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ABSTRACT By virtue of their convenience, reasonable cost and high efficiency, Unmanned Aerial Vehicles
(UAVs) have been widely applied in every aspect of life. However, complicated operating conditions are
prone to causing mechanical failure in UAVs, especially the rotor fault. Therefore, a novel dual attention
convolutional neural network based on multisensory frequency features is proposed for UAV rotor fault
diagnosis in this study. Firstly, according to the collected multisensory acceleration vibration signals of
UAV rotors, time and frequency features in different health states (normal, rotor broken and crack fault)
are compared and analyzed in detail. Secondly, a novel dual attention mechanism is proposed to not only
focus on the effect of different sensors but also different frequency features of UAV. Moreover, it could
adaptively assign larger weight to more important features to improve the fault diagnosis accuracy. Finally,
a one-dimension convolutional neural network is adopted to extract the feature of signals and implement
rotor fault diagnosis of UAV. The results derived from experimental signals demonstrate the superiority of
the proposed method by comparison study. Additionally, it is found that the fault diagnosis accuracy of
frequency features as input is much higher than that of time features and single frequency features as input.

INDEX TERMS Attention mechanism, convolutional neural network, rotor fault diagnosis, unmanned aerial
vehicle.

I. INTRODUCTION
With the continuous evolution of modern technology,
Unmanned Aerial Vehicles (UAVs) have been widely applied
in every walk of life, such as aerial photography, cargo trans-
portation as well as agricultural planting [1], [2]. The simple
and effective structure of UAVs enables them to complete
varieties of missions in complicated operation conditions. For
example, hovering over a target at the set speed or avoiding
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obstacles and then performing complex maneuvers [3]. At the
same time, when UAVs continuously replace humans to per-
form some difficult or even dangerous missions, their own
components will also suffer from certain fatigue damage,
which will further affect the reliability of their operation.
Therefore, it is highly necessary to research fault diagnosis of
UAVs to ensure their reliability during the flight and increase
their remaining useful life.

Generally, the whole UAV system consists of many com-
ponents, which can be briefly divided into the following
parts: sensors, actuators, wireless system and microcomputer
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system [4]. In terms of fault diagnosis of UAVs, most of
the existing studies focus on the sensors and the actuators in
the flight system, while there are relatively few studies on
other functional components, such as the rotor of UAVs [5].
For the failure of UAV sensors, the hardware redundancy
method is adopted at the beginning. However, this method
requires the system to be operated in triple or quadruple
redundancy configurations and increases the cost and weight
of the UAVs [6]. Afterwards, the residual evaluation method
is proposed to detect UAVs sensor fault, which computes the
residual information obtained from the difference between
the output and the estimation and then completes sensor fault
diagnosis [7]. Due to the potential to process the intelligent
diagnosis through big data, the deep learning algorithm is
gradually applied in sensor fault diagnosis. Olyaei et al.
introduced Color Images obtained from Time-Frequency-
Amplitude (CITFA) to complete sensor fault classification,
which finally achieves the classification accuracy of 98% in
simulations [8]. For the diagnosis of actuators, Lijia et al.
combined robust adaptive observer and a Radial Basis
Function Neural Network (RBFNN) to detect the ailerons,
elevators and rudder fault of UAVs [9]. Zhong et al. developed
an adaptive three state Kalman filter to not only detect the
propeller and motor fault of UAVs but also evaluate their
magnitudes [10]. Hansen et al. proposed amethodology using
data from a swarm of UAVs to diagnose faults in both control
surfaces and air system sensors [11]. In [12], the authors
proposed a sliding mode observer for rotor fault diagnosis
of UAVs, which calculates the equivalent uncertain inputs by
the features of the outputs. As an important mechanical trans-
mission component of UAVs, rotors support a large number
of takeoffs, hover, elevation and yaw missions. Considering
there are few literatures on rotor crack and broken fault
diagnosis, it is necessary to conduct in-depth research on the
above aspects.

