rx is colinear
with axis ĉ3 of the underlying universal joint mechanism that
supports the hip joint; hence, axis ĉ3 is always perpendicular
to the leg plane EL0. Combined with previous matrices, this
yields the hip target orientation with respect to the robot torso
frame:

ee
hf R =

(
hb∗
ee Ri

)T
·
hb∗
hf R. (15)

Finally, the required hip rotation matrix hb
hf R

∗ is derived by:

hb
hf R

∗
= Rn(η, hbp · ∥

hbp∥−1) · (eehbR)
T

·
ee
hf R, (16)

with η denoting the leg tilt angle and Rn expressing the gen-
eral angle–axis–rotation matrix with the arguments rotation
angle and normalized rotation axis. Thus, with η = 0, the
leg is kept at an upright orientation. Importantly, the rotation
of the leg by η around axis hbp represents a functionally
redundant DOF, as it allows the leg to alter its posture without
actually changing the position of the foot tip p.
However, due to the additional spring DOF expressed by

angle ϕs of the leg mechanism, the actual orientation of the
tool platform is required to be adjusted by:

hb
hf R =

hb
hf R

∗
· Rx(ϕs), (17)

which yields the hip orientation matrix for the general robot
inverse kinematics.

B. LEG PLANE INVERSE KINEMATICS
In this section, the inverse kinematics of the leg mechanism
is derived. First, the slider position qsl inside the leg plane
is calculated. Afterwards, the mapping between the slider
position in the leg plane and the actuator (4) joint coordinate
θ4, which is located in the robot torso, is portrayed.

1) LEG SLIDER POSITION KINEMATICS
Fig. 6 depicts the mechanical structure of the leg. The inverse
kinematics of the internal leg mechanism can be considered
as a two-dimensional problem; thus, the geometrical rela-
tionships of the mechanism can be represented by simple
trigonometric expressions. In this regard, (18) – (22) express
four main non-constant triangles, which describe the posture

FIGURE 6. Geometry of lengths and angles inside the leg plane. For
readability, the image does not represent the actual dimensions of the
mechanical parts. Elements l1 and a1–a6 are constant and independent
of the leg posture. Green lines (b1, b2, l0) depict variable lengths. The
blue line (qsl) refers to the length altered by the actuated slider
mechanism.

of the leg:

l20 = l21 + d2 − 2 l1 d cos(α2), (18)

b21 = a23 + d2 − 2 a3 d cos(α2 + δ2), (19)

a24 = l20 + b21 − 2 l0 b1 cos(λ9), (20)

a22 = b21 + a21 − 2 b1 a1 cos(λ10), (21)

a5 = l0sinλ7, with: λ7 = λ8 − λ9 − λ10. (22)

All variables denoted with the symbols a and δ are constant
and known parameters, while symbols b and λ indicate
variable parameters. The value λ8 is given by the sum of a
constant δL and the measured spring DOF angle ϕs:

λ8 = δL − ϕs, (23)

with ϕs ∈ [−8◦, +8◦]. Thus, leg compression deforms the
mechanical structure by altering angleϕs. For a given distance
value d , this is essentially a determined system composed of
five equations and five unknowns (l0, b1, α2, λ9, λ10).
Remarkably however, due to the length of one side of the

4-bar linkage being unknown, the derivation of a closed-form
solution is not feasible, which is in contrast e.g. to the related
and well known, yet more simple 4R planar linkage with
determined parameters. Hence, as (18) – (22) cannot be
rearranged directly to yield a closed-form solution, instead,
the application of a numerical approach e.g. by the Matlab
vpasolve algorithm [52] yields a possible solution. This
then allows to derive the slider position by:

qsl = l0cos(λ7) − a6. (24)

Notably, the geometrical representation of the problem allows
for multiple solutions, which is the case if the triangles in
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Fig. 6 are flipped, as this is possible without actually violating
(18) – (22). Thus, even more restricting conditions could be
applied. However, this is omitted here, as the solution for the
inverse kinematics is continuous and fully defined without
further conditions, if the mechanism is moved from a known
initial arrangement. Still, a numeric solution based on (18) –
(22) requires an initial guess close to a mechanically valid
solution, which can be provided by virtual measurements
taken from the CAD assemblymodel of the robot. A narrowly
spanned search window then yields a working condition for
a numerical solution to be sufficient.

Alternatively, a suitably more robust solution can be
obtained by finding the roots of fD, with the function fD
expressing the signed distance between the connection points
of the revolute knee and slider joints at axis ĉ6, defined by:

fD(ζ, d) = sgn(q · r)
∥∥∥∥q · r

q

∥∥∥∥+ a5. (25)

For any valid combination of target distance d ∈ (0, l1 +

max(l0)] and angle ζ ∈ (α2, π + α2) it holds fD(ζ, d) = 0,
representing a uniquely attainable leg posture.

Vectors q and r are defined with respect to the local
Cartesian x-y-reference system. By definition, the reference
frame obeys to an orientation that it always holds p = −d êx
with the position of the foot tip p. Vector r represents the
direction towards the knee-slider joint axis ĉ6 and vector q
the direction perpendicular to the slider side qsl . Thus, the
vectors are constructed via:

r = (l1cos (ζ − δ2) −d) êx + l1sin (ζ − δ2) êy, (26)

q = sin (ξ − λ8) êx + cos (ξ − λ8) êy. (27)

Angle ξ is defined depending on d and ζ by:

ξ = acos

(
c1 − b21
c2 b1

)
+ acos

(
c3 − b21
c4 b1

)
, (28)

with the parameters:

c1 = a22 − a21, c2 = −2a1,

c3 = a23 − d2, c4 = −2 d, (29)

and the length b1 being:

b1 = ∥(a3cos(ζ ) − d)êx + a3sin(ζ )êy∥. (30)

Essentially, (28) captures the kinematics of the leg convex
hull geometry, as depicted in Fig 6. Finally, the position of
the slider inside the leg mechanism can be determined simply
by:

qsl =

√
l20 − a25 − a6, (31)

where the length of the upper leg l0—recalling (5)—follows
with:

l0 = fL(d) = ∥r(ζ, d)∥, (32)

which is the solution to the leg planar inverse kinematics
problem.

FIGURE 7. Nonlinear relationship of the upper leg length l0 and distance
d between hip centre and foot tip. Values outside of the green region are
not physically attainable due to mechanical limitations of the model.

FIGURE 8. Three different postures of the leg for d = 0.08 m, d = 0.26 m
and d = 0.44 m. Blue lines represent the sides l0 and l1 of the leg.

a: RESULTS
Fig. 7 depicts the variability of the length l0 of the upper
leg over the distance d between hip centre and foot point.
The diagram shows that the upper leg has a maximum length
variance of approximately 3.5 cm between its lower and
upper workspace boundary. However, due to joint range
limitations, the mechanically feasible motion is bounded to
d ∈ [0.080 m, 0.435 m]. Crucially, this limitation prevents
the leg mechanism to adapt to singular postures, which may
degrade the conditioning of the mechanism drastically. This
is visually depicted in the diagram, as the change of rate of
the curvatures increases noticeably in the regions below and
above the mechanical limits that hold for the distance d . The
solution was implemented as a look-up table in the robot
controller software for further usage.

The remaining geometry is easily expressed by similar
trigonometrical equations, as shown in the appendix (Sec. A),
which is required to solve for the additional joint coordinates
of all passive joints inside the leg plane. Consequently, Fig. 8
shows different postures of the leg based on the actual model
measurements, which are listed in Table 2 for reference.

2) SPRING DOF KINEMATICS
As the leg mechanism contains a four-bar linkage, composed
of the links with the sides l0, a1, a2, a4 and the joint axes ĉ3,
ĉ4, ĉ5, ĉ6, the robot is able to react compliantly to impacts or
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TABLE 2. Measurements of the leg mechanism, depicting constant
parameters. Note that δ3 > π based on the actual model dimensions
compared to Fig. 6, resulting in the lower leg triangle being flipped over.

