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ABSTRACT Accurate soil structure models are crucial references for substation grounding system design.
Typically, inversion algorithms are employed to obtain uniform or horizontal layered soil models based on
measured apparent resistivity. However, soil resistivity outlier distribution areas can affect the accuracy of
these inversion algorithms, particularly when these areas are near the surface. Traditional algorithms do
not account for the outlier distribution of soil resistivity, leading to significant discrepancies between the
calculated results of the design scheme and actual operation, thereby impacting the safety and economy
of the grounding system. Therefore, this paper proposes an inversion method for soil structures with outlier
distribution characteristics based on deep belief networks (DBNs). Firstly, we introduce a statistical criterion
for identifying the outlier distribution characteristics of soil resistivity. Subsequently, we construct a database
of soil models with outlier distribution characteristics to train the DBN. Finally, we verify the inversion
accuracy of the optimal DBN using apparent resistivity data measured in a 220 kV substation and the
Qinghai-Tibet Railway. The results demonstrate that the inversion accuracy of the method proposed in this
paper is comparable to that of the traditional method for horizontally layered soil but exhibits a remarkable
improvement of approximately 40%when dealingwith soil apparent resistivity exhibiting outlier distribution
characteristics.

INDEX TERMS Grounding, soil model, outlier dispersion, deep belief network.

ABBREVIATION LIST
DBN Deep belief networks.
CDEGS Current Distribution, Electromagnetic Inter-

ference, Grounding, and Soil Structure Anal-
ysis Package.

GA Genetic algorithm.
ANN Artificial neural network.
RMSE Root mean square error.
ML Machine learning.
RBM Restricted Boltzmann Machine.
MSE Mean squared error.
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M-MSE Mini-batch training MSE.
F-FMSE Full-batch train MSE.
V-MSE Validation MSE.
SPSS Statistical Package for the Social Sciences.
ROC Receiver operating characteristic curve.
AUC The area under the ROC curve.
SD Steepest descent method.
SA Simulated Annealing.
BFGS Broyden-Fletcher-Goldfarb-Shanno

algorithm.
PSO Particle swarm optimization.
ρi The resistivity of the i th layer of soil.
hi The thickness of the i th layer of soil.
S(x0,y0,z0) The coordinates of the center of the outlier

dispersion area.
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d1, d2, h The length, width and height of the outlier
distribution area.

ρy The resistivity of the outlier area.
ρf1,ρf2,ρf3 The apparent resistivity calculated in three

conditions.
a The average value of a group apparent resis-

tivity.
b The standard deviation of a group apparent

resistivity.
H The ratio of the a to b.
G0.9(12) The value of the outlier confidence of 0.9 in

the Grubbs table corresponding to 12 data,
which is 2.134.

I. INTRODUCTION
A reliable grounding system is crucial for ensuring the safe
operation of a power system and the protection of person-
nel [1]. Therefore, an accurate soil structuremodel is essential
for designing a grounding system. In the past, the uniform
soil model was commonly used for grounding design, derived
by averaging the apparent resistivity values obtained from
the Wenner Four-point method at different spacing inter-
vals [2]. However, this model can lead to significant errors
if there are substantial variations in soil resistivity values
along the vertical direction. As a result, it is less commonly
applied nowadays, and the horizontally layered soil model
has gained widespread use instead. This model determines
the soil resistivity and thickness of each layer by inverting the
apparent resistivity data obtained through the Wenner Four-
point method. The inversion process involves numerically
calculating the electromagnetic forward modeling of the soil
model and iteratively optimizing the inversion function [3].
The calculation of Green’s function of potential distribu-
tion under horizontal multi-layer soil structures is commonly
performed using the complex image method [4], [5]. The
objective function for inversion adopts the root mean square
error (RMSE) function of apparent resistivity. Over time,
the iterative inversion optimization process has evolved from
the earliest gradient-based solution methods to intelligent
algorithm–based search methods.

Dawalibi utilized the steepest descent method to invert
parameters for the horizontal two-layer soil model [3]. This
marked the emergence of analytical methods and optimiza-
tion algorithms based on gradient operations for soil model
inversion. Alamo improved convergence speed by using the
Newton-Raphson method for inverting the two-layer soil
model [6]. In the same year, Dawalibi integrated various
results of soil model inversion and grounding parameter
calculations into the grounding design software CDEGS
(Current Distribution, Electromagnetic Interference, Ground-
ing, and Soil Structure Analysis Package) [7]. Pan and Yang
further contributed to the optimization calculation of the
two-layer soil model by adopting the Powell and simplex
algorithms, respectively [8], [9]. Although these direct search
methods circumvent complex and tedious Green’s function

derivations and are not heavily dependent on the selection of
initial values, they do not apply to complex soil models and
thus did not see widespread use.