In the field of fault diagnosis, the frequently used fault
diagnosis methods can be generally divided into the follow-
ing three categories: knowledge-based method, model-based
method as well as data-driven method [13], [14], [15]. These
methods are also applicable to the fault diagnosis of UAV.
Knowledge-based methods primarily apply expertise to the
UAVs diagnostic procedure. Aiming at the complexity, diver-
sity and nonlinear mode of UAV measurement and control
system faults, Xiao et al. proposed a modified expert system
by combining neural network to improve the active learning
ability of the traditional expert system [16]. Çolak et al.
proposed a novel two phase multi expert knowledge approach
by using fuzzy clustering and rule-based system to evaluate
UAVs [17]. Model-based methods mainly construct physical
model to estimate the state of UAVs and further diagnose
the fault. Hansen et al. completed fault diagnosis of UAV
airspeed measurement system based on extended Kalman
filter (EKF) [18]. Wu et al. established a dynamic model with
augmented state containing both the flight state and actuator
healthy coefficients, and applied unscented Kalman filter to
estimate the health state of UAVs [19]. Tousi et al. constructed

FIGURE 1. Brief flow chart of the proposed method.

the fault diagnosis scheme based on different components
fault model of UAVs, which takes advantage of the structural
perturbation of the UAV model due to the icing, sensor and
actuator faults [20]. Due to their powerful data processing
ability, data-driven methods directly construct the nonlinear
relationship between operation data and equipment health
status. Cabahug et al. used k-means clustering algorithm to
fuse the vibration data and then detected midflight UAV fail-
ures [21]. In [22], the authors presented a novel data-driven
adaptive neuron fuzzy inference system-based approach for
the detection of navigation sensor faults in UAVs. Du et al.
proposed an interval sampling reconstruction method for
vibration signals and applied convolutional neural network
to further extract the fault features of UAVs, the effectiveness
of the method verified by the rotary-wing UAVs signals [23].
In sum, model-based methods are the most widely used, such
as various types of Kalman filters, while data-driven methods
based on artificial intelligence algorithms are relatively rarely
applied in UAVs fault diagnosis. Additionally, how to build an
appropriate intelligent diagnosis model according to the fault
mechanism features of UAV signals is also a crucial topic.

As a result, a novel dual attention convolutional neural
network based on fault frequency features is proposed for
rotor fault diagnosis of UAVs in this paper. A brief flow
chart of the proposed method is presented in Fig. 1. Firstly,
according to the obtained vibration signals of each rotor,
time and frequency features in different health states are
detailed compared and analyzed from the flight principle of
UAV. Secondly, based on the analysis of frequency features,
a dual attention based convolutional neural network is built
for intelligent diagnosis. Finally, the effectiveness and superi-
ority of the proposed method are verified by the experimental
signals from rotary-wing UAV. Additionally, several compar-
ison studies are also conducted to show the advantage of
the proposed method in detail. The main contributions and
innovations of this paper are summarized as follows.

1) A comprehensive analysis of the frequency features of
vibration acceleration signals from each rotor of the
quadrotor UAV in different health states (normal, rotor
broken, and crack fault) to unveil the corresponding
fault mechanisms. Additionally, an explanation is pro-
vided for the occurrence of fault frequency features
based on the flight principles of UAVs.

2) A novel dual attention convolutional neural network is
proposed for rotor diagnosis of UAV, whose input are
the multisensory frequency features with certain fault
mechanism information. The proposed dual attention
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module can not only adaptively assign great weight to
important sensor signals, but also help the proposed
network to center on the more essential frequency
that represents the fault features. Experimental signals
from quadrotor UAV are used to validate the method’s
effectiveness, and a comparison study demonstrates its
superiority over other approaches.

The rest of this paper is organized as follows. Section II
presents the preliminaries, including convolutional neu-
ral network and convolutional block attention module.
Section III introduces the proposed network for rotor diag-
nosis. The experimental setup, frequency features analysis,
validation and comparisons are considered in Section IV.
Finally, Section V summarizes the conclusions.

II. PRELIMINARIES
A. CONVOLUTIONAL NEURAL NETWORK
Due to its powerful feature extraction ability, convolutional
neural network (CNN) is widely applied in many fields, such
as image classification, speech recognition and fault diag-
nosis. Typically, CNN contains several convolutional layers,
pooling layers and fully connected layers in the end [24].
Compared with traditional fully connected network, CNN
utilizes convolution kernel in convolutional layers to auto-
matically extract abstract features from former layers, which
leverages the local receptive ability so that it reduces the
number of parameters and the training difficulty of the model.

Since the signals collected from acceleration vibration sen-
sor are one-dimension time series instead of two-dimension
image features, one-dimension CNN (1D-CNN) is chosen in
this paper for network construction. In convolutional layer,
convolution kernel is utilized to carry out convolution oper-
ation with signals to extract representative features. The
formula of convolutional layers is defined as

x lj = f (
∑
i

x l−1
i ∗ k lij + blj) (1)

where x l−1
i and x lj are the output feature of the layer l−1 and

l respectively; f stands for the nonlinear activation function,
ReLu is used as the activation function in this paper; ∗ means
the convolution operator; k lij is the convolution kernel of layer
l, and blj is the bias of layer l.