FIGURE 9. Kinematics of the spring DOF between tool platform and
upper leg. The black dashed lines show the respective part symmetry
axes. Blue lines depict the maximum range of motion for the spring DOF,
expressed by rotation angle ϕs around axis ĉ3. A spring with stiffness ks
pulls the parts via a string into the condition ϕs = ϕs,min.

external forces by allowing the variation of angle ϕs as the leg
gets compressed. In this regard and according to Fig. 9, with
a string attachment radius of rs = 40 mm, the geometry of
the spring implementation yields:

ϕs = ϕs,min + acos
(
1 −

1x2

2r2s

)
, (33)

where 1x is the actual elongation of the physical spring,
located inside the upper leg.

Interestingly, themotion of the spring slot ϕs ∈ [−8◦, +8◦]
and the spring elongation 1x ∈ [0, 11.13 mm] reveals a
highly linear relationship. In this sense, one can show that a
linear regression approximates (33) in the specified intervals
by:

ϕs ≈ 25.071x − 0.14, (34)

with a minor root mean squared error of approximately
Ermse ≈ 1.03 · 10−4.

a: RESULTS
Fig. 10 depicts the kinematics of the spring DOF in the case
that both the slider DOF and the hip DOF are kept constant;
thus, it holds θk = const, qsl = const and θb,1−3 = const.
Consequently, the figure expresses the motion of the foot tip
due to the compression of the leg—only altering the spring
DOF angle ϕs—for different initial distances d . Note that the
initial design of the legwasmotivated by balancing the factors

FIGURE 10. Motion of the foot tip due to variation of ϕs, shown as red
lines. Black dots depict the initially non-compressed posture of the leg
with ϕs = ϕs,min.

dexterity and distance to singularities, while still keeping
a fairly colinear motion of the foot tip toward the virtual
foot-hip vector −d êx as the leg gets compressed. Hence,
Fig. 10 shows that the foot stays in a narrow region towards
f (x) = −xêx as a measure to reduce the possibly problematic
influence of lateral motion during leg compression phases.

3) KNEE ACTUATOR KINEMATICS
In the robot model, the leg mechanism is serially connected to
the hip manipulator end-effector. However, the actuator that
drives the knee joint is actually located inside the robot torso.
Thus, the kinematics between the linear motion of the slider
qsl on axis ĉ7 and the actuator axis û4 is considered in the
following. In general, the transmission of rotation is realized
by a constant velocity bendable transmission axis, which is
then transformed into linear motion by a screw joint. In this
regard, considering that the hip base actuator velocity holds
θ̇b = 0, the systemic relationship between motor input and
slider output velocity is only determined by the screw pitch,
which is simply:

θ∗

4 = 2π
qsl
p

, (35)

with the screw pitch of p = 10 mm per rotation.

4) HIP MOTION DISTURBANCE KINEMATICS
However, in the general case θ̇b ̸= 0 and due to the RRR
joint support structure inside the hip mechanism, composed
of the axes ĉ1, ĉ2 and ĉ3, with the knee actuator being fixed to
the proximal part of the universal joint, spherical motion of
the hip joint yields a constrained rotation of the knee actuator
itself around axis ĉ1. Consequently, this induced motion of
the knee axis must be compensated at all times in order to
keep the slider position qsl at its desired location. Similarly,
any tilt motion of the leg by η around its redundant DOF with
axis hbp must be compensated additionally.

In this regard, the orientation of the upper leg with respect
to the hip base platform is expressed by the matrix hb

hf R
∗,

as noted in (16). However, as the axes ĉ1, ĉ2 and ĉ3 of
the RRR joint support structure are perpendicular to each
others neighbour at all times, meaning ĉ1 · ĉ2 = ĉ2 · ĉ3 =

0, we can express hb
hf R

∗ as a series concatenation of basic
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rotation matrices:

hb
hf R

∗
= Rz(αz)Ry(αy)Rx(αx) =

[
r1 r2 r3

]
, (36)

with the column vectors:

r1 =
[
c(αy)c(αz), c(αy)s(αz), −s(αy)

]T
, (37)

r2 =

c(αz)s(αx)s(αy) − c(αx)s(αz)
c(αx)c(αz) + s(αx)s(αy)s(αz)

c(αy)s(αx)

 , (38)

r3 =

 c(αx)c(αz)s(αy) + s(αx)s(αz)
−c(αz)s(αx) + c(αx)s(αy)s(αz)

c(αx)c(αy)

 . (39)

Thus, equivalent to a general ZYX-Euler decomposition as
shown in [28], the angle αy can be determined by:

αy = asin
(
−
hb
hf R

∗

(3,1)

)
. (40)

Due to mechanical constraints of the universal joint for axis
ĉ2, it holds αy ∈ (−π/2, π/2), and thus always cos(αy) ̸= 0.
Consequently, with:

cosαycosαz =
hb
hf R

∗

(1,1), (41)

cosαysinαz =
hb
hf R

∗

(2,1), (42)

it follows that:
hb
hf R

∗

(2,1)
hb
hf R

∗

(1,1)

= tanαz, (43)

which delivers the angle αz corresponding to the ĉ1-axis.
Hence, with the rotation of the lead screw around axis

ĉ8,9—colinear with the prismatic slider axis ĉ7—being kept
constant and with ĉ8,9 being perpendicular to the ĉ3-axis,
as depicted in Fig. 6, the rotation of the upper leg around
the hip centre point naturally results in a rotation around the
proximal support joint axis ĉ1 by αz. Thus, αz can be exploited
as an offset to compensate for the current leg orientation
regarding the knee actuator axis angle θ4, which consequently
must be applied to axis û4 in order to keep qsl at its desired
value. Therefore, combined with (35), the actuator angular
position θ4 is defined as:

θ4 = atan

(
hb
hf R

∗

(2,1)
hb
hf R

∗

(1,1)

)
+ θ∗

4 . (44)

C. HIP INVERSE KINEMATICS: SPM GEOMETRICAL
SOLUTION
Since the general inverse kinematics of the top-level system
are solved at this point, now the kinematics of the underlying
SPM subsystem have to be taken into account. Therefore,
considering a known orientation of the SPM, expressed by the
3-by-3 orthogonal matrix hb

hf R, the solution for the actuator
joint angles θb,j, according to the general layout of the
mechanism is required, see Fig. 4.

Considering the vectors ûj fixed to the base platform in
the reference frame Fhb,i and the vectors ŵj fixed to the tool
platform (end-effector) in the frame Fhf ,i, the transformation

FIGURE 11. Initial configuration of base- and tool-vectors of the SPM. Hip
base and follower frames of the virtual spherical joint align in the
manipulator isotropic pose.

matrix between those frames reads hfhbRi, according to Fig. 11.
Thus, hfhbRi represents the transformation matrix of the virtual
spherical center joint, connecting hip joint base (hb) and hip
joint follower (hf) frames. The matrix hf

hbRi = I with the
identity matrix I represents the initial configuration of the
manipulator, which aligns base and follower frame. To be
more specific, based on the optimal design of the SPM that is
derived in [38], in the isotropic case hfhbRi = I , which is used
here as the manipulator ideal configuration, each axis ûj has a
corresponding axis ŵj+1 oriented anti-parallel. Thus, the floor
projected angle in Fig. 11 equals π/3, while neighbouring
axes in the base and tool platform are oriented byπ/2 towards
each other.

The angular position of the actuator or base axes ûj is
denoted with the angles θb,j. Angles around the link and tool
axes are denoted with θl,j and θt,j, respectively. A set of angles
for all linkages j = 1, 2, 3 is combined to the vectors θb, θ l
and θ t .