Zeng summarized the optimization process of multi-layer
soil models using the Gauss-Newton and Marquardt meth-
ods and conducted engineering tests [10]. Later, Zou and
Wen proposed a two-stage inversion method and a quasi-
Newton method, respectively, improving convergence speed
and solution complexity [11], [12]. In 2005, Gonos intro-
duced artificial intelligence algorithms into the soil model
inversion process for the first time, significantly simplifying
the calculation process for two-layer and three-layer soil
model inversions [13]. The inversion results show that the
method based on genetic algorithm (GA) is greatly improved
in accuracy compared with the traditional method based on
theoretical derivation and drawing ρ-a curve. In the same
year, Lee employed the artificial neural network (ANN) to
invert parameters for the two-layer soil model [14], marking
the earliest inversion method based on big data. The inversion
results of 40 sets ofmeasured data show that the error between
calculated apparent resistivity and the measured value is less
than 2%. However, this method was limited in its application
due to the overly simplistic soil model. Zhang introduced par-
ticle swarm optimization to invert the horizontal multi-layer
soil parameters, and compared with other literatures, it shows
that the accuracy of this method is higher than that of genetic
algorithm and simulated annealing method [15]. Subse-
quently, researchers have continuously applied and enhanced
artificial intelligence algorithms for direct search, bypass-
ing the need for a rigorous selection of initial values and
derivations. Examples include particle swarm optimization,
variable precision genetic algorithm, differential evolution
algorithm, and various heuristic algorithms. In [16], GA tech-
nique with 40th degree polynomial is used to decompose the
integral of kernel function and apparent resistivity estima-
tion. Complex image method along with Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is used to optimise the
complex soil parameters [5]. Multilayer soil parameters are
evaluated using Chebyshev polynomials with differential
evolution technique in [17]. Improved particle swarm opti-
misation technique in [18] and differential evolution in [19]
are used to estimate the parameters of complex soil struc-
ture. The inversion of one-dimensional soil parameters in the
frequency domain with considering multilayered soil model
based on simulated annealing algorithm is proposed in [20].
In recent years, researchers have persistently explored the
horizontally layered soil model and made advancements in
its measurement process, forward modeling, and inversion
optimization [21], [22], [23], [24], [25], [26], [27].

The horizontally layered soil model considers the distribu-
tion of soil resistivity in the vertical direction, significantly
improving the inversion accuracy compared to the uniform
soil model. However, practical soil often contains blocks or
lenses with extremely high resistivity, such as the cement
foundation of nearby buildings around an underground sub-
station or large rocks in the soil near a tower grounding
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device in mountainous areas. These areas have resistivity
several times or even tens of times higher than the sur-
rounding soil, significantly impacting the accuracy of the
horizontally layered soil model obtained through inversion.
To achieve an apparent resistivity RMSE lower than the
recommended 10% from reference [3], [15], [16], these high
resistivity lumps cannot be disregarded, necessitating the
establishment of a soil model with apparent resistivity outlier
distribution characteristics. Some researchers have obtained
the three-dimensional spatial distribution of earth resistivity
by inverting magnetotelluric measurement data [24], [25],
but this method faces challenges in engineering applications.
Firstly, the electromagnetic forward calculation for this com-
plex three-dimensional soil structure is not yet fully mature,
and it can only be accurately calculated for the grounding
electrode, not the grounding grid parameters. Additionally,
the magnetotelluric method’s measurement range spans sev-
eral to hundreds of kilometers, resulting in poor exploration
accuracy for shallow resistivity. In practice, the grounding
device’s performance is primarily influenced by its low resis-
tivity, and the four-point method exhibits high measurement
accuracy within a range of several hundred meters [27].
Hence, the Four-point method becomes the preferred mea-
surement approach for grounding system design. However,
obtaining accurate outlier dispersion areas through traditional
inversion optimization algorithms becomes challengingwhen
dealing with complex initial models and numerous param-
eters. So far, no method exists for directly obtaining the
composite layered soil model with an outlier distribution
area based on apparent resistivity measured by the Four-
point method. Thus, there is an urgent need to develop a
new algorithm, different from previous inversion approaches,
that can efficiently and directly derive the composite layered
soil structure model from apparent resistivity data acquired
through the Four-point method.

The development of machine learning (ML) approaches
has opened new possibilities for soil prediction and geotech-
nical assessments, including soil erosion susceptibility mod-
eling and soil model inversion [37], [38]. These approaches
feature a non-linear structure and aim to find robust relation-
ships between input and output parameters readily available
in data. Unlike physically based models, ML techniques do
not focus on explaining the underlying physical processes or
mathematical reasoning for behavior. Instead, they recognize
expected and unexpected patterns within the data. The key
advantage of ML approaches lies in their ability to predict
some difficult or expensive parameters, such as soil model
parameters, using other readily available factors. Lee used
ANN to invert the parameters of two-layer horizontal layered
soil, and used 40 sets of data to verify the accuracy of the
method [14]. Niyogi used Support Vector Machine, Random
Forest and Deep Neural Network to predict the shear strength
of soil [39]. Moghadas used ANN to study the relationship
between soil water content and electrical conductivity. The
results show that this method is superior to the Rhoades

model in some aspects [40]. Zhang used U-net to invert the
anomalous body in the soil, including the contaminated area
and the degree of mineralization of the mountain [41]. Liu
used a cellular neural network to separate gravity anomalies.
The results show that the method has strong lateral resolution
and can be used for soil survey and mine resource explo-
ration [42].

This paper proposes an inversion method based on deep
belief networks (DBNs), capable of obtaining a soil structure
model with an outlier distribution area based on the measured
apparent resistivity. The method overcomes the limitations
of current soil model inversion algorithms with low accu-
racy when faced with outlier distribution areas in the soil,
providing an effective reference for the inversion idea of the
composite layered soil model.

II. ESTABLISHMENT OF COMPOSITE SOIL MODEL WITH
DISCRETE DISTRIBUTION CHARACTERISTIC
This paper presents the establishment of a soil model exhibit-
ing an outlier distribution of apparent resistivity. As depicted
in Fig.1, the surface of the layered soil structure features
an outlier distribution area characterized by exceptionally
high soil resistivity, thereby forming a composite layered soil
model that accounts for outlier dispersion conditions. The
Schlumberger Four-point method was selected for several
advantages: less frequent probe movements, faster measure-
ments, easier discrimination of lateral and depth changes
in geology, and the ability to measure deeper soil depths
compared to the Wenner arrangement [16].