Pooling layer is usually connected behind convolutional
layer to reduce the spatial dimension of the feature maps.
Generally, pooling layer can be divided into two types: max
pooling and average pooling. Max pooling operation adopts
the maximum value in the pooling area and then propagates it
to the next layer, while average pooling operation calculates
the average value in the pooling area. The formula is repre-
sented as

x l+1
j = max or average

i∈Rj
(x lj ) (2)

where x l+1
j and x lj are the output feature of the layer l+1 and

l respectively; Rj is the jth pooling region in the feature x lj .

FIGURE 2. Network architecture of the dual-attention-based
convolutional neural network.

B. CONVOLUTIONAL BLOCK ATTENTION MODULE
In neural network, attention mechanism could enhance some
parts of the input data while diminishing other parts to help
the network achieve better results. Traditional attention based
intelligent diagnosis only pay attention to a single factor, such
as temporal or sensor. Convolutional block attention module
(CBAM) is first proposed in image classification to both
focus on channel and temporal feature [25].

CBAM contains two submodules: channel and temporal
attention modules. The first and second parts are to allocate
different weights on different channel and temporal features,
respectively. Supposing the input feature and output weighted
feature are Fin, Fout ∈ RH×C , channel attention featureMc ∈

R1×C and temporal attention feature Ms ∈ RH×1. All the
procedures then can be described as [25]

F′
= Mc(Fin) ⊗ Fin

Fout = Ms(F′) ⊗ F′ (3)

where ⊗ denotes element-wise multiplication and F′ stands
for middle feature map. Specific attention module can be
described in detail as

Mc(Fin) = σ (W1(W0(Fc
avg)) + W1(W0(Fc

max)) (4)

Ms(F′) = σ (f 7×7([F′s
avg;F

′s
max])) (5)

where σ stands for the sigmoid function, W0 and W1 are
the weights of the two fully connected layers, Fc

avg and F
c
max

denote features after average and max pooling respectively,
f 7×7 represents convolution operation of 7 × 7 convolu-
tion kernel. It should be noticed that the original CBAM
in [25] deals with two-dimension data, such as images, but in
this paper, the attention network structure has been slightly
changed to make it suitable for dealing with one-dimension
data, such as vibration signals. The specific network structure
of the modified CBAM is presented in Fig. 2.

C. DYNAMICS ANALYSIS OF UAV
When the rotor is damaged, the force of the UAV may be
unbalanced, resulting in shaking or even falling. Therefore,
the rotor failure will have a huge impact on the flight stability
of the UAV. Considering the UAV as a rigid body, the six
degrees of freedom in flight are described by three linear
motions of the center of mass of the body that translate along
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the coordinate axis and three angular motions that rotate
around the coordinate axis.

F = m
•

V = m[
••
x

••
y

••
z ] (6)

M =
•

IW +W × (IW ) (7)

where F represents the total external force on the drone,
m is the mass of the UAV, V is the linear velocity of the
center of mass of the drone. x, y and z represent the position

information in space, respectively.
••
x ,

••
y and

••
z represent the

unmanned the linear acceleration component of the drone’s
center of mass along the three-axis direction. M is the resul-
tant external torque received by the rigid body, I is the inertia
matrix, andW is the angular velocity of the rigid body.

III. PROPOSED METHOD
The proposed method for UAV rotor fault diagnosis mainly
consists of the following two steps: 1)multisensory frequency
features input construction; 2) dual-attention-based convolu-
tional neural network construction and implementation.

A. MULTISENSORY FREQUENCY FEATURES INPUT
CONSTRUCTION
Due to the influence of environmental noise and signals
generated by other components, it is difficult to utilize the
vibration signals in time domain to achieve rotor fault diag-
nosis of UAV. Since UAV rotor is rotating part, its vibration
signal features are mainly related to the rotation frequency of
rotors. It is reasonable to convert vibration signals from time
domain to frequency domain by Fourier transform. In this
way, the features signal representing health states of UAV
rotor could be highlighted in frequency domain. Additionally,
UAV contains multiple rotors, utilizing multiple sensors to
acquire vibration signals of each rotor can more accurately
determine its health states. Therefore, multisensory frequency
features of UAV rotor are used as input to train and test the
proposed network. The specific construction method is as
follows:

1) In order to increase the number of data samples, the
time domain vibration signals of each rotor xi(t) are
firstly processed by sliding window method. Window
length is set as 4096, which is enough for generating
lots of samples. Signal length of each sample is 16384,
which will be discussed in experimental results.