1) CONCEPT
In the following, the solution to the inverse kinematics of
the SPM based on spherical trigonometry is derived. Due
to the purely rotational motion of all parts of the SPM
around a common centre point, it is possible to project the
geometry of the mechanism onto a unit sphere, without
changing the properties of the mechanical model. Hence,
the spherical motion does not depend on the actual distance
of the links to the centre of the mechanism. Therefore, the
actual shape and distance of each link to the centre of the
mechanism has to be considered only regarding the dexterity
for a physically realized manipulator as a measure to prevent
internal collisions between parts. Thus, the problem to solve
for the inverse kinematics of the spherical parallel mechanism
is reduced to a simple geometrical expression that can be
approached and analysed via the application of spherical
trigonometry.

2) MATHEMATICAL DERIVATION
A major part that yields to the solution of the inverse
kinematics problem is based on the mathematical properties
of the unit sphere with radius r = 1. Since each joint axis of
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FIGURE 12. (a) Reference plane Eref spanned by n̂j and ûj . Vector ûj also
equals the rotation axis of the reference plane with rotation angle υj .
(b) Side view of plane Eref. A flipped spherical triangle occurs if ŵj moves
beyond the reference plane.

the SPM intersects in the common centre of the mechanism,
all axes correspond to vectors orthogonal to the surface of a
sphere. Hence, angles between axes—that are intersecting at
the centre of the unit sphere—are identical to the lengths of
the arcs spanning between these axes on the surface of the unit
sphere, which is a property necessary for the trigonometric
solution presented.

In the following, a vector hbx is expressed with respect to
theFhb reference frame. However, for the purpose of a shorter
notation, and if not stated otherwise, it is assumed that any
vector xwithout carrying a label to a specific reference frame
is also defined with respect to the Fhb system.

a: DEFINITION OF THE REFERENCE PLANE
At first, a fixed point of reference for the actuator angular
position expressed by the angles θb,j has to be defined.
Therefore, a plane Eref locally fixed to the base platform and
spanned by the actuator axes ûj and a vector n̂j perpendicular
to the actuator axes is defined. In addition, the orientation of
this plane around axis ûj determines the shape of the further
used spherical triangles. For this analysis, a perpendicular
relation between n̂j and the hbêz direction of the hip base
reference frame was chosen. Fig. 12a shows the plane Eref ,
intersecting with the origin of the hip base reference frame.

In this approach, each angle inside the further used
spherical triangles—spanned between the vectors n̂j, ûj and
ŵj—is not allowed to exceed π , because otherwise, a flip
occurs, and the spherical triangle takes place on the opposite
site of the reference plane. Hence, as long as the tool vector

ŵj stays above the plane Eref , defined by:

Eref : x · (n̂j × ûj) = 0, (45)

with an arbitrary vector x inside the plane surface, which
yields the condition:

(n̂j × ûj) · ŵj = f̂ un,j · ŵj < 0, (46)

the geometrical solution is possible. To account for a flipped
spherical triangle, which can occur at large twist or tilt
motions of the SPM, a factor fflip,un,j is introduced:

fflip,un,j :=

{
+1 for f̂ un,j · ŵj < 0
−1 for f̂ un,j · ŵj ≥ 0,

(47)

covering both possible postures of the manipulator for the
further solution. Importantly, ŵj is expressed with respect
to the Fhb reference system. Fig. 12b shows both cases for
the spherical triangle regarding the relation to the reference
plane.

b: DEFINITION OF THE REFERENCE VECTOR
For simplicity, accounting for both cases as stated with (47)
may not be required, if the angle between n̂j and êz is
altered to align the solution space to the typical workspace
of the manipulator. This might be possible regarding a real
world manipulator, since the reachable workspace may be
limited by mechanical constraints of the mechanism itself.
That means by rotating the plane around ûj by altering n̂j,
the workspace borders, in which a solution can be found, can
be shifted towards the individual movement requirements of
the SPM. According to Fig. 12a, the base reference vector n̂0,j
can be derived by:

n̂0,j =
n0,j

∥n0,j∥
with n0,j = ûj × êz, (48)

if ûj ∦ êz. Alternatively, it is possible to define n̂0,j according
to Fig. 13b:

n̂0,j = −sinδjêx + cosδjêy, (49)

which satisfies for n̂j · ûj = 0. In addition, with the angle-axis
rotation matrix Rn, the vector n̂j is optionally rotated to shift
the solution space of the SPM:

n̂j :=

{
Rn(υj, ûj) · n̂0,j for υj ̸= 0
n̂0,j for υj = 0,

(50)

which simply leads to vales θb containing a constant offset,
redefining the zero-position of the base angles.

c: CONSTRUCTION OF THE GENERAL SPM AXES
As can be seen in Fig. 13a, the actuator angle θb,j is measured
around the actuator axes between plane and proximal link.
In this case, the final configuration of the leg structure is
already assumed to take the right-branch-solution, which
relates to the specific mechanical layout of the SPM,
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FIGURE 13. (a) Reference plane for the actuator angle θb,j. For this
analysis it holds n̂j ⊥ hb êz . (b) Construction of the actuator axis ûj .

as discussed later. Based on Fig. 13b, the unit vector ûj can
be expressed as:

ûj = −cosγjcosδjêx − cosγjsinδjêy + sinγjêz (51)

with the vertical angle γj and with the horizontal orientation
angle δj.
For the general SPM, with ûj known, constructing the

vector v̂j based on the calculated angular position θb,j requires
a simple concatenation of rotation matrices:

v̂j = Rb,j · Rz(θb,j) · Ry(luv,j) · êz, (52)

with the geometrically constructed matrix:

Rb,j =

[
n̂j, −f̂ un,j, ûj

]
, (53)

representing an orthogonal reference frame fixed to the base
platform, expressed by the three vectors n̂j, −f̂ un,j and ûj
that were derived before, and the vector êz = [0, 0, 1]T .
Similarly, the tool vectors ŵj can be constructed by the series
concatenation of the respective transformationmatrices of the
linkages. Thus, it follows:

ŵj = Rb,j · Rz(θb,j) · Ry(luv,j) · Rz(θl,j) · Ry(−lvw,j) · êz.

(54)

d: CONSTRUCTION OF THE OPTIMAL SPM AXES
As shown in [38], there exists an optimal configuration for the
SPM regarding the resulting accuracy, and the relationships of
velocity and torque of the mechanism. Due to the properties
of this specific configuration, the construction of the axes ûj,
v̂j and ŵj simplifies noticeably.
Thus, the optimal configuration of the SPM as shown

in [38] requires an angle of π/2 between neighbouring axes
ûj, fixed to the base platform, and tool axes ŵj, fixed to the
tool platform. In this specific case, the set of base axes (û1,
û2, û3) and the set of tool axes (ŵ1, ŵ2, ŵ3) both construct
a three-dimensional cartesian coordinate system, hence the
orientation of the vectors ûj and ŵj can be determined by
the application of a standard rotation matrix on the central
Fhb system. Hence, reusing the angles γj—however due to
symmetry without accounting for the index j—the identical
result may be obtained by defining:

R = Ry(π + γ ) · Rx(5/4π ). (55)

In [74], a different, yet conceptually similar construction was
used. Consequently, applying the unit vectors êx , êy and êz on
the matrix R of (55), it follow the individual vectors ûj. Thus,
this yields that ûj is the j-th column of R:

ûj = (R)(1:3,j), (56)

with the index denoting rows and columns of the matrix R.
Interestingly, (56) only represents a right-handed orthogonal
reference frame due to the specific definition regarding the
directing of the vectors ûj, pointing towards the center of the
manipulator.