A. DEFINITION OF THE OUTLIER DISPERSAL AREA
The parameters characterizing the outlier dispersal area are
as follows:

1) The location of the outlier dispersal area is determined
using a three-dimensional coordinate system. The X-axis
coincideswith the arranged probe line, theY-axis is parallel to
the surface and perpendicular to the probe line, and the Z-axis
is perpendicular to the surface plane. The coordinate origin is
positioned at the center of the surface probe line. Represented
as a cuboid, the outlier dispersal area has center coordinates
denoted as S(x0,y0,z0), reflecting the position change of the
whole outlier dispersal area.

2 ) The length and width of the upper and lower surfaces
in the outlier dispersal area are d1 and d2, respectively, and
the height is h, representing the size variation of the outlier
dispersal area.

3 ) The resistivity in the outlier dispersal area is denoted by
ρy.
Hence, the parameters of the outlier dispersal area model

encompass S(x0,y0,z0), h, d1, d2, and ρy.

B. INFLUENCE OF OUTLIER DISTRIBUTION AREA ON
APPARENT RESISTIVITY OF THE SOIL MODEL
To investigate the influence of the outlier distribution area on
the apparent resistivity of the soil model, we employed the
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FIGURE 1. Illustration of (a) Schlumberger arrangement and (b)
composite stratified soil model considering apparent resistivity’s outlier
dispersion characteristic.

composite two-layer soil model and established a method to
compare the apparent resistivity error between the traditional
soil model and the model presented in this paper. First, the
Schlumberger Four-point method measurement simulation
platform is established using CDEGS, as depicted in Fig.1.

Fig.1(a) illustrates the Schlumberger Four-point method,
recommended by IEEE standard 81-2012 [29], for soil appar-
ent resistivity measurement. The apparent resistivity can be
calculated as follows:

ρ =
πc(b+ c)U

bI
(1)

where b denotes the distance between the internal probes,
c denotes the distance between the internal probe and the
adjacent external probe, U denotes the potential difference
of internal probe spacing, and I denotes excitation current.

TABLE 1. Outlier dispersion areas of soil resistivity under three
conditions.

To explore the influence of outlier distribution area, 12 dif-
ferent probe distances were set up; bwas set to 1 m, and cwas
set to kb, where k = 0.9, 1.5, 2.3, 3.5, 5.0, 7.0, 9.5, 13.5, 19.5,
27.5, 39.5, 54.5, respectively. The next step involved defining
the composite layered soil model, incorporating the outlier
distribution characteristics of soil resistivity. Subsequently,
the apparent resistivity was calculated for 12 different probe
spacings using the Equation (2):

ρ =
k(k + 1)πU

I
(2)

The apparent resistivity calculated using Equation (2) serves
as the actual measured value, enabling the inversion of either
a uniform or layered soil model using CDEGS. The RMSE
of apparent resistivity can also be determined. By adjusting
the parameters of the outlier distribution area, multiple sets of
apparent resistivity values and traditional horizontal layered
soil models can be obtained. If the RMSE of these models is
less than the 10% threshold recommended in the literature,
it indicates equivalence between the traditional and proposed
soil models. On the other hand, if the RMSE exceeds the
threshold, it suggests the need to consider the influence of
the outlier distribution area in the soil.

This method is applied to analyze the changes in the appar-
ent resistivity RMSE when setting different parameters for
the outlier distribution area in a typical horizontal two-layer
soil model.

To investigate the influence of the depth of the outlier
distribution area on the results of soil apparent resistivity
measurement and soil model inversion, we placed the outlier
distribution area at the top and bottom of the horizontal
two-layer soil. Subsequently, we compared the measurement
and inversion results with a horizontal two-layer soil model
lacking an outlier distribution area. The resistivity of the first
soil layer was set to 100 �·m, with a thickness of 16 m. The
resistivity of the second soil layer was set to 500 �·m. The
parameters of the soil resistivity outlier distribution area are
detailed in Tab.1. By contrast, the soil models for the three
cases are depicted in Fig. 2. Themeasured apparent resistivity
of the three cases is ρf1, ρf2, and ρf3, respectively, and the
results are shown in Tab.2. Based on these apparent resistivity
inversion sets, we obtained the traditional horizontal layered
soil model with the smallest RMSE. The RMSE values of the
model parameters and their apparent resistivity are shown in
Tab.3.
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FIGURE 2. Typical soil models for three conditions.

C. ESTABLISHMENT OF SOIL MODEL LIBRARY
In the context of a two-layer soil structure, high-resistivity
soil blocks in the upper and lower layers can significantly

TABLE 2. The apparent resistivity of two-layer horizontal soils
considering different outlier dispersion areas.

TABLE 3. The layered soil model obtained by inversion.

influence the measurement of soil apparent resistivity. Con-
sequently, this affects the final inversion of the obtained soil
structure. To explore this scenario, let’s assume that the sur-
face soil resistivity is 100�·mwith a thickness of 16m, while
the bottom soil resistivity is 500 �·m. The parameters char-
acterizing the soil resistivity dispersion area are presented in
Tab.1, and a schematic diagram depicting three typical soil
models can be found in Fig.2. Using CDEGS software, the
apparent resistivity data under various probe distances are
calculated, and these values are then utilized as the measured
data for inverting the soil structure. This process enables the
derivation of the traditional horizontal layered soil model that
yields the minimum RMSE. The RMSE values for the model
parameters and their apparent resistivity are listed in Tab.2.