2) Applying Fourier transform to convert the time domain
vibration signals of each rotor xi(t) into frequency
domainXi(f ) by the following equation. Since the spec-
trum of the signal is symmetric, only half the length of
Xi(f ) is selected as input.

Xi(f ) = F[xi(t)] =

∫
∞

−∞

xi(t)e−j2π ftdt (8)

where j represents for imaginary unit; F stands for
Fourier transform; xi(t) and Xi(f ) are the time and

FIGURE 3. Network architecture of the proposed method.

TABLE 1. Network parameters of the proposed model.

frequency domain vibration signal under the ith rotor,
respectively.

3) The frequency domain signals of all the rotors Xi(f )
are formed into a matrix X as the input of the pro-
posed neural network.X = [X1(f ); X2(f ); . . . ; XC (f )]T ,
X ∈ RH×C is frequency domain signals length, which
is 8192, and C is number of rotors which equals to 4 in
this paper.

B. NETWORK ARCHITECTURE AND IMPLEMENTATION
The proposed dual-attention-based convolutional neural net-
work for UAV rotor fault diagnosis is illustrated in Fig. 3.
It can be roughly divided into three modules: 1) dual attention
convolution module; 2) 1D convolution feature extraction
module; 3) fully connected classification module. Network
parameters of the proposed model are listed in Table 1.
Detailed process of the proposed method is summarized as
follows.

1) According to the introduction of Section III, multisen-
sory frequency features input matrix X ∈ R8192×4 is
constructed. In order to improve the fault diagnosis
accuracy of network, CBAM is integrated into convo-
lutional neural network to adaptively assign different
weights on different sensors (channels) and frequency
components. More importantly, through training the
proposed network with samples, the dual attention
mechanism can capture the difference between the
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frequency features of healthy and different fault types
of rotors, and then highlight the frequency components
highly related with their health state, and suppress the
influence of irrelevant frequency components. Since
CABM only weighs the features of different dimen-
sions of the input matrix, thus its dimension still
remains unchanged (N , 8192, 4). N represents for the
number of samples.

2) Then, 1D-CNN is placed after the weighted input fre-
quency features. This module is to mine the abstract
high-level features representing their health state by
serval convolution and pooling operations. Specific
network parameters of 1D-CNN are listed in Table 1.
For example, conv@16×64×2 means applying 16 fil-
ters with kernel size 64 and strides 2, avgp@8 ×

4 stands for applying average pooling with pool-
ing size 8 and strides 2. To avoid overfitting, batch
normalization (BN) is also adopted in the proposed
network. Bymeans of multilayer convolution and pool-
ing operations, the dimension of features becomes
(N , 8, 32). Moreover, Advanced Data Access Method
is the method used for parameter updating at each layer.
The specific optimization process is as follows:
Update the first moment estimate m and the second
moment estimate v:

mt = β1mt−1 + (1 − β1)gt (9)

vt = β2vt−1 + (1 − β2)g2t (10)

where β1 and β2 are the hyper-parameter, they are
generally set to 0.9 and 0.999, respectively, t is the
number of iterations.
Since the initial estimates of m and v are 0, they will be
biased at the beginning of training. In order to correct
this bias, bias correction is required:

m′
t = mt/(1 − β t1) (11)

v′t = vt/(1 − β t2) (12)

The modified first and second moment estimates were
used to update the model parameters w:

wt+1 = wt − l × m′
t/(

√
v′t + e) (13)

where l stands for the learning rate and set to 0.001,
eindicates the smooth item, which is usually set to 1×

10−8.
3) Finally, one Flatten and two Dense layers are sequen-

tially connected together to achieve rotor fault diag-
nosis. The first Dense layer utilizes ReLu activation
function, while the second Dense layer applies Soft-
max classifier for multi-classification. Additionally,
Dropout method is also adopted to avoid overfitting.
Corresponding steps of the algorithm is summarized in
Algorithm 1.