Alternatively, the construction with regard to (51) requires
both angles δj and γj. Due to the symmetry of the system, the
angle δj follows with:

δj =
j− 1
3

2π, with j = 1, 2, 3. (57)

Similarly, the angle γj follows to:

γj = asin (h) , (58)

with h =
√
1/3 as depicted in Fig. 13b being the

vertical height. Notably, h can be calculated by simple
trigonometric calculations, yet in this case, it is derived from
the relationship:

1
h2

=

3∑
j=1

1
∥ûj∥2

. (59)

Since the orientation of axes ûj is equal to the shape of
a trirectangular tetrahedron, (59) expresses the relationship
between the altitude of the tetrahedron and the lengths of its
sides, which is a trigonometric property as stated in [32, p.
41]. In the isotropic pose, the planes spanned by the arcs of the
proximal and distal link are oriented orthogonal to each other,
which—since it holds luv,j = lvw,j = π/2—naturally yields
that base and tool axes must equally retain a right-angled
configuration. Consequently, each axis ûj corresponds to an
axis ŵj oriented anti-parallel in the isotropic pose. Lastly, due
to the orthogonal relationship, the link axis follows with:

v̂j = ûj × ŵj, (60)

which results in neighboring link axes and base axes being
aligned in the isotropic pose.

Consequently, the specific values for the axes ûj, v̂j, ŵj with
respect to the Fhb-reference frame can be calculated and are
given in Table 3. However, these values are only valid for
the home posture of the optimal SPM as depicted in Fig. 21
in the appendix, which is an isotropic configuration of the
manipulator, meaning that this specific posture constitutes to
an ideal torque and velocity input-output-relationship of the
mechanism. AMATLAB [52] example function featuring the
implementation for the discussed axes construction methods
is included in the supplementary materials.
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TABLE 3. Values for the isotropic home configuration of the optimal SPM
with luv,j = lvw,j = π/2 and π/2 between neighboring base axes ûj and
tool axes ŵj . The indexes of v̂j and ŵj are permuted. All values are
expressed in the central Fhb-frame.

FIGURE 14. Right-branch- and left-branch-configuration for proximal and
distal link j . ûj and ŵj are identical for both configurations, but v̂j is
flipped, depicting two working modes of the SPM linkages.

e: BRANCH SELECTION
For each reachable orientation of the SPM, two possible
solutions exist for the linkage structure of proximal and
distal link, see Fig. 14, which represents the different
working modes of the SPM. In this article, the possible
configurations are distinguished by naming them as right-
branch- and left-branch-configuration. Since mechanical
collisions have to be avoided, each linkage of the SPM is
usually kept at the same branch configuration, i.e. stays
in the same working mode. Furthermore, flipping of the
configuration from one to the other is usually not intended
while reorienting the SPM, since this involves moving
the mechanism through points of mechanical singularity.
In reality, flipping the linkages is in general not possible
due to the often asymmetrical mechanical design of the links
themselves. However, to account for both configurations for
the further solution of the inverse kinematics problem, the
factor fbranch,j is introduced:

fbranch,j :=

{
+1 for the right-branch-config.
−1 for the left-branch-config.,

(61)

which expresses the specific mechanical layout of the
manipulator. Essentially, directly including the chosen layout
into the solution to the inverse kinematics results in a unique
solution, as this removes the mathematical possibility for two
configurations to exits in comparison to a general algebraic
approach for the inverse kinematics.

f: APPLICATION OF SPHERICAL TRIGONOMETRY
Knowing the direction of the tool axis unit vector ŵj based on
a given orthogonal mapping matrix hb

hf R ∈ R3×3 and the unit

FIGURE 15. Construction of spherical triangles (n̂j , ûj , ŵj ) and (ûj , v̂j , ŵj ).
Link arcs lengths are named by the letter l and angles inside the spherical
triangles by the letter α.

vector hf ŵj fixed to the follower frame, the target orientation
can be computed:

hbŵj =
hb
hf R ·

hf ŵj. (62)

The unit vector hf ŵj is a known constant regarding its
orientation inside the hip joint follower frame. Therefore,
if the SPM is in its default orientation, meaning hb

hf R = I with
the identity matrix I , it follows that for the components of
both vectors it holds hbwk,j =

hf wk,j with k = 1, 2, 3, which
is useful for determining the vector in the first place.

The geometrical approach to the solution of the inverse
kinematics now requires the application of spherical
trigonometry on the unit sphere. Thus, by defining two
spherical triangles according to Fig. 15, the cosine rule can
be applied. For the first spherical triangle this holds:

coslvw,j = cosluv,j · cosluw,j + sinluv,j · sinluw,j · cosαvw,j.

(63)

With the given radian of the proximal link luv,j and distal link
lvw,j, the length of the connection arc luw,j, which is also the
angle between the vectors ûj and ŵj, can be derived by:

luw,j = acos(ûj · ŵj) ∈ [0, π]. (64)

With the argument:

argvw,j =
coslvw,j − cosluv,j · cosluw,j

sinluv,j · sinluw,j
, (65)

(63) can be rearranged to:

αvw,j :=

{
acos

(
argvw,j

)
if argvw,j ∈ [−1, +1]

π

2
if luw,j = π ∨ luw,j = 0,

(66)

which gives the intermediate angle αvw,j. Importantly, the
second case in (66) represents that axes ûj and v̂j are

100742 VOLUME 11, 2023



D. Feller: Kinematics of a Novel Serial-Parallel, Compliant, Three-Legged Robot

geometrically aligned, which results in a discontinuity that
must be covered mathematically.

Considering the second spherical triangle, the cosine rule
can be applied again:

coslnw,j = cosluw,j · coslun,j + sinluw,j · sinlun,j · cosαnw,j,

(67)

where the additional arcs can be derived according to Fig. 15
by:

lnw,j = acos(ŵj · n̂j), (68)

and with ûj ⊥ n̂j it leads to:

lun,j = acos(ûj · n̂j) =
π

2
. (69)

Rearranging (67) and inserting (69) yields:

αnw,j :=


acos

(
coslnw,j

sinluw,j︸ ︷︷ ︸
argnw,j

)
if argnw,j ∈ [−1, +1]

π

2
if luw,j = π ∨ luw,j = 0,

(70)

which gives the next intermediate angle αnw,j, again with the
second case modelling the geometric discontinuity. Finally,
the actuator angles can be computed by:

θb,j = αnw,j · fflip,un,j + αvw,j · fbranch,j, (71)

which is the general solution for the inverse kinematics of
the spherical parallel manipulator, derived through spherical
trigonometry.

g: DEGENERATION OF THE INVERSE KINEMATICS
Two special cases have to be considered for the motion of
the SPM that occur at ûj × ŵj = 0 and result in no explicit
solution as the expressions in (66) and (70) degenerate. Here,
the spherical triangles are fully expanded with luw = π or
fully collapsed with luw = 0, marking points of singularity
for the mechanism.

In other words and mechanically speaking, luw = π means
that proximal and distal links are fully unfolded, while on the
other hand luw = 0 means that both links are fully folded.
Regarding Fig. 16, the expanded state is only possible if both
vectors ûj and ŵj are oriented in line:

luw = π , if ûj ∥ −ŵj, (72)

and the collapsed state is only possible if both vectors are
aligned:

luw = 0, if ûj ∥ ŵj. (73)

This requires for the length of the linkage to hold luv +

lvw = π in the first case, and luv = lvw in the second
case. Both situations are modelled by a discontinuity with
αnw = π/2 and αvw = π/2, as noted in (66) and (70).

Mechanically, both discontinuities correspond to singu-
larity configurations of the mechanism, resulting in the

FIGURE 16. It holds luv = lvw = π/2. (a) Expanded state with ûj ∥ −ŵj .
(b) Collapsed state with ûj ∥ ŵj .

free rotation of the complete linkage between base and
tool platform. More specifically, the configuration of the
manipulator—as determined by the second case in (66) and
(70)—results in a zero velocity motion of the tool platform
for a non-zero actuator velocity, which is called a serial or
type 1 singularity [64, p. 180]. Crucially, this means that no
torque can be transmitted between actuator and end-effector
in this posture. Notably, the discontinuity expressed by (66)
and (70) covers only the specific situation with the axes ûj
and ŵj being colinear, which is only one of several types of
singularities that are possible regarding SPMs.

h: FINITE AND INFINITE JOINT ROTATION
In addition to the previous discussion, Fig. 16 graphi-
cally visualizes one additional property of the manipulator
geometry. Despite being in general observed in parallel
manipulators in the case that joint axes align, the geometrical
approach makes the motion capability of the base actuator
axis in singularity postures visually apparent, which results in
either only finite or infinite rotation. Hence, the implications
of the solvability of the inverse kinematics with respect to
singularity configurations will be discussed in the following.

