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ABSTRACT This paper deals with the design of a robust controller to attenuate matched and unmatched
uncertain dynamics as well as external disturbances effects by considering the actuator bandwidth to stabilize
the mechanical dynamics of an Unmanned Aerial Vehicle. To this end, the performance of a sliding mode
controller is improved with the combination of the attractive ellipsoid method. Likewise, it is guaranteed
that the system trajectory arrives into a minimal size invariant set in finite time by using a workable control
input. Finally, in order to evaluate the effectiveness of the proposed control approach, a comparative study
with a robust Proportional Derivative controller, an integral sliding mode controller and a dynamic sliding
mode controller with Proportional Integral Derivative sliding surface was conducted. In order to validate the
effectiveness of the proposed controllers, the dynamics of a multirotor aircraft was used to conduct numerical
simulations.

INDEX TERMS UAV, uniformly ultimately bounded stability, sliding mode control, PID surface.

I. INTRODUCTION
An Unmanned Aerial Vehicle (UAV) is an underactuated
nonlinear system that has been used in commercial, indus-
trial, military and civil applications [1], [2], [3]. This is due
to its versatility for conducting hover flight and trajectory
tracking [4], [5]. Commonly, this class of aircraft system
is driven by rotors and stabilized via a linear controller
for indoors and outdoors applications [6], [7], [8], [9].
Traditionally, the stabilization of a UAV is performed via
Proportional Derivative (PD) controllers and tuned via linear
quadratic regulator algorithms [10]. Also, new techniques are
used to stabilize UAV like a model predictive controller that
uses a linearized UAV model and an observer to measure
the external disturbance which are going to be compensated
and the predictive controller improves the performance of
a quadcopter [11], another one, quaternion-based tracking
controller to stabilize a UAV but it does not deal with
external disturbance [12]. Robust control for stabilization of
this underactuated system type has been also used in [13]
to demonstrate the advantages of a dynamic sliding mode
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control and attractive ellipsoid method to reduce perturbation
effects. Recently, robust control of a UAV has attract the
attention on advanced mobile robots field because they are
sensitive to external disturbances in outdoor flights, actually,
the reduction of unmatched disturbances effects is one of the
main challenges of this kind of systems. In fact, disturbance
and uncertainty rejection is a major objective in control
system design. Indeed, for underactuated controlled systems
this issue degrades the trajectory tracking performance such
that in some cases it is not possible to conclude stability
in the Lyapunov sense [3], [6]. Nowadays, different robust
controllers are designed to reduce these effects, even under
the most extreme situations. This is the case of the Sliding
Mode Control (SMC), the robust control based on Attractive
ellipsoid Method (AEM), and neural networks, see for
example [1], [14], [15], and [16].

The control problem can be associated with UAV
regulation problem in the presence of disturbances for
trajectory tracking. The most interesting features of sliding
mode control are insensitivity, reduction of the unmatched
disturbances and uncertain dynamics, as well as finite-time
convergence to the sliding surface [15], [17]. However,
a drawback of the controllers based on the sliding mode
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technique is the chattering effect on the actuator [18], [19].
This phenomenon represents a complex closed-loop control
problem and in some situations, this one cannot be reliably
realized in practice [17], [20]. In recent years, researchers
have managed how to attenuate the chattering effect and
preserve robust control properties by proposing controllers
like dynamic sliding mode, adaptive sliding mode, high order
sliding mode, some variations of fuzzy and neural network-
based control, and other variable structure controls [21], [22],
[23], [24], [25], [26], [27], [28], [29].
Other effective approach for reducing external distur-