Algorithm 1 Pseudo-Code of the Proposed Model
Multisensory Frequency Features Input Construction
1: Collect all four rotor vibration acceleration signals in time domain
xi(t)
2: Apply FFT transformation to obtain frequency signals Xi(f )
3: Construct the input matrix X=[X1(f ); X2(f ); X3(f ); X4(f )]T

Training and Test Procedures of the Proposed Model
Input: The labeled dataset D = {(X1,Y1), (X2,Y2), . . . , (XM ,YM )}
1: Set model hyperparameters such as learning rate, iteration number
and batch size
2: Randomly initialize the weights and biases of the model
3: Divide the training and test datasets
4: For each training epoch do
5: If phase = train then
6: For each data batch do
7: Calculate the output of the proposed model
8: Update weight parameters of the proposed model
9: End For
10: If phase = test then
11: Calculate the output of the proposed model
12: End For
Output: Fault classification results on the test set

FIGURE 4. Experimental test system. (a) Quadrotor UAV; (b) Name of each
rotor; (c) Vibration signal acquisition system.

IV. EXPERIMENTAL VERIFICATION
A. UAV ROTOR FAULT EXPERIMENTAL SETUP
To verify the effectiveness of the proposed neural network
on UAV rotor fault diagnosis, the experiment was con-
ducted on a China DJI Series Phantom 4Pro+ V20 quadrotor
UAV, four printed circuit board acceleration vibration sensors
were mounted on each rotor to collect multisensory signals,
rotors are named as a, b c, and d, respectively, as shown
in Fig. 4(a) and (b). ECNO AVANT series data acquisition
analyzer and laptops were combined together to analyze the
signals, as shown in Fig. 4(c). The sampling frequency was
set to 12800 Hz, sampling time for each experiment was
nearly 35 s.

In UAV rotor experiment, three types of rotor failure state
were manually set: normal state, rotor broken fault as well
as rotor crack fault, as presented in Fig. 5. In normal state,
all the rotors are in health without damage; In rotor broken
state, there are three levels of damage: minor (both ends of
the rotor c were cut slightly), moderate (one end of the rotor
c was cut slightly, while the other end was cut considerably)
and severe (both ends of the rotor c were cut considerably);
In rotor crack state, there are four levels of damage: one 1 cm
crack on the rotor c, two 1 cm cracks on two opposite rotors
b and c, four 1 cm cracks on two opposite rotors b and c, six
1 cm cracks on the rotor c. The number of the rotor faults are
labeled from 0 to 7 in order. During the experiment, UAVwas
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FIGURE 5. Normal rotor, broken and crack rotor with different fault
levels.

hovering at an altitude of 2 m controlled by DJI remote, this
process involved hovering, taking off and turning. A total of
eight datasets can be acquired under these three types of rotor
failure state.

B. MULTISENSORY FREQUENCY FEATURES ANALYSIS
Compared with the traditional single sensor method, multiple
sensors mounted on each rotor can obtain more accurate
information representing their health condition. Additionally,
multisensory frequency features of UAV rotor in health and
fault states are not clear. Therefore, the analysis of multisen-
sory frequency features of UAV rotor is helpful for rotor fault
diagnosis. According to UAV rotor fault experiments, mul-
tisensory acceleration vibration signals of rotors in different
health states are collected. Taking normal state, severe rotor
broken fault and six cracks on one rotor fault as examples, the
multisensory frequency features of UAV rotors are analyzed
in detail.

In normal state, UAV rotor multisensory vibration signals
of time and frequency domain are illustrated in Fig. 6. Firstly,
it is difficult to directly observe their running state from time
domain, the time domain signals of all rotors do not exist
any features; Secondly, all frequency domain signals include
rotational frequency of rotor (fn = 98 Hz) and its harmonic
components, furthermore, due to the inevitable presence of
the rotor speed fluctuations, there is a certain frequency
aliasing phenomenon near the rotational frequency and its
harmonic components. In sum, acceleration vibration signals
of different rotors (rotor a, b, c and d) basically have similar
features in time and frequency domain, which are in line with
the flight principle of UAV during hovering (four rotors rotate

FIGURE 6. UAV Rotor vibration signals of time and frequency domain in
normal state.

FIGURE 7. UAV Rotor vibration signals of time and frequency domain in
severe broken fault.

at the same speed, and the sum of the lift generated by rotors
equals to their own gravity).