As shown in Tab.2 and Tab.3, ρf2 and ρf3 exhibit nearly
identical values, and the RMSE of the horizontal layered
soil model inverted using these values remains within 10%.
This implies that the influence of the dispersion area on
the horizontally layered soil model is negligible when the
area is distant from the surface. Hence, we can conclude
that the soil model considering the outlier distribution area
is equivalent to the traditional layered soil model in such
cases. However, when the outlier distribution area is close
to the surface, the calculated apparent resistivity ρf1 and ρf3
differ significantly, and the apparent resistivity displays char-
acteristics of outlier distribution. Under these circumstances,
transforming the outlier distribution area into the layered soil

VOLUME 11, 2023 99657



X. Xiao et al.: Optimal Inversion Method for Composite Layered Soil Model Considering Outlier Dispersion

model introduces substantial errors, resulting in an RMSE
of 34.16%. In this scenario, the soil model considering the
outlier distribution area is not equivalent to the traditional
soil model. Consequently, when the outlier distribution area
is located on the surface, it becomes essential to account for
the outlier distribution conditions in the soil model.

III. CRITERION OF APPARENT RESISTIVITY DISPERSION
IN SOIL MODEL
In statistical science and computer science application engi-
neering, outlier points refer to data points that deviate greatly
from the rest of the data in a given dataset. They are defined as
observation points inconsistent with the overall data pattern
or significantly deviating from the overall trend. The objec-
tive of identifying outliers is to eliminate noise or identify
potentially meaningful knowledge [28].
Various rules currently exist for determining outliers,

including the Layda method, the Shawville method, the
Grubbs method, and the Dixon test method, among oth-
ers [30]. However, the criteria for determining outliers in
a dataset cannot be universally generalized for different
practical engineering problems. In some cases, outliers with
profound significance within a specific professional field
may not be identified, significantly affecting the accuracy of
certain calculations. For the inversion problem of the compos-
ite layered soil model addressed in this paper, the resistivity
of the surface block area defined in Section II is several times
higher than that of the surrounding soil. Consequently, certain
measured apparent resistivity values may deviate from the
mean value, distorting the overall apparent resistivity and pro-
foundly affecting the model’s accuracy. The aforementioned
rules are not sufficient for determining whether a specific
apparent resistivity value is an outlier or possesses outlier
distribution characteristics. Therefore, whether a complex
soil model considering the outlier distribution area is required
should be determined through the statistical analysis of appar-
ent resistivity.

We modified the Grubbs method to establish a statisti-
cal criterion suitable for identifying the presence of outlier
distribution in apparent resistivity for the soil model. We con-
structed a composite layered soil model similar to that
described in Section II using CDEGS to develop this crite-
rion. Subsequently, we introduced block areas on the surface
with resistivity values more than ten times higher than the
environmental resistivity. Through extensive calculations and
debugging, we formulated the following conditions to judge
outliers in the apparent resistivity of actual soil structure
measurements:

1) H is defined as the ratio of the average value to the
standard deviation of a group of soil apparent resistivity, 0.75
< H < 1.35;

2) For a measured value in this group of apparent resistiv-
ity, 2.5Gi>G0.9(12). Gi is defined as follows [29]:

Gi =

∣∣∣∣Xi − a
b

∣∣∣∣ (3)

TABLE 4. Test results of outliers of apparent resistivity in Table 2
according to the outlier dispersion criterion in this paper.

where Xi represents the ith measured value in the apparent
resistivity of this group, a denotes the average value of the
apparent resistivity of this group, b denotes the standard
deviation of the apparent resistivity of this group, G0.9(12)
represents the value of the outlier confidence of 0.9 in the
Grubbs table corresponding to 12 data, which is 2.134.

If the above two conditions are simultaneously met, a cer-
tain measured value within this apparent resistivity group is
considered an outlier point, indicating that this group exhibits
the characteristics of an outlier distribution.

By employing the outlier distribution criterion for the
apparent resistivity of the proposed soil model, we can differ-
entiate the three sets of apparent resistivity values presented
in Tab.2. The results are summarized in Tab.4.

From the calculation results presented in Tab.4, it is evident
that the first group of apparent resistivity data satisfies the
first condition of the outlier dispersion criterion formulated
in this paper, and the G values for the 1st, 2nd, 3rd, 4th, 8th,
9th, 10th, 11th, and 12th measured values meet the second
condition. As a result, these measured values are considered
outliers, indicating that the apparent resistivity of the first
group of soil models exhibits characteristics of outlier disper-
sion. Therefore, it becomes necessary to account for the block
outlier dispersion area on the surface during the inversion of
the soil model. In contrast, the G values for the second and
third groups satisfy the conditions, but the H values lie outside
the interval defined by the outlier dispersion criterion in this
paper. Consequently, these two data sets lack outlier distribu-
tion characteristics, and the traditional horizontal layered soil
model can achieve higher accuracy when utilized.

IV. SOIL MODEL INVERSION METHOD BASED ON DEEP
BELIEF NETWORKS
A DBN is a multi-hidden layer neural network that
combines unsupervised and supervised training meth-
ods [31]. By initializing unsupervised network parameters
and employing supervised optimization, the DBN enables
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FIGURE 3. Structure of the restricted boltzmann machine.

more straightforward avoidance of the optimization problems
associated with nonlinear mapping compared with traditional
methods. For the soil model inversion problem, this translates
complex numerical and iterative calculations into a large data
sample training process for the optimal network. Upon com-
pletion of network training, researchers can quickly obtain
refined and accurate soil structure models for similar types of
soil areas within a certain range without the need to adjust the
network’s super parameters. This significantly enhances the
efficiency of soil model parameter inversion. Most notably,
due to its distinct big data operation mechanism, the DBN can
also learn the discrete distribution characteristics of apparent
resistivity in shallow local areas. As a result, the DBN can be
utilized to predict this composite layered soil model, thereby
showcasing its greatest advantage.