Since the extreme conditions of the fully expanded
(unfolded) or collapsed (folded) manipulator with ûj ∥ −ŵj
and ûj ∥ ŵj are only reachable for the case that it holds
simultaneously luv + lvw = π and luv = lvw, it is immediately
obvious that a manipulator has to be designed with luv =

π/2 for the proximal and lvw = π/2 for the distal link to be
able to support both cases and—importantly—to reach any
point, located arbitrarily on a spherical surface. This result
was analytically proven in [38] by analysing the mobility
regions of the individual linkages.

However, a different situation is apparent if luv ̸= π/2 and
lvw ̸= π/2, yet still qualify for ûj and ŵj being colinear,
allowing for singularity configurations. In general, serial
(type 1) singularities remove one DOF from the manipulator;
thus, if one linkage is in a type 1 state, the SPM will only
remain with two DOFs. However, two distinct behaviours can
be observed for type 1 singularities at the SPM, depending
on the static geometry of the linkages. Therefore, in the case
(A) of luv = lvw, but luv + lvw ̸= π only one configuration
per link exists that aligns ûj and ŵj, allowing the actuator
axes to freely rotate the linkages infinitely. Since the axes
ûj and ŵj are parallel, this means that the linkage is folded.
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Similarly (B), if luv ̸= lvw, but luv + lvw = π , axes ûj
and ŵj can be aligned anti-parallel, meaning the linkage
is now unfolded. This again corresponds to a singularity
configuration, allowing for infinite rotation of the actuator
axis. Consequently, both cases (A) and (B) allow that the
actuator does perform non-zero velocities, resulting in no
motion of the tool platform.

However, if the posture is switched, meaning (A) is
unfolded and (B) folded, both configurations still correspond
to a type 1 singularity, despite the formerly infinite motion—
in other words the unrestrained free rotation of the actuator
axis—is now reduced to an infinitesimal rotation due to the
axes ûj and ŵj not being colinear any more. Hence, any case
where the linkages are fully folded or unfolded result in a
type 1 singularity, removing one DOF from the manipulator.
However, any case where in addition it holds that ûj and ŵj are
colinear, unrestrained motion of the actuator axes becomes
possible, while still keeping the tool platform at zero velocity.
Yet, any such case makes the inverse kinematics solution
degenerate.

i: SIMPLIFICATION
Considering the computational effort, (71) can also be
implemented in a shorter notation, involving precalculated
constant terms. Therefore θb,j can be expressed with the
constant terms:

cluv,j := cos(luv,j), (74)

clvw,j := cos(lvw,j), (75)

sluv,j := sin(luv,j), (76)

and with the following variables:

guw,j := cos(acos(ûj · ŵj)) = ûj · ŵj, (77)

huw,j := sin(acos(ûj · ŵj)) =

√
1 − g2uw,j, (78)

which simplifies with the arguments:

argnw,j =
ŵj · n̂j
huw,j

(79)

and:

argvw,j =
clvw,j − cluv,j · guw,j

sluv,j · huw,j
, (80)

to the solution:

θb,j = acos
(
argnw,j

)
fflip,un,j + acos

(
argvw,j

)
fbranch,j (81)

for argnw,j ∈ [−1, +1] and argvw,j ∈ [−1, +1], which is
considered to be the preferred notation in comparison to (71)
for implementing the solution of the inverse kinematics on
controller hardware. In short, the inverse kinematics solution
fails if guw,j = 1, which leads to huw,j = 0, expressing that ûj
and ŵj are colinear.

j: SPECIAL CASE REGARDING THE OPTIMAL SPM
In addition to the general solution, using the optimal link
angles lvw,j = π/2 for the distal link and luv,j = π/2 for
the proximal link, as stated in [38], (81) further simplifies to:

θb,j = acos
(
ŵj · n̂j
huw,j︸ ︷︷ ︸
argnw,j

)
fflip,un,j +

π

2
fbranch,j (82)

for argnw,j ∈ [−1, +1]. Also, by defining the reference angle
rotated by π/2 depending on the branch configuration around
the actuator axis, the constant offset appearing in (82) can be
neglected.

k: WRAPPING OF THE SOLUTION SPACE
With the solution of θb,j as presented above, the calculation of
θl,j and θt,j may be approached accordingly, which is shown
in the appendix (Sec. C) due its overall similarity.
However, since the result of θb,j (from (71), (81), (82)), θl,j

(from (117)) and θt,j (from (124)) is shifted outside of the
range [0, 2π ], a wrapping of the resulting angular position is
applied by using the modulo operation as a final step:

[0,2π]θb,j = θb,j mod 2π, (83)
[0,2π]θl,j = θl,j mod 2π, (84)
[0,2π]θt,j = θt,j mod 2π. (85)

3) RESULTS
An example motion of the SPM with its angular positions
of all active and passive joints is shown in Fig. 17, which is
computed for:

hf
hbR = Rn(nt , αt ), (86)

with tilt angle αt = π/6 and tilt axis nt , where:

nt = Rz(α) · [1, 0, 0]T , (87)

over α ∈ [−π, +π]. For this example, the SPM features the
ideal configuration with arc lengths for proximal and distal
links of π/2, and with angles of π/2 between neighbouring
axes, as shown in [42]. A complete implementation of the
geometrical solution is included as MATLAB code in the
supplementary materials.

IV. FORWARD KINEMATICS
The forward kinematics for the robot are presented in the
following, which deliver the spatial location of the robot
end-effectors for a given set of generalized joint coordinates.
Thus, considering the vector θ ∈ R12 of the actuated joint
coordinates known, the evaluation of the forward kinematics
of the robot yields the foot position eepi for the legs i =

1, 2, 3. Regarding the future development of possible robot
control strategies, the forward kinematics are an essential
component of these control laws, as they are required to
reconstruct the current robot posture based on the information
from the measurement sensors, which are the encoders
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FIGURE 17. Base, link and tool axes angles for an example motion of the
SPM, according to (86).

tracking the motion of the motor axes ûj, support joint axis
ĉ1, the slider position qsl and spring DOF angle ϕs.

Notably, the foot position vectors eepi are expressed
locally with respect to the torso reference frame Fee, as the
global spatial position and orientation of the robot torso
in the world reference frame Fw depends on additional
sensor information, which is only applicable with the known
measurement matrix w

eeQ by:

wpi =
w
eeQ ·

eepi, (88)

and is an important part of future real world controller
implementations.

In the following, first the orientation of the hip tool
platform is determined by the actuator angles θb,1, θb,2, and
θb,3. Thus, with the hip orientation known, the foot position
is calculated based on the slider position qsl , which depends
on the knee actuator angle θ4. In addition, the passive DOF
due to the leg compliance is included based on a known value
for the spring angle ϕs, which is measured through the motion
1x of the spring transmission string.

A. HIP MECHANISM FORWARD KINEMATICS
In the following, the forward kinematics of the SPM
is derived by a geometrical approach. Specifically, the
calculation of the hip rotation matrix hb

hf R based on the
measured angles θb of the base actuator axes is discussed.
Consequently, the orientation of the axes v̂j is known, as these
can be computed as e.g. depicted in (52).
For simplicity, the solution only considers the ideal

manipulator configuration with angles of π/2 between
neighbouring axes. Consequently, most of the vector cross
products yield vectors that obey to the unit length; however,
for the general manipulator, normalizations must be applied.