In severe rotor broken fault, UAV rotor multisensory vibra-
tion signals of time and frequency domain are presented in
Fig. 7. Similar to the normal state, it is still hard to obtain
the information characterizing rotor fault features in time
domain directly. In contrast, the frequency domain signal
features of each rotor are very obvious. In addition to rota-
tional frequency of rotor (fn = 98 Hz) and its harmonic
components contained in the normal state, the fault character-
istic frequency (fc = 134 Hz) and its harmonic components
also appear in severe rotor broken fault. Furthermore, all
rotor signals, whether healthy (rotor a, b and d) or faulty
(rotor c), exhibit the above frequency features. It is worth
noting that compared with the signal of faulty rotor c, the
signal features (fc = 134 Hz) of the adjacent healthy rotor d
are more obvious. This is mainly because when rotor c occurs
broken fault, its rotational speed would change, resulting in
additional frequency component (fc = 134 Hz) in frequency
domain. In order to keep UAV hovering and balance the
lift generated by faulty rotor, the rest rotors rotational speed
will also change accordingly and generate fault characteristic
frequency.
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FIGURE 8. UAV Rotor vibration signals of time and frequency domain in
six cracks on one rotor.

In six cracks on one rotor fault, multisensory frequency
features are similar to the rotor broken fault, as shown in
Fig. 8. Both rotational frequency (fn = 98 Hz) and fault
characteristic frequency (fc = 112 Hz) are appeared in fre-
quency domain. However, due to the different types and levels
of fault, the value of the fault characteristic frequency is
different from the rotor broken fault.

In summary, whether the rotor is normal or faulty, it is
difficult to directly observe any features from time domain.
On the contrary, frequency features of rotors are obvious in
normal and faulty state, and due to the existence of fault
characteristic frequency, there are certain differences under
different states, which can be further utilized for diagnosis.

C. EXPERIMENTAL RESULTS
Acceleration vibration signals of UAV rotors with eight dif-
ferent fault levels are acquired by experiments, and fault clas-
sification are performed by the proposed dual-attention-based
1D-CNN method. The computer system used to process the
data is windows 10 with 16G RAM and NVIDIA GeForce
GTX 1050 Ti, the configured environment is python 3.6,
tensorflow-gpu 2.1.0.

Firstly, according to Section III, multisensory frequency
features input matrix X ∈ R8192×4 is constructed. The ratio of
number of samples in training set and testing set is 6:4. Adam
optimization algorithm is applied to adaptively calculate the
learning rate. Initial learning rate, batch size and epoch are
set as 0.001, 64 and 200, respectively. The proposed method
contains 488749 trainable parameters and 160 non-trainable
parameters, respectively. Then, utilizing training sets to train
the proposed network so as to obtain the optimal network
model parameters. Finally, testing sets are input into the
trained network to achieve fault diagnosis. Total running time
of the proposed model equals to 55.41 seconds, which is
enough fast for practical UAV rotor fault diagnosis.

The evolution of several parameters of the proposed CNN
model have been illustrated during the learning phase (train-
ing phase). From Fig. 9(a), it can be seen that the loss of
training sets and testing sets both decrease to 0 without

FIGURE 9. The classification and t-SNE results by the proposed method.
(a) Loss and accuracy curve; (b) Confusion matrix; (c) t-SNE of Input layer;
(d) t-SNE of Dense layer.

fluctuation after 200 iterations. Meanwhile, the accuracy of
training sets and testing sets are both approximately close
to 1. These two types of curves indicate that the proposed
network with multisensory frequency features could well
achieve fault diagnosis of UAV rotor. Moreover, to show the
classification results of various rotor faults more intuitively,
a confusion matrix is illustrated in Fig. 9(b). The prediction
accuracy of each rotor fault type reaches to 1, which fur-
ther demonstrate the effectiveness of the proposed method.
In order to verify the feature extraction ability of the proposed
method, the t-distributed Stochastic Neighbor Embedding
(t-SNE) technique [23] is considered for visualization by
mapping the high-level features in the Input layer and Dense
layer into 2 dimensions, as presented in Fig. 9(c) and (d).
From the visualization results, it can be clearly seen that most
of the categories are overlapped with others in Input layer,
though multisensory frequency features after dimensional-
ity reduction could distinguish category 3. In contrast, the
features derived from Dense layer, which have been already
processed by several convolutional layers, are well clustered
and all of the categories are separated with each other. Addi-
tionally, the evolutions of corresponding parameters of the
dense layer (weights and biases) are also presented Fig. 10.
As can be seen, the values of weights and biases basically tend
to stable after 20 iterations, which keep consistent with the
curve of accuracy and loss. The results show that the proposed
network can learn meaningful discriminative features from
the Input layer, which is helpful to yield high classification
performance.