A. TRAINING METHODS AND COMPOSITE EVALUATION
METHODS OF DBN
The fundamental unit of the DBN is the restricted Boltz-
mann machine (RBM), which functions as a random neural
network [31]. By learning the probability distribution of
the sample, the network parameters automatically adjust to
achieve specific functions. The basic structure of the DBN,
as illustrated in Fig.3, consists of the visual layer (v) and
the hidden layer (h). The visual layer comprises n neurons,
while the hidden layer includes n neurons. In this context,
vi represents the i-th visual layer neuron, and hj represents
the j-th hidden layer neuron. The connection weight matrix
between the i-th visual layer neurons and the j-th hidden layer
neurons is denoted as Wij, whereas ai and bj represent the
biases of the i-th visual layer neurons and the j-th hidden
layer neurons, respectively. The RBM is used to identify the
mapping relationship between v and h, transforming the input
v into the output h through feature representation.
The conversion between v and h is represented by a joint

probability distribution between them, defined by the follow-
ing energy function:

E(v, h) = −

m∑
i=1

aivi −
n∑
j=1

bjhj −
m∑
i=1

n∑
j=1

hjWijvi (4)

FIGURE 4. Unsupervised training process for DBN.

The probability that neurons are activated is [32]:

P(vi = 1|h) = σ (ai +
n∑
j=1

Wijhj) (5)

P(hj = 1|v) = σ (bj +
m∑
i=1

Wijvi) (6)

The learning process of RBM is to calculate the parameters
ai, bj, and Wij to maximize the likelihood function. The
expression is as follows:

L = log
T∏
t=1

Pθ (v(t)) =

T∑
t=1

logPθ (v(t)) (7)

where L represents the log-likelihood function of the training
sample set; T is the number of training sample sets; t is the
sample number; P is the joint probability distribution; and
θ is the model parameter set, including ai, bj, and Wij. The
expression for solving the optimal model parameter θm is as
follows:

θm = argmax
θ

T∑
t=1

logPθ (v(t)) (8)

θ is solved iteratively according to the derivative of the like-
lihood function L:

θi+1 = θi + η
∂L
∂θi

(9)

where θi denotes the value of θ at i times of iteration i, θi+1
denotes the value of θ at i+1 times of iteration, and η denotes
the learning rate.

The above presents the training process for a single
restricted Boltzmann machine, and the DBN consists of
multiple stacked restricted Boltzmann machines. The unsu-
pervised training process is depicted in Fig.4. First, the
sample is employed to train the bottom RBM [33]. Once the
parameters of a single RBM achieve their optimal solution,
they remain unchanged. Subsequently, the subsequent RBMs
are trained in a layered manner, ultimately optimizing the
parameters of each RBM.

Subsequently, the RBM network is expanded to a BP neu-
ral network, as illustrated in Fig.5. The BP neural network
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FIGURE 5. BP neural network.

undergoes supervised optimization using the backpropaga-
tion algorithm.

During the forward transfer process of the BP neural net-
work, the actual output is represented as y, while the expected
output is denoted as t . Accordingly, the error can be defined
as follows:

δ = t − y (10)

The error δ is inversely propagated, andWij is adjusted to the
opposite direction of its derivative to δ:

W (k+1)
ij = W (k)

ij − η(dδ/dWij) (11)

where η is the learning rate, k is the current number of
training, and then one training is completed. The network’s
weights are continually updated by utilizing many samples,
enabling the final output to approximate the expected output
accurately and achieve any nonlinear mapping from input to
output.

During the unsupervised training process, the basic struc-
ture of DBN - the Restricted Boltzmann Machine (RBM),
requires adjustments of hyperparameters, including the num-
ber of network layers and the number of neurons in each layer.
The training process adopts the method of mini-batch sample
training (Mini-batch), wherein each iteration involves select-
ing a mini-batch sample from the sample set and computing it
using the network. Therefore, the number of mini-batch train-
ing samples (Batchsize) and the number of training epochs for
all samples (Epochs) were adjusted based on the experience
in this study. The learning rate and momentum are crucial
parameters that were fine-tuned during the learning process.
They jointly control the size of each adjustment of network
weights, and appropriate parameter settings can optimize
network performance. The evaluation index of network per-
formance is the mean squared error (MSE) between the actual
output of the network and the expected output of the sample.
The calculation equation is as follows:

MSE =
1
n

n∑
i=1

(yi − ai)2 (12)

where n denotes the number of calculated samples, yi rep-
resents the expected output of the soil model parameters

FIGURE 6. The training process of DBN.

corresponding to a measurement sample, and ai represents
the actual output of the soil model parameters corresponding
to a measurement sample in the network operation process.
We evaluated the performance of the DBN using three types
of mean square errors. The Mini-batch training mean square
error (M-MSE) represents the cumulative mean square error
of the training samples as the network parameters are grad-
ually adjusted in the training process. Full-batch train MSE
(F-MSE) represents the mean square error between the net-
work output and the expected output after completing the
training, with no further parameter adjustments. Validation
MSE (V-MSE) represents the mean square error between
the output of the untrained input network and the expected
output of all validation samples after completing the network
training with no parameter adjustments. The network training
process is illustrated in Fig.6.

B. DATABASE CONSTRUCTION AND TRAINING OF
OPTIMAL NETWORK
The hardware environment for DBN training in this paper
is as follows: the processor model was an Intel (R) Core
(TM) i5-10400 CPU, with 6 cores and 12 threads and a main
frequency of 2.90 GHz. The RAM parameter was 16.0 GB,
and the computing platform is a 64-bit operating system
based on an x64 processor with Windows 10 as the operating
system version. The programming software environment was
Matlab R2020a, 64-bit (Win64).