bances and uncertain dynamics effects in control systems
is the robust control based on AEM-concept. This strategy
uses a linear feedback control employing fixed gain. In fact,
under a suitable gain tuning, this control approach provides
robustness property to considerably reduce both uncertain
dynamics as well as external disturbances effects [14], [30].
The aim of AEM is, by using linear or non linear feedback
control, to enclose the trajectories of the disturbed system
into a small size invariant region. Although this approach
implies that system trajectories arrive into a small size multi-
dimensional ellipsoid, this one is valid only in some region of
attraction. Actually, in some cases, the obtained control gain
results in the actuator wear. Recently, the controllers based
on the sliding motion was further improved by introducing
the properties of the AEM-concept [13], [24], [27].
The AEM presents an effect called high-gain effect [27]

that is not desired because it can amplify the noise of the
system with a high gain of the controller, and also, the
energy consumption [31]. On the other hand, SMCs present
chattering, which is an undesirable phenomenon and it is
perceived as oscillations with finite frequency and amplitude.
The chattering effects are related to low control accuracy
and high wear of moving mechanical parts [18]. In order
to reduce such chattering effects, in this paper we present
a class of dynamic control consisting in the incorporation
of the proportional, integral, and derivative of the adjoint
sliding surface. Furthermore, since the sliding surface is
a second-order system of the adjoint variable, a workable
control signal is obtained. Getting as the major contri-
bution Ultimate Uniform Bound Stability (UUB-Stability)
for nonlinear systems without exact knowledge of the
dynamic model equations and in the presence of external
bounded disturbances. Finally, in order to demonstrate the
effectiveness of the designed controller, a comparative study
of the implementation of integral sliding mode control
and proportional derivative control to the dynamics on a
multirotor unmanned aircraft system is presented. The main
contributions of this work are summarized as follows:

• By using the Newton-Euler approach a mathematical
model of a home made non conventional hexarotor is
derived.

• The control action to regulate orientation and guarantee
the trajectory tracking of the multirotor system, which is
a class of dynamic sliding mode control (DSMC) with

a Proportional Integral Derivative (PID) type sliding
surface is developed.

• The stability analysis to guarantee the so called Ultimate
Uniform Bound Stability of the closed-loop hexarotor
system is presented.

On the other hand, a comparative study is conducted to
analyze the UAV performance between the proposed control,
a PD control and with an integral sliding mode control
(ISMC). Likewise, a comparative study based of the error
signals and the energy consumption of the designed robust
controller with PID and ISMC is presented. The rest of the
paper is organized as follows. The system description of
the multirotor aircraft, the mathematical preliminaries and
the problem formulation are introduced in Section II and
Section III, respectively. The robust control design for a
class of uncertain disturbed linear systems is presented in
Section IV. The illustrative scenario of the multirotor system
regulation inspired on a tracking trajectory task is presented
in Section V. Finally, in Section VI concluding remarks are
presented.

II. SYSTEM DESCRIPTION
The schematic structure of the multirotor system is illustrated
in Figure 1 which is an aircraft that consists of six rotors.
In order to describe the UAV motion, two reference frames
are necessary: the earth inertial frame (XI , YI , ZI ) and the
body-fixed frame (XB, YB, ZB). The sum of the forces of each
rotor (f1, f2, f3, f4, f5, f6) generates the thrust force and is
oriented parallel to the ZB axis. Let q̄ = (0, η) be the general-
ized coordinates of the system, where 0 = (x(t), y(t), z(t))⊺

represents the translation coordinates relative to the inertial
frame and η = (φ(t), θ(t), ψ(t))⊺ is the vector of the Euler
angles that represents the attitude of the vehicle. Now, the
transformation from the body frame to the inertial frame
is realized by using the rotation orthogonal matrix (R).
In addition, the angular velocities in the body frame can be
expressed in terms of the Euler angle velocities by using
the corresponding rotation matrix Wη. This procedure is
described for example in [32], [33], and [34].