Furthermore, to illustrate the effectiveness of the modified
CBAM (dual attentionmechanism) integrated in the proposed
network, both frequency and sensor attention values on all
testing samples are plotted in Fig. 11. It can be seen that the
modified CBAM can adaptively learn which frequency com-
ponents and sensors (channels) in testing samples are more
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FIGURE 10. Evolution of the parameters during the learning phase:
(a) weights of dense layer; (b) biases of dense layer.

FIGURE 11. Attention values on all testing samples. (a) Sensor attention;
(b) Frequency attention.

important for fault classification. Specifically, the weights
of sensor attention are also different under different test-
ing samples; In addition, the weights of frequency attention
distributed in the vicinity of rotational frequency (fn), char-
acteristic frequency (fc) and its harmonics are larger than
that of the other frequency components. These two results
directly demonstrate that the modified CBAM can adaptively
assign different weights on different frequencies and sensors
by network training.

To explain the distribution of attention weight more intu-
itively, both sensor attention and frequency attention weights
of one of the testing samples are presented in Fig. 12. Accord-
ing to multisensory frequency features analysis of UAV rotors
in multisensory frequency features analysis, signal frequency
features of each rotor will be different under fault condition,
especially in fault characteristic frequency (fc). Therefore, the
proposed attention mechanism could adaptively assign differ-
ent weights to the different sensors, as shown in Fig. 12(a).
In terms of single rotor frequency attention, it can be clearly
found that larger weights with dark color are assigned near
rotational frequency (fn), characteristic frequency (fc) and
its harmonics from Fig. 12(b). These features with larger
attention weights are highly corelated to UAV rotors health,
which also verifies the effectiveness of the proposed attention
mechanism.

Based on sliding window method to expand the number
of samples, the shorter signal length, the greater number
of samples, which is beneficial for network training. While
from the perspective of signal processing, the longer signal
length in time domain, the higher frequency resolution of the
signal in frequency domain, and the more accurate frequency
features of the signal can be analyzed, which is conducive
to fault diagnosis. Hence, signal length of samples not only
determine the number of samples, but also determine the

FIGURE 12. Attention weights visualization of one of the testing samples.
(a) Visualization of sensor attention weights; (b) Visualization of the
learned attention weights on single rotor frequency features.

FIGURE 13. The classification accuracy under different signal input length
(frequency resolution).

FIGURE 14. The classification accuracy: (a) different initial learning rates;
(b) different batch sizes.

information contained in the samples. In order to balance
these two factors, different signal lengths are set to study their
influence on the final classification accuracy. As illustrated in
Fig. 13, when the signal length is 2048, the fault classification
accuracy only equals to 82%, mainly due to low frequency
resolution (6.25 Hz) is not enough to detect the feature fre-
quency. As the length of signal increases, the classification
accuracy reaches to 100% with high frequency resolution
0.78 Hz. Therefore, signal length is chosen as 16384 in this
paper.

Moreover, the classification results of different values of
initial learning rate and batch size are plotted in Fig. 14.
As we know, the lower learning rate, the higher classification
accuracy will be, but the training time will increase, hence
in order to balance the training time and accuracy, initial
learning rate is set as 0.001. Batch size is selected as 64 by
the same logic.

D. COMPARISON STUDY
In this section, several machine learning algorithms are
compared with the proposed method to verify its superior-
ity. Especially, to avoid random error, all the methods are
conducted five times to record average fault classification
accuracy.
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FIGURE 15. Classification accuracy results of different methods.

A total of nine methods are compared: the proposed
method is labeled as A, the proposed method utilizing multi-
ple time as input and single frequency as input are labeled
as B and C, respectively. Support vector machine (SVM)
applies single frequency and single time as input are labeled
as D and E, respectively. Probabilistic neural network (PNN)
uses single time and single frequency as input are labeled
as F and G, respectively. For SVM method, grid searching
technique is applied to select the optimal parameters of c,
gamma and kernel, whose search range are [0.1,1, 10, 100],
[1,0.1,0.01,0.001] and [‘rbf’, ‘poly’, ‘sigmoid’]. Then, the
optimal parameters are selected with [c= 100, gamma= 0.1,
kernel = ‘rbf’] and [c = 0.1, gamma = 1, kernel = ‘poly’] in
method D and E. For PNN method, the std parameter also is
determined by grid searching technique, whose optimal value
is 30 and 0.2 in method F and G. Stack LSTM network and
DNN network with multiple frequency as input are labeled
as E and I.