Because of the scarcity of measured data with soil appar-
ent resistivity exhibiting outlier distribution characteristics
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TABLE 5. The parameters’ range of soil model considering apparent
resistivity’s discrete distribution characteristic.

for DBN training, we constructed a soil apparent resistivity
database through CDEGS. We created uniform, two-layer,
and three-layer soil models, each containing outlier distri-
bution areas, with 2000 instances in each category. Of the
2000 instances, 70% were used for network training, and the
remaining 30%were used for model validation.Given limited
space, we used the double-layer composite soil model as an
example to illustrate.

The model parameters are randomly set within the range
specified in Tab.5, and the soil model samples are established
with careful consideration of factors such as the number of
training samples [14], [35], [36], parameter ranges, training
complexity, and model parameter accuracy. The apparent
resistivity is calculated for 12 different probe distances,
as described in Section II-A, using CDEGS. The results
indicate that the calculated apparent resistivity values meet
the statistical criterion for apparent resistivity dispersion in
the soil model, as outlined in this paper. After constructing
the database, the DBN is trained following the steps shown in
Fig.6. The training data and validation data are normalized,
and the number of input neurons in the network is set to 12,
corresponding to the apparent resistivity values at 12 probe
spacings. The number of output neurons in the network is set
to 9 (ρ1, h1, ρ2, d1, d2, h, x0, y0, ρy), corresponding to the
number of model parameters of the composite two-layer soil
model.

Next, the network is trained using the samples to obtain
three mean square errors: M-MSE, F-MSE, and V-MSE. The
network hyperparameters are manually adjusted, including
the number of hidden layers, the number of neurons in the
hidden layer, the number of unsupervised mini-batch training
cycles (unsupervised Epochs), the number of unsupervised
mini-batch training samples (unsupervised Batchsize), the
number of supervised mini-batch training cycles (super-
vised Epochs), the number of supervised mini-batch training
samples (supervised Batchsize), the learning rate, and the
learning momentum. This optimization minimizes the mean
square error between the network output and the expected
output, optimizing the network weight and bias. The network
mean square error varies with the number of samples and
hyperparameters, as shown in Fig.7, and the final adjusted
network optimal hyperparameters are presented in Tab.6. The
three mean square error results of the network are shown in
Tab.7.

FIGURE 7. The training process of DBN.

V. MODEL INVERSION ACCURACY VERIFICATION
A. ANALYSIS OF SOIL STRUCTURE MODEL OF A 220KV
SUBSTATION
Upon obtaining the optimal DBN through training, the soil
structure model of a specific area can be inverted using
field-measured data. The inversion process is illustrated in

VOLUME 11, 2023 99661



X. Xiao et al.: Optimal Inversion Method for Composite Layered Soil Model Considering Outlier Dispersion

TABLE 6. Adjustment results of network hyper-parameters.

TABLE 7. The mean square error results of the network.

TABLE 8. Apparent resistivity measured at point C.

Fig.8. It is important to note that the apparent resistivity
measurement results of the soil in the area must fall within
the parameter range of the training samples. Furthermore, the
measurement method, number of points, and spacing must be
consistent. The inversion model type and model parameter
range must also be consistent.

For this study, we selected the apparent resistivity mea-
surement data of an underground substation in Chengdu,
as depicted in Fig.9. The yellow hollow area represents the
20 m deep underground substation. At the same time, the
blue part denotes the upper layer of the cage grounding
system that envelops the substation. Point C, located 2m from
the substation’s edge along its middle line, was chosen as
the reference point. The apparent resistivity of the soil was
measured at this point using the M2124 grounding resistance
tester fromMetrel company. The measurement involved steel
rods with a radius of 1 cm and a length of 80 cm inserted
into the soil to a depth of 40 cm. Each of the 12 probe
distances was measured thrice, and the results were averaged.
The measurement data is summarized in Tab.8. Subsequently,
the optimal DBN was employed to invert the aforementioned
data, leading to the determination of detailed parameters for
the composite double-layer soil model. The soil apparent
resistivity of this composite two-layer soil model was then
calculated using the boundary element method, and the root-
mean-square error was computed by comparing it with the
actual measured data. This verification process aims to assess
the accuracy of the model.

The data in Tab.8 reveals significant deviations in some of
the measured values from the overall dataset. The H value for
the measured values is 0.916, and the G values for the first,

FIGURE 8. Process of predicting soil model’s parameters by DBN.

FIGURE 9. Layout of measuring points in the Substation.

second, third, and ninth measured values exceed G0.9 (12) in
the Grubbs table, indicating that these measurements exhibit
outlier distribution characteristics. Consequently, we input
this set of measurement data into the optimal DBN and
CDEGS to obtain the composite and horizontal layered soil
models, respectively. The specific parameters of these two
models are presented in Tab.9, and their corresponding soil
structures are depicted in Fig.10. The data in Tab.9 indicates
that the RMSE of the apparent resistivity obtained from the
CDEGS inversion of the horizontal three-layer layered soil
model is 13.6%. Despite increasing the number of horizontal
layers, we cannot achieve a reduction in RMSE. In contrast,
to enhance the model’s accuracy and decrease the RMSE of
apparent resistivity to less than 10%, soil resistivity outliers
should be accounted for by employing the composite lay-
ered soil model proposed in this paper. The RMSE of the
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TABLE 9. Parameters’ results of two kinds of soil model.

apparent resistivity in the composite layered soil model is
nearly half that in the CDEGS layered soil model, resulting
in an RMSE of 8.53%. Fig.11 illustrates the apparent resis-
tivity measured value curve and the calculated value curve.
The diagram shows that the apparent resistivity of the first
few probe spacings in the composite two-layer soil model is
closer to the actual measured value than that of the horizontal
three-layer soil model. Thus, the proposed soil model better
reflects the influence of the dispersion area with extremely
high resistance at the surface on the apparent resistivity. Addi-
tionally, the composite layered soil model is more consistent
with the actual situation. Moreover, the influence of the high
resistivity outlier distribution area can also be considered in
the subsequent grounding design of the substation, thereby
enhancing the grounding safety performance of this area
and ensuring the safety of personnel and equipment in the
substation.