A reasonable construction of the tool platform orientation
may start with vector ŵ1, which can be calculated by a
rotation with angle α around axis v̂1 of the vector orthogonal
to the û1-v̂1-plane:

ŵ1 = Rn(α, v̂1)(v̂1 × û1). (89)

Thus, under the restriction that the linkages keep their initial
assembly configuration, which prevents the linkages from
entering singular postures, it must hold the interval α ∈

(−π/2, +π/2). Due to the geometry of the ideal manipulator,
ŵ3 is always orthogonal to ŵ1 and v̂3; thus, we can apply:

ŵ∗

3 =
ŵ1 × v̂3∥∥ŵ1 × v̂3

∥∥ for ŵ1 ∦ ±v̂3. (90)

The non-colinearity of both vectors is essential here,
as otherwise the denominator will vanish; yet, this case is
mechanically not attainable in general, as this would require
to physically align tool and link axes. However, depending
on the orientation of the SPM, it may be required to switch
the direction of ŵ∗

3, as the intended configuration of the
linkages is not taken into account with (90). Thus, under
the assumption that the linkage did not move through a
singularity with ûj and ŵj being colinear, we can derive ŵ3 by:

ŵ3 =

{
−ŵ∗

3 if ŵ3 · n̂3 < 0
ŵ∗

3 otherwise,
(91)

with the vector n̂3, orthogonal to the û3-v̂3-plane, being
calculated by:

n̂3 = v̂3 × û3. (92)

Finally, as the vectors ŵ1, ŵ2 and ŵ3 represent an orthogonal
reference frame, vector ŵ2 follows by:

ŵ2 = ŵ1 × ŵ3. (93)

Crucially, as required for the reconstruction of the tool
platform orientation, angle α must be obtained. Thus, through
the geometry of the linkages, one can deduce that the
equation:

fG(α) = acos
(
ŵ2(α) · v̂2

)
− lvw = 0, (94)

which is a function of α, must be satisfied for any
mechanically valid posture. Consequently, finding the roots
of (94) yields α, which then allows to calculate the vectors ŵ1,
ŵ2 and ŵ3 via (89)–(93). Importantly, due to the mechanical
restriction to allow for only one assembly mode, which is a
reasonable assumption regarding the mechanical realization
of the manipulator, (94) represents a first order root finding
problem, which allows for a simple numerical calculation,
e.g. by a bisection method.

Once the axes ŵ1, ŵ2 and ŵ3 are determined, the
orientation matrix hb

hf R can be constructed for the further
calculation of the robot forward kinematics. Thus, it follows:

hb
hf R =

[
hbŵ1,

hbŵ2,
hbŵ3

]
·

[
hbŵ∗

1,
hbŵ∗

2,
hbŵ∗

3

]T
, (95)

while ∗ denotes the home configuration of the tool platform
vectors ŵj, expressed in the hip base reference system Fhb,
which are known for hbhf R = I with identity matrix I .
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B. LEG PLANE FORWARD KINEMATICS
The forward kinematics of the leg plane is solved by first
calculating the length of the upper leg l0, which constitutes
to:

l0 =

√
a25 + (a6 + qsl)2, (96)

with the slider position qsl given by:

qsl =
p
2π

(θ4 − αz). (97)

However, the sensor in the actual robot model measures the
position of the slider qsl directly, which—in consequence—
does not strictly require the evaluation of (97).

The knee angle α1 follows with:

α1 = 2π − λ6 − λ5 − δ3, (98)

with λ5 and λ6 being defined by:

λ5 = acos
(
(a24 + b22 − a22) · (2 a4 b2)−1

)
, (99)

λ6 = acos
(
(l20 + b22 − a21) · (2 l0 b2)−1

)
. (100)

Side length b2 as required above is calculated by:

b2 =

√
l20 + a21 − 2 l0a1cos(λ7 + λ8). (101)

C. COMBINED SPATIAL FORWARD KINEMATICS
Finally, the foot position follows through the combination of
the planar leg geometry and the spherical hip mechanism.
With respect to the y-z-plane of the hip follower frame,
it holds:

hf p =

 0
−l0sin(αp) − l1sin(αp + αd )
+l0cos(αp) + l1cos(αp + αd )

 , (102)

where the proximal and distal angles are:

αp = λ7 − ϕs and αd = π − α1. (103)

Thus, the foot position wp of leg i is evaluated by:

wpi =
w
eeQ ·

ee
hbQi ·

[hb
hf Ri · [0,

hf py,i, hf pz,i]T

1

]
. (104)

In this regard, (102) resembles a classical 2-link planar
manipulator, which is rotated in the R3 in (104) and mapped
into the torso reference frame Fee space.

V. ROBOT MOTION KINEMATICS
Fig. 18 depicts multiple postures A–I of a motion
sequence, captured from the simulation framework written in
C++/OpenGL for the robot project. The framework gathers
its data from a Simulink model that runs the robot controller
compiled into a standalone application due to the increased
execution speed. The interprocess data communication is
realized via a TCP/IP connection. This data is then visualized,
depicting the motion of the robot, which may either be the
result of a pure kinematics or amore sophisticatedmulti-body
dynamics simulation. A video of the sequence is included

FIGURE 18. States A–I of the robot kinematics motion. A video is
included in the supplementary materials. A–C are translational in one
direction. D–F translate in two directions and create circular motions.
G–H rotate the body. I shows functionally redundant motion.

in the supplementary materials. The trajectory over time is
shown in the Fig. 23 in the appendix.

Thus, for a given target posture, which includes position
and orientation of the robot torso, and the target positions
for the feet, the implementation of the inverse kinematics
presented in the previous sections delivers the joint coordi-
nates necessary. Afterwards, these coordinates are measured
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FIGURE 19. Phase portraits of the motor units for the motion sequences depicted in Fig. 18. The diagrams depict the velocity of the
motor axes expressed over the number of rotations of the respective axes. Values correspond to the motor axes behind the gear
heads.

virtually and used to compute the forward kinematics, which
fully reconstructs the robot posture. From this posture, each
joint transformation matrix connecting individual bodies can
be extracted, which is then used for the forward homogeneous
matrix calculations of the robot. This calculation then
determines the spatial position and orientation of each body
part of the robot, and is visualized in the 3D rendering,
as shown in the figure. Consequently, Fig. 24 in the appendix
shows the corresponding joint coordinates over time.

A. RESULTS
An important consideration stemming from the robot motion
must be placed upon the requirements for the actuators
regarding their position and velocity profiles. As each
actuator used in the robot entails the identical motor unit, it is
reasonable to consider the respective gear heads as part of the
kinematics model. Consequently, the position and velocities
will be amplified towards the internal motor axis by the gear
head ratios rB = 150 : 1 and rK = 35 : 1 for the base and
knee actuators. Based on the performed motion sequence, the
resulting phase portraits are shown in Fig. 19 for all 12 DC-
motors.

Interestingly, the phase portraits for the motors j = 1 and
j = 3 show similar utilization, which are the motor units
placed close to the lower side of the robot torso. On the
contrary, unit j = 2 shows noticeably less utilization during
normal motion; however, this axis becomes highly active at
sequence I, which depicts the functionally redundant leg tilt
motion.

Similarly, the knee motor unit shows a generally small
motion at the sequences (B, C, D, G, H, I). The remaining
sequences (A, E, F) however show significant utilization,

FIGURE 20. Angles around the axes ĉ1, ĉ2 and ĉ3 of the internal RRR joint
structure for each leg i = 1, 2, 3. The angles are derived by the ZYX-Euler
decomposition of the hip rotation matrix.

which is due to (A, E, F) being motions that are highly
variable regarding the height of the torso. This naturally
results in a more pronounced application of the knee joint.
Hence, any vertical motion of the torso applies a noticeably
higher demand on the knee motor unit than horizontal
motions in general.

Crucially, the motion profiles are not exceeding the
respective joint range limitations of [−40◦, +40◦] for the
RRR joint axes that are located in the hip centres, which is an
important result as it shows that the mechanical design is not
compromised by internal collisions. Fig. 20 shows the angles
along the axes ĉ1, ĉ2 and ĉ3, while a value of zero for all axes
corresponds to the isotropic configuration with hb

hf R = I .
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VI. DISCUSSION
In the following, certain points of interest will be discussed,
based on the results of the inverse and forward kinematics of
the three-legged robot presented.