According to the comparison results from Fig. 15, the fol-
lowing conclusions can be derived: (1) the proposed method
achieves 100% classification accuracy, which is the highest
among all of the comparison methods; (2) compared with
method H and I, the accuracy of the proposed is also slightly
higher than that of popular LSTM and DNN (100% vs 99%
and 98%); (3) by comparing the method A and B, D and E,
F and G separately, it could be found that the method utilizes
frequency as input have much higher accuracy than that of
using time as input (100% vs 48%, 96% vs 13% and 94%
vs 27%); (4) through the comparison of A and C, it can be
known that using multisensory frequency features as input
could improve the fault classification accuracy from 98% to
100%. In sum, the comparison results not only demonstrate
the superiority of the proposed method in UAV rotor fault
diagnosis, but also verify the effectiveness of applying multi-
sensory frequency features as input.

To further illustrate the advantage of using multisensory
frequency features, the classification and t-SNE results by
taking time domain signals as input are presented. As can
be seen in Fig. 16(a) and (b), although the loss of training
sets is close to 0, the loss of testing sets still cannot con-
verge to 0 after 200 iterations. It can also be clearly seen
from the confusion matrix that this method is difficult to
discriminate different fault labels of UAV rotors accurately
and has relatively poor generalization ability. Furthermore,
from the visualization results in Fig. 16(c) and (d), it can be
known that all categories of time feature in Input layer are

FIGURE 16. The classification and t-SNE results by taking time domain
signals as input. (a) Loss and accuracy curve; (b) Confusion matrix;
(c) t-SNE of Input layer; (d) t-SNE of Dense layer.

FIGURE 17. The classification and t-SNE results by taking single
frequency signals as input. (a) Loss and accuracy curve; (b) Confusion
matrix; (c) t-SNE of Input layer; (d) t-SNE of Dense layer.

heavily overlapped with each other by t-SNE, the features of
same category in Dense layer form certain clusters, but there
still exists large feature overlap phenomenon. By comparing
the results in Fig. 9(c) and (d), it is easy to know that using
frequency features as input is more reliable than using time
features for UAV rotor’s fault diagnosis.

Similarly, the classification and t-SNE results of applying
single frequency feature as input are plotted in Fig. 17. The
loss and accuracy curve and confusion matrix together show
its effectiveness of UAV rotor fault diagnosis. However, com-
paring with the results in Fig. 9(a) and (b), this method not
only requires more epochs to achieve convergence but also
generates some fault classification errors (Fault label 4, 5,
and 7). Hence, in order to keep the parameters consistent
with other comparison methods, the iteration number (epoch)
is set as 200 in all methods. Additionally, t-SNE results of
Input and Densen layer intuitively demonstrate the clustering
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ability, but it is still inferior to the proposed method utiliz-
ing multisensory frequency features as input as shown in
Fig. 17(c) and (d).

V. CONCLUSION
This paper proposes a novel dual attention convolutional
neural network based on multisensory frequency features to
achieve UAVs rotor fault diagnosis. Firstly, according to the
collected multisensory acceleration vibration signals of UAV
rotors, both time and frequency features are compared and
analyzed in accordance with flight principle of UAV in detail.
It can be known that utilizing characteristic frequency (fc) of
multisensory signals can well indicate the fault types of UAV
rotors, while the time features of multisensory signals cannot.
Then, a modified CBAM is integrated into the network to
implement the dual attention weighting (both sensor and fre-
quency) of signal. Through dual attention mechanism, larger
weights can be adaptively assigned to sensors and frequency
components that better characterize the health of UAV rotors.
Finally, a 1D-CNN is adopted to extract the feature of signals
and implement rotor fault diagnosis of UAV.

The experimental results indicate that the proposedmethod
could accurately discriminate various fault types of UAV
rotors (health, three different levels of broken fault and four
different levels of crack fault). Moreover, larger attention
weights are located at important sensor signal and frequency
components (rotational frequency, characteristic frequency
and its harmonics). In comparison study, the proposedmethod
achieves 100% fault classification accuracy, which is high-
est among SVM, PNN, LSTM and DNN. Additionally, the
proposed method applies multisensory frequency features as
input could improve the fault classification accuracy from
48% and 98% to 100% by comparing with applying multi-
sensory time features and single frequency features as input.

During the flight of UAVs, in addition to constant speed
hovering mission, there are more rapid climbing and landing
missions, which will inevitably generate variable speed and
lead to more complicate task for accurate fault diagnosis of
UAV rotors. Hence, in the future fault diagnosis method of
UAV rotors under variable speed condition will be further
studied on the basic of existing research.
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