Compared to the traditional layered soil model, the com-
posite layered soil model with outlier distribution character-
istics proposed in this paper exhibits significantly improved
RMSE of apparent resistivity. Furthermore, the accuracy of
this method is demonstrated through a case study. The results
provide an effective reference for the inversion of soil models
with outlier distribution characteristics of apparent resistivity
or soil structure models with high resistivity outlier distri-
bution areas near substation sites. This improvement in the
calculation accuracy of grounding parameters is crucial.

We utilized a Zc-410A grounding resistance tester for
large grounding grids to measure the grounding resistance of
the substation. Fig.12 displays the grounding system design
of the underground substation, which includes a horizontal
grounding grid beneath the substation. Multiple vertical and
horizontal grounding electrodes surround the substation, all
interconnected with the main grounding grid. The grounding
device consists of galvanized round steel with a 20 mm
diameter. The horizontal grounding grid reaches a depth of

FIGURE 10. Two types of inverted soil models.

FIGURE 11. Calculation results of apparent resistivity of soil model in this
paper and layered soil model.

25 m, while the lowest depth of the substation is 22 m. In the
simulation, the outlier distribution area below the station site
was excavated, and a soil block replaced the underground
substation area with a soil resistivity of 800 �·m. The mea-
surement results revealed a grounding resistance of 0.75 �.
Using the composite layered soil model and horizontally
layered soil model, we calculated grounding resistances of
0.82 � and 1.03 �, respectively. The calculations show that
the soil model obtained through this method demonstrates
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FIGURE 12. Layout of survey points.

higher accuracy in the electromagnetic calculation of the
grounding device.

B. SOIL MODEL INVERSION NEAR THE QINGHAI-TIBET
RAILWAY
Apart from the 220 kV underground substation, we also con-
ducted apparent resistivity measurements in the permafrost
region of the Qinghai-Tibet line at a 220 kV substation area.
As depicted in Fig.13, we performed measurements at nine
points, and the results are shown in Fig.14.

For the inversion of soil structure model parameters,
we constructed 2000 horizontal layered soil models with 3,
4 and 5 layers each. The optimal depth confidence network
of the 3, 4 and 5-layer soil models was trained. Additionally,
this study employed the GA and the grounding software
CDEGS based on the steepest descent method for inversion.
The objective function represented by the measured data was
optimized using the MATLAB genetic algorithm toolbox
(GADs), with parameters manually adjusted to obtain better
model parameters. The partial iterative process of the genetic
algorithm is presented in Fig.15.

In each iteration, a single parameter is adjusted while
keeping the other parameters unchanged until the fitness
reaches its optimum. Subsequently, other parameters are
adjusted. As seen in Fig.15(a), when the genetic algorithm
was employed to solve the horizontally layered soil model
at point 1, the average fitness of all individuals in the 50th
generation reached 0.981588, with the best individual fitness
of this generation being 0.0378755. Despite achieving an
error of approximately 3% in the soil model, the iterative

FIGURE 13. Layout of survey points.

FIGURE 14. The measurement of apparent resistivity at 9 points i.

process was unstable due to significant deviations in the
fitness of previous individual groups. Ultimately, a relatively
satisfactory result was obtained through manual adjustment.

At point 5, the convergence of soil model parameters,
as shown in Fig.15(b), was relatively scattered before the
28th generation, with numerous cases of poor individual
fitness. Although the best individual error had reached 3%,
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FIGURE 15. Iterative process of solving horizontal three-layer soil model
by genetic algorithm.

the process remained unstable, necessitating cumbersome
manual adjustments.

The seven parameters should be adjusted for each set
of measurement data, making the process cumbersome and

TABLE 10. Parameters of genetic algorithm.

unstable. The resulting soil models obtained through these
three methods are depicted in Fig.16. The adaptive complex
image method is employed to calculate their apparent resis-
tivity, and the RMSE of apparent resistivity is calculated for
all measurement points. The average value of RMSE serves
as the final model’s RMSE; the results are shown in Fig.17.

As illustrated in Fig.17, the RMSE of the horizontal three-
layer, four-layer, and five-layer soil models solved by the
GA is greater than the results of the other two methods. The
RMSE of the soil model inverted by the DBN is close to that
of the extensively used grounding design software CDEGS.
Hence, the inversion accuracy of the DBN is comparable to
that of CDEGS in the case of horizontal layered soil models,
and it outperforms the traditional GA. This method eliminates
the need for extensive numerical and iterative calculations,
simplifies the solution process for the same type of horizontal
multi-layered soil model, and shortens the convergence pro-
cess, enhancing the inversion efficiency. The comparison of
the average calculation time for the nine soil models com-
puted by various methods is presented in Tab.11.

As indicated by the data in Tab.11, the calculation time
of the three inversion methods meets engineering needs.
Because of its complex iterative process and numerous
electromagnetic forward calculation steps, GA takes approxi-
mately 5min for calculation. On the other hand, themain time
spent on the DBN is in the preparation work before inversion,
specifically, the training of the optimal network. By employ-
ing it, soil model parameters can be rapidly inverted based
on apparent resistivity measurement values, equivalent to
the calculation speed of CDEGS, a software developed over
decades. Compared with the traditional method, the inversion
efficiency is significantly improved.