A. GENERAL ROBOT KINEMATICS
With the solution to the robot kinematics being implemented
in software, the results of the motion simulation from Sec. V
show that the robot is kinematically able to adapt to many
different postures. Especially, the analysis reveals that the
motor phase profiles work in similar conditions, with the
exception of the more pronounced utilization of the knee
motor for vertical motions and the lesser demand onmotor j=
2, except for redundant motions. Thereby, the analysis shows
resulting motor profiles that realistically can be achieved
by the employed hardware. This, in general, reveals a high
potential for the robot to be applicable for both manipulation
tasks and possibly legged locomotion. However, the resulting
performance will certainly depend on the control algorithm
employed and the physical capabilities of actuator and sensor
hardware.

Crucially, the top-down approach by dividing the kinemat-
ics into sub-problems, starting from a simplified substitute
model as shown in Sec. II-B and III-A down to suitably more
complex low level kinematics problems yields a complete, yet
readable solution for the legged robot. This approach allows
the robot to be considered as a general 3-SR type mechanism
with 4-DOF legs, allowing for awide range ofmotions and for
simple high-level kinematics, referring to Sec. III-A1. In this
regard, given the functional redundancy due to its leg tilting
capability, as examined in Sec. III-A2, without altering its feet
positions, the robot additionally allows for the optimisation of
the actuator load distribution and improved conditioning.

As required for the combination of both leg dexterity
and elastic compressibility, a closed-loop mechanism was
included into the leg system. Still, despite the complex
design, the kinematics analysis from Sec. III-B1 shows that
the legs are able to expand and retract over a reasonable
distance, important to allow for a suitable workspace.
In addition, as revealed in Sec. III-B2, the leg compression
will influence the position of the feet only to a minor
degree, as they stay close to the virtual line between initial
and hip centre point. Hence, with the lateral disturbance
kept small, only minor adjustments to the joint coordinates
may be required for an accurate alignment of actual and
desired feet positions. Additionally, the motion performance
shows that despite the utilization of the complex hip
structure, the mechanism does not reach postures that are
critically close to singular configurations. Similarly, the
employment of the internal universal support structure still
allows for a reasonable workspace of the hip manipulator,
despite being the limiting factor of the attainable maximum
range of the spherical mechanism structure. Crucially, this
structure allows the specific placement of the knee actuator,
kinematically connected to the leg, as depicted in Sec. III-B3.

In this regard, it is shown by the results of Sec. III-B4 that the
possible disturbances by the spherical motion of the hip joint
can be counteracted by the kinematic relationship between
knee actuator and upper leg. Fundamentally, the kinematic
design of the robot realizes the design goals of the robot,
initially stated in Sec. I-A.

B. HIP MANIPULATOR KINEMATICS
Regarding the derived SPM inverse kinematics, the geometric
approach presented in this proposal leads to only one solution
with an explicit result of three angles, one for each actuator
axis. This is in contrast e.g. to the often adopted approach
shown in [42], [43], leading to eight solutions in total.
Similarly, in contrast to the approach shown in [41], again
yielding eight possible solutions, the forward kinematics
solution presented returns just one orientation of the tool
platform. Thus, based on a known initial layout of the
manipulator, for both the inverse and forward case it does
not exist any confusion, which of the returned results is the
mechanically applicable one.

Fundamentally, this result stems from the initial restric-
tions applied in the derivation of the geometric solution
for both the inverse and forward kinematics, predetermining
the general posture of the manipulator to some degree.
Consequently, this simplifies the mathematical expressions
noticeably, and might even reduce the runtime of its real
world implementations. Additionally, due to the lower
number of mathematical operations, this may increase the
numerical accuracy of the returned solutions. However, an in-
depth analysis regarding runtime and accuracy is outside of
the scope of this article.

Still, as a general remark, using the solution presented
in an actual implementation requires to specifically select
the configuration of the physical manipulator, which then
must be kept in its intended working and assembly mode
throughout its application. However, typically only one of the
mathematically thinkable solutions is mechanically intended
or even feasible, regarding possible internal collisions
between parts.

C. MODES AND SINGULARITIES
Since singularities alter the behaviour of the mechanism
significantly and yield manipulators to gain or lose DOFs,
special attention must be provided to those configurations.
In addition, postures near those states represent configura-
tions with a highly unequal input-output-relationship of the
manipulator, regarding velocities and torques, respectively.
However, this might be exploited as a property, allowing the
manipulator to resist torques from specific directions, yet
makes it highly sensitive to torques from other directions.
Alternatively, yet correspondingly, high precision due to a
very small output velocity in contrast to a high input velocity
might be considered, which then may be affected by an
inaccurate motion in some other direction. For reference, the
specific utilization of the SPM as a hip joint for the purpose
of locomotion might improve with a specifically designed
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FIGURE 21. Posture of the optimal SPM in the isotropic home
configuration. Axes correspond to the values listed in Table 3.

FIGURE 22. Geometry for the calculation of the remaining passive joint
angles inside the SPM.

configuration in future works, possibly prioritizing torque
over accuracy, yet in this work, we settle on the known
optimal design of the SPM.

Importantly, as initially expressed with (61) and shown
by the aforementioned discontinuities, there is the risk that
the linkages might flip their initial branch configuration
after passing a singularity, resulting in a misaligned and
unrecoverable mechanical posture. More specifically, cross-
ing a singularity means that the manipulator switches its
working and assembly mode [13], [17]. However, since
each unique solution to the inverse and forward kinematics
problem corresponds to one mode, transitioning to a different
mode makes the solution to the kinematics problem invalid—
if not properly detected—possibly and mechanically dam-
aging the manipulator due to the invalid control signals,
imposing a safety concern. However, as the robot comprises
mechanical limitations in the leg plane and due to the
universal joint structure, the legs cannot enter these singular
postures.

TABLE 4. Table of symbols, parameters and abbreviations.

D. VISUAL REPRESENTATION
Notably, the solutions for the inverse and forward kinematics
problem of the SPM presented in this article is considered
by the author of this work to be an equally valid alternative
to [43] and [42], because fundamentally, it solves the
same problem. However, the representation of the solution
presented in this article offers the possibility for a certainly
direct implementation and convenient usage in software
applications. Furthermore, due to the geometric approach, the
solution offers a direct insight into the kinematical behaviour
of the mechanism, since its terms allow for an easy visual
representation.

Essentially, due to the expressive meaning of the terms,
e.g. the degeneration of the inverse kinematics at type 1
singularities with colinear axes becomes obvious by just
observing the equation. In addition, the visual representation
of the base axes zero-position—visualized by the definition
of the reference planes—offers a clear geometrical meaning
regarding the initial angle of the actuator position. Similarly,
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FIGURE 23. Reference trajectory A–I of the robot torso. w x , w y and w z
represent the position of the torso in the world reference frame Fw .
Angles X , Y and Z express the torso orientation, derived from the
ZYX-Euler decomposition.

the forward kinematics problem becomes an intuitively
digestible vector construction, as there is no need for lengthy
polynomial equations. Lastly, the geometric approach can
be applied equally to calculate the remaining angles of the
linkage structure, as shown in Sec. III, which thus yields a
complete solution for all joint angles of the SPM.

E. MEASUREMENT REDUNDANCY
Fundamentally, real world mechanisms are affected by
manufacturing errors and measurement inaccuracies. Thus,
a prototype robot will be limited to a certain rigidity and
accuracy of its parts, with the sensory hardware physically
limited to a certain measurement resolution.