A. THE HEXAROTOR AIRCRAFT DYNAMICS
The equations of motion of the aircraft obtained by using
the Newton-Euler formalism whose equations describe the
translational and rotationalmovements are given as [35], [36],
and [37]:

0̇ = V

mV̇ = RF
Ṙ = R�̂
I�̇ = −�× I�+ τ, (1)

where F =
[
0 0 uz(t)

]⊺
+ R⊺

[
0 0 −mg

]⊺ and τ =[
τφ(t) τθ (t) τψ (t)

]⊺ are the total forces and moments acting
on the UAV, respectively. V = (ẋ(t), ẏ(t), ż(t))⊺ ∈ R3 is the
translational speed with respect to the inertial frame and �̂
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FIGURE 1. Configuration of the hexarotor UAV.

is a skew-symmetric matrix such that �̂ = � × a. The �
term is the vector of angular velocities in the body frame,
m denotes the mass of the UAV and I contains the moments
of inertia about the center of mass. Then, applying relation
(1), the dynamic equations of the aircraft can be expressed as
follows:

ẍ(t) =
1
m

[(cφ(t)sθ (t)cψ(t) + sφ(t) sψ(t))uz(t)] + ξx(t),

ÿ(t) =
1
m

[(cφ(t)sθ (t)sψ(t) − sφ(t)cψ(t))uz(t)] + ξy(t),

z̈(t) =
1
m

[(cφ(t)cθ (t))uz(t)] − g+ ξz(t),

φ̈(t) =
Izz
a1

[
a2 + τφ(t)

]
−
Ixz
a1

[
a3 + τψ (t)

]
+ ξφ(t),

θ̈ (t) =
1

Iyy

[
a4 − ψ̇(t)ψ̇(t)Ixz + τθ (t)

]
+ ξθ (t),

ψ̈(t) =
Ixx
a1

[
a3 + τψ (t)

]
−
Izx
a1

[
a2 + τφ(t)

]
+ ξψ (t). (2)

where for shortness cos → c, sin → s, and

a1 = (IxxIzz − IxzIzx) ,

a2 = θ̇ (t)
(
ψ̇(t)Iyy − φ̇(t)Izx − ψ̇(t)Izz

)
,

a3 = θ̇ (t)
(
ψ̇(t)Ixz + φ̇(t)Ixx − φ̇(t)Iyy

)
,

a4 = φ̇(t)
(
φ̇(t)Izx + ψ̇(t)Izz − ψ̇(t)Ixx

)
. (3)

ξx(t), ξy(t), ξz(t), ξφ(t), ξθ (t) and ξψ (t) denote the uncer-
tainties, unmodeled dynamics and external disturbances.
τφ(t),τθ (t) and τψ (t) are the torques that generate the roll,
pitch and yaw movements. The input uz is associated with
the forces generated by the six rotors. For this aircraft the
following assumptions were considered:

• The center of mass of the vehicle coincides with the
origin of the body frame.

• At low speeds, the aerodynamic effects can be neglected.

• Angular velocities respect to the body frame and inertial
frame are the same for low speeds.

• The propellers are rigid with fixed pitch.
• The aircraft doesn’t make aggressive maneuvers, then

−
π

2
< φ <

π

2
and −

π

2
< θ <

π

2
.

III. MATHEMATICAL PRELIMINARIES AND PROBLEM
FORMULATION
Consider the uncertain nonlinear system affine in the control

˙̄x(t) = Ax̄(t) + Bu(t) + ξ (t),

x̄(0) = x̄0, ξ (t) = f (x̄) + g(x̄)u(t) − Ax̄(t) − Bu(t) +1(t)
(4)

where x̄(t) ∈ Rn at time t ∈ R. The n × n matrix
A is the state matrix associated with the linear system
representation x̄(t). The control input is given by u(t) ∈ Rm,
and A, B are known real constant matrices with appropriate
dimensions, furthermore, it is assumed that the pair (A,B)
is controllable, the vector functions f : Rn

→ Rn and
g : Rn

→ Rp define the dynamics mapping of system (4).
B ∈ Rn×m is the matrix realizing the actuator-mapping, and
1(t) are external disturbances in Rn. System uncertainties
and external disturbances are denoted as ξ ∈ Rn.
Assumption 1: The uncertain term of the considered

system as well as its variations satisfies the following
condition

∥ξ (t)∥≤δ1, ∥ξ̇ (t)∥≤δ2, 0 < δ1 < ∞, 0 < δ2 < ∞, (5)

where ∥ · ∥ denotes the standard Euclidean norm.
To represent the nominal system in two subsystems (the

one associated with the control signal and the one non
associated) the transformation z = Tx̄ is applied, where
T ∈ Rn×n is given as:

T =
[
NB B

]⊺
, (6)

with NB ∈ R(n−m)×m the null-space of the output matrix
B⊺. Thus, system (4) can be rewritten in the new system
representation as:

ż(t) = Az(t) + Bu(t) + ξ̄ (z, t), z(0) = Tx0, (7)

where A = TAT−1
∈ Rn×n, B = TB ∈ Rn×m and

ξ̄ = Tξ (z, t) ∈ Rn. Here, it is assumed that system (7)
contains matched and unmatched nonvanishing uncertainties,
where their adverse effects may not be mitigated with any
control action. To reduce this effects, consider a PID type
sliding surface 8(t) : Rm

→ Rm as:

8(t) = K1ϕ(t) + K2

∫ t

t0
ϕ(τ )dτ + K3ϕ̇(t) (8)

where ϕ ∈ Rm is the adjoint sliding variable defined as ϕ =

z2+Rz1 where z1 ∈ R(n−m) and z2 ∈ Rm, them bym diagonal
matrices (K1, K2 K3) and R ∈ Rm×(n−m) are adjustment
matrices. Here, the control problem statement is divided in
two stages. The first one consist in obtaining an admissible
control signal u such that the adjoint variable σ arrives to
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the invariant set ϒ = {z(t) ∈ Rn
: ∥ϕ(t)∥ ≤ δ,∀ t ≥ T2}, for

small as possible 0 < δ. The second stage consist in obtaining
the gain matrices (K1, K2, K3, R) such that the effects of
the non-vanishing uncertainties and disturbances are reduced.
This problem is studied using the concept of UUB-Stability.

To achieve the problem statement goal, the following
concepts are employed:
Definition 1 (Attractive ellipsoid [14]): The ellipsoid

E
(
0, P̄PP−1

)
= {x̄(t) ∈ Rn

: x̄(t)⊺P̄PPx̄(t) ≤ 1, P̄PP = P̄PP⊺
}, (9)

with center at the origin and the corresponding non-
degenerated ellipsoidal matrix P̄PP, is attractive for some
dynamic system if for any trajectory {x̄(t)}t≥0 the following
property holds:

lim sup
t→∞

x̄⊺(t)P̄PPx̄(t) ≤ 1. (10)

Definition 2 (UUB-Stability [38]): The nonlinear dynam-
ical system ˙̄x(t) = f (t, x̄(t)), x̄(t0) = x̄0, t ≥ t0 is Ultimately
Uniformly Bounded with bound b if there exists some a ∈

(0, c) such that:

∥x̄(t0)∥ ≤ a, H⇒ ∥x̄(t)∥ ≤ b, ∀ t ≥ t0 + T

for positive b, c ∈ R and T = T (a, b) independent of t0.
Proposition 1 (On the attractive set [14]): Let a real val-

ued function V : Rn
→ R, satisfying

V̇ (z(t)) ≤ −αV (z(t)) + β, z(t) ∈ Rn, (11)

for positive scalars α and β, then V (z(t)) is an attractive set,
furthermore

lim sup
t→∞

V (z(t)) ≤
β

α
, is fulfilled. (12)

Thus, the problem associated with the hexarotor system
consists of finding sufficient conditions such that the
proposed control guarantees UUB-stability of the closed-loop
system. Also, the control law must regulate the orientation
of the aircraft and guarantee robust trajectory tracking in the
x(t), y(t), z(t) space even with disturbances or uncertainties.
On the other hand, after a finite time, the control law drives
the system trajectories to a minimal size attractive ellipsoid
in exponential form.

IV. ROBUST CONTROL DESIGN
Noticed that system (7) can be rewritten as:

ż1(t) = A11z1(t) +A12z2(t) + ξ̄1(z, t),

z1(0) = z01,

ż2(t) = A21z1(t) +A22z2(t) + ξ̄2(z, t) + B2u(t),
z2(0) = z02, (13)

where A11 ∈ R(n−m)×(n−m), A12 ∈ R(n−m)×m, A21 ∈

Rm×(n−m),A22 ∈ Rm×m, and B2 ∈ Rm×m. Based on the fact,
that the pair (A,B) is controllable, it is evident to verify that
the pair (A11,A12) is also controllable.

Proposition 2: If the dynamic of the control action associ-
ated to system (13) is given by

u̇(t) = −B−1
2 K−1

3 {(K3 {Q1A11 + Q2A21} + K1Q1) z1(t)

+ (K3 {Q1A12 + Q2A22} + K2 + K1Q2) z2(t)

+ (K3Q2B2 + K1B2) u(t) + ρρρsign(8(t))} ,

Sign(8(t)) =

sign(81(t))
...

sign(8m(t))

 , u(0) = 0, (14)

where Q1 = (A21 + RA11), Q2 = (A22 + RA12), and
ρρρ = diag (ρ1, · · · , ρm) is a m by m positive definite matrix,

then after time tr =

√
2
α1
V

1
2 (8(t0))+t0, under storage function

V1(8(t)) =

m∑
i=1
82
i (t), the hyperplane 8(t) = 0̄m is the

sliding manifold for the sliding variable surface (8).
Proof. The control action (14) is a class of dynamic

sliding mode control and when control is integrated, the
chattering effect is reduced. In the following sections this
control is referred as robust controller (RC). Consider the
storage function V1(8(t)). Its time variations is given by:

V̇1(8(t)) = 8⊺(t) (K1ϕ̇(t) + K2ϕ(t) + K3ϕ̈(t)) . (15)

Since the first and second time derivative of adjoint
variable ϕ(t) ∈ Rm along the system trajectories (13) are
given by

ϕ̇(t) =Q1z1(t) + Q2z2(t) +
[
R, Im

]
ξ̄ (z, t) + B2u(t),

ϕ̈(t) = {Q1A11 + Q2A21} z1(t)

+ {Q1A12 + Q2A22} z2(t) + [Q1, Q2] ξ̄ (z, t)

+ Q2B2u(t) +
[
R, Im

]
˙̄ξ (z, t) + B2u̇(t). (16)

Im defines an identity m× m matrix. Now, the time
derivative of the storage function along the trajectories (13)
under control action (14) yields:

V̇1(8(t)) = −8⊺(t)ρρρSign(8(t)) +8⊺(t)χ(z, t) (17)

where χ (z, t) = M4ξ̄ (z, t) + M5
˙̄ξ (z, t), M4 = K3 [Q1, Q2]

+K1
[
R, Im

]
, andM5 = K3

[
R, Im

]
.

From Assumption 1, we can see that

∥ξ̄ (z, t)∥≤δ3,
∥∥∥ ˙̄ξ (z, t)

∥∥∥≤δ4, (18)

where δ3 = |λmax(T )|δ1, δ4 = |λmax(T )|δ2,

V̇1(8(t)) ≤ −max{ρi}
n∑
i=1

|8i(t)| + ∥8(t)χ (z, t)∥ (19)

and defining ρi, such that ρi = α1+δ1 is guaranteed for some
0 < α1 ∈ R, the next statement is obtained:

V̇1(8(t)) ≤ −α1

n∑
i=1

|8i(t)| = −α1|8(t)|

≤ −α1
√
2V

1
2
1 (8(t)). (20)
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In this sense, the solution of the differential equation:

V