C. COMPARISON WITH SEVERAL TRADITIONAL METHODS
To verify the overall prediction performance of our model,
we used two sets of measured data, and RMSE alone may not
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FIGURE 16. Soil model based on three kinds of methods.

FIGURE 17. The average RMSE of apparent resistivity of soil model
inverted by three kinds of methods.

adequately represent the model’s performance. Subsequently,
we evaluated the prediction power quantitatively using the
receiver operating characteristic (ROC) curve method with
the Statistical Package for the Social Sciences (SPSS) soft-
ware. Model evaluation was performed using the testing
dataset. The area under the ROC curve (AUC) provides
a comprehensive performance measure across all possible
classification thresholds. To convert the predictions into a

FIGURE 18. The ROC of our model.

TABLE 11. Comparison of calculation time of three kinds of inversion
methods.

TABLE 12. The three-layer soil model inverted from the data in Table 8.

classification task, we established the following criteria to
determine the success or failure of the predictions:

The RMSE of the apparent resistivity obtained by the
optimal DBN must be less than 10%.

The RMSE of the apparent resistivity obtained by the
optimal DBN must be less than that from the CDEGS.

The error in each soil parameter, including soil resistivity,
the thickness of each soil layer, and parameters of the outlier
distribution area obtained using the optimal DBN, must be
less than 15%.
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TABLE 13. The four-layer soil model inverted from the data in Table 8.

TABLE 14. The four-layer soil model inverted from the data in Fig.14.

TABLE 15. The five-layer soil model inverted from the data in Fig.14.

Inversion is considered successful if the results satisfy
both criteria, and the state variable is assigned a value of 1.
Otherwise, the inversion is considered failed, and the state
variable is set to 0. In this paper, the diagnostic variable is set
as RMSE. Based on these rules, we used 600 test data sets to
draw the ROC curve, as shown in Fig.18.

The AUC values for the three optimal DBN mod-
els (obtained for uniform, two-layer, and three-layer soils
with outlier distribution area) are 0.857, 0.822, and 0.804,

respectively. These results indicate that judging the accuracy
of the inversion results based on the RMSE of apparent
resistivity is feasible. The reason for the decrease inAUCmay
be due to the increase in the number of variables to be solved,
resulting in a specific soil parameter, such as the thickness or
resistivity of one layer of soil, easily exceeding 15%.

The apparent resistivity data used for optimal DBN train-
ing in this study is obtained from measurements conducted
at 12 fixed probe spacings. However, other literature may
use different probe arrangements, which makes their appar-
ent resistivity data incompatible for direct input into the
optimal DBN. To address this, we compare the perfor-
mance of several inversion methods, including the steepest
descent method (SD), Simulated Annealing (SA), Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm, particle swarm
optimization (PSO), and GA, using the apparent resistivity
measurement data from Sections V-A and V-B as examples.

Tab.12 and Tab.13 present the results for the examples
in Section V-A. It is evident from the tables that when the
apparent resistivity exhibits outlier distribution characteris-
tics, the DBN exhibits higher inversion accuracy compared
to other methods. The two-layer soil model with an outlier
distribution area, obtained through DBN, outperforms the
three-layer and four-layer horizontally layered soil models
obtained through other methods, and increasing the number
of soil layers does not significantly reduce the RMSE.

Similarly, Tab.14 and Tab.15 display the results for the
examples in SectionV-B. It can be observed that when the soil
resistivity does not exhibit outlier distribution characteristics,
the accuracy of DBN is comparable to other methods, and it
still meets the requirements for engineering applications with
errors of less than 10%.

VI. CONCLUSION
This study aimed to address the accuracy of soil modeling
in cases where an outlier distribution area with extremely
high resistivity exists in the local area near the surface.
To achieve this, we proposed a statistical criterion to identify
outlier distribution characteristics of soil resistivity and devel-
oped a composite layered soil model inversion method based
on DBN that considers outlier distribution conditions. The
results indicated that the three types of mean square errors
of the optimal DBN ranged from 2% to 4%. The composite
two-layer soil model retrieved by the network for a 220kV
substation site was significantly improved compared to the
horizontally layered soil model retrieved by CDEGS. Com-
pared with several traditional inversion algorithms, it shows
that the inversion accuracy of our method is comparable to
that of traditional methods for horizontally layered soil but
exhibits a remarkable improvement of approximately 40%
when dealing with soil apparent resistivity exhibiting out-
lier distribution characteristics. The method presented in this
paper overcomes the limitation of traditional inversion meth-
ods that only allow obtaining horizontal layered soil models
using the four-probe method measurement data. Moreover,
it makes a crucial contribution by considering the influence of

VOLUME 11, 2023 99667



X. Xiao et al.: Optimal Inversion Method for Composite Layered Soil Model Considering Outlier Dispersion

the outlier distribution area in subsequent grounding design.
This novel approach offers a valuable method for soil model
inversion with outlier distribution areas. However, there are
some limitations in this study. The number of samples used
for DBN training was only 2000 groups. We plan to increase
the number of samples in future work to enhance model
accuracy. Additionally, the training samples used in this study
were relatively simple. In future research, we aim to incor-
porate more complexity into the training samples, such as
inclined soil or soil models with non-uniform resistivity dis-
tribution along the horizontal direction. Finally, the optimal
DBN in this paper is trained under fixed electrode arrange-
ment, so it can only be used in some specific scenarios.
In addition to the apparent resistivity, we prepare to add the
electrode spacing as input in the future, so that the model can
be applied to more cases.
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