In this regard, as one can observe in Fig. 2, the base
axis of the support structure is equipped with an additional
rotatory encoder, which thus is able to track the effect on
spherical rotations of the SPM on axis ĉ1. Consequently,
this additional information may improve the accuracy of the
forward kinematics solution, as it is partially redundant to the
three base encoders of the axes û1, û2 and û3.
However, the inclusion of this fourth and redundant

encoder may require a different set of equations or even a
fundamentally different approach to express the kinematics
relationships, which—due to its redundant nature—will yield
a mathematically overdetermined system. In this regard, the
knowledge of all joint angles for a certain orientation of the

tool platform, as delivered by the inverse kinematics solution,
might actually be of practical importance. Specifically,
measuring the joint axes redundantly possibly yields to an
optimisation problem. Thus, with the complete set of all joint
angles for any target orientation, this set of joint coordinates
might be employed as an initial guess for the potential
application of optimization strategies as a measure to identify
the actual posture of the robot despite the non-ideal circum-
stances of real world applications. Consequently, a possible
optimization algorithm may converge to an optimum with
less iterations, based on the guessed manipulator posture,
constructed from the full set of active and passive joint
coordinates. However, the specific consequences of the
redundant measurement set-up and its solution need to be
investigated in future works.

VII. CONCLUSION
In this article, the inverse and forward kinematics for a
mechanically complex, serial-parallel, redundant, compliant
three-legged robot was presented by utilising a top-down
approach through a simplified substitute model. This solution
is fundamentally required for the further implementation in
control algorithms, which either require the joint state for a
desired robot posture, or the reconstruction of a posture based
on measured joint angles.

As a major component—regarding the spherical parallel
manipulator utilised for the robot hip mechanism—the
inverse kinematics of this structure was solved via spherical
trigonometry, and the forward kinematics via spatial vector
geometry. In addition, the solution to the inverse kinematics
was extended to all nine joints of the general spherical parallel
manipulator.

Interestingly, and generally speaking, this geometrical
approach to the solution of the inverse and forward kinematics
reduces the complexity of the solution due to the implicit
reduction of the variety of the manipulator working and
assembly modes to only a single mode, yielding a unique
solution for both the inverse and forward case. In practice, this
is reasonable, as switching modes requires the mechanism to
cross singularities, which is not advisable as this steers the
manipulator into unstable and functionally undesirable states.
Fundamentally, this allows the derived solutions to represent
simple and visually expressive alternatives to the literature
standard solutions for the spherical parallel manipulator.

Finally, the resulting solution to the robot kinematics was
implemented in software and verified via a simulation model,
showing the robot performing several motion sequences.
Based on the analysis of the actuator phase portraits, it was
found that the utilisation is generally well distributed over
the different motor units and that the resulting position-
velocity-profiles lie within ranges reasonable for the selected
real-world actuators. The results furthermore revealed the
correlation between specific motor units and the redundant
tilting motion of the leg, with one unit per leg becoming
highly active.
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FIGURE 24. Joint coordinates of the actuator axes corresponding to the robot reference trajectory A–I from
Fig. 23. Value n expresses the number of rotations of the motor axes behind the actuator gear heads.

Crucially, this simulation shows the general mobility of
the robot, which can adapt to many postures, and—due to
its functional redundancy—allows for posture optimisations
with regard to possibly increased manipulator accuracy,
benefiting its application for manipulation tasks. Eventually,
in future works, the torso centric mass and the leg compliance
may possibly allow for agile legged locomotion.

SUPPLEMENTARY MATERIAL
• MATLAB example function implementing the dis-
cussed axes constructionmethods for the SPM from Sec.
III-C2.c and Sec. III-C2.d: FileMAIN_ExampleImpl.m
in folder SPM_InvKineAllJoints.

• Implementation of the derived geometrical solution
to the inverse kinematics of the general SPM for
all active and passive joints from Sec. III as MAT-
LAB function: Files SPM_InvKineJointsMain.m
and SPM_InvKineJointsRest.m in folder
SPM_InvKineAllJoints.

• Video of the kinematics simulation, performing the
motion profiles A–I.

APPENDIX. EXTENDED INFORMATION
In this section, equations are collected that are not relevant for
the readers’ understanding, yet capture additional geometri-
cal relationships of the mechanism. As these equations are
implemented in the corresponding MATLAB functions, they
are provided with this article.

A. LEG TRIGONOMETRICAL EQUATIONS
The following equations depict the geometrical relationships
of the planar leg mechanism, as referred to in Sec. III-B:

l21 + a24 − a23 = 2 · l1 · a4 · cos(δ3). (105)

a24 + b21 − l20 = 2 · a4 · b1 · cos(λ4), (106)

a24 + b22 − a22 = 2 · a4 · b2 · cos(λ5), (107)

b22 + l20 − a21 = 2 · b2 · l0 · cos(λ6), (108)

b22 + a21 − l20 = 2 · b2 · a1 · cos(λ1), (109)

a22 + b22 − a24 = 2 · a2 · b2 · cos(λ2), (110)

b21 + a22 − a21 = 2 · b1 · a2 · cos(λ3), (111)

l20 + b21 − a24 = 2 · l0 · b1 · cos(λ9), (112)

b21 + a21 − a22 = 2 · b1 · a1 · cos(λ10). (113)

In addition, the combination of neighbouring angles holds
true:

l20 + a21 − b22 = 2 · l0 · a1 · cos(λ7 + λ8), (114)

a24 + l20 − b21 = 2 · a4 · l0 · cos(λ5 + λ6). (115)

B. ISOTROPIC CONFIGURATION
The isotropic configuration of the SPM is depicted in Fig. 21.

C. COMPUTATION OF THE REMAINING SPM ANGLES
Considering the whole solution of the inverse kinematics as a
problem of spherical trigonometry, referring back to Sec. III-
C, the remaining angles of the linkage structure of the SPM
can be computed easily. Calculating these angles may be
important for a real application, since mechanical restrictions
can limit the actual workspace of the manipulator, leading to
joint boundaries limiting the possible range of these angles
that have to be considered, despite of having computed a valid
solution for the actuator angles alone. Therefore, according to
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Fig. 22, the link angles θl,j are derived with:

αuw,j = acos
(
cosluw,j − coslvw,j · cosluv,j

sinlvw,j · sinluv,j︸ ︷︷ ︸
arguw,j

)
(116)

for arguw,j ∈ [−1, +1] to:

θl,j = αuw,j · fbranch,j. (117)

To solve the angle between a fixed reference orientation
of the tool platform and the proximal link, an analog
geometrical approach can be made, see Fig. 15 and Fig. 22.
Here, a reference vector hf m̂j, fixed to the tool platform is
constructed:

hf m̂j =

hf ŵj × hf êz
∥hf ŵj × hf êz∥

, (118)

andmapped into the base reference frameFhb of the hip joint:

hbm̂j =
hb
hf R ·

hf m̂j (119)

with the normal vector of the tool platform reference plane:

f̂ mw,j = −
hbm̂j ×

hbŵj, (120)

which is accounted for in the flip factor for the tool reference
plane:

fflip,mw,j :=

{
+1 for f̂ mw,j ·

hbûi < 0
−1 for f̂ mw,j ·

hbûi ≥ 0.
(121)

Again, two spherical triangles are applied to the cosine rule,
which leads to:

αuv,j = acos
(
cosluv,j − coslvw,j · cosluw,j

sinlvw,j · sinluw,j︸ ︷︷ ︸
arguv,j

)
, (122)

αum,j = acos
(
coslum,j − coslmw,j · cosluw,j

sinlmw,j · sinluw,j︸ ︷︷ ︸
argum,j

)
, (123)

for argum,j ∈ [−1, +1] and arguv,j ∈ [−1, +1], which
delivers the angle θt,j by:

θt,j = αum,j · fflip,mw,j + αuv,j · fbranch,j. (124)

D. TABLE OF SYMBOLS
Table 4 shows a list of symbols used throughout this article.

E. MOTION TRAJECTORIES
The joint and task space trajectories of the motion profiles
A–I are depicted in the figures 23 and 24.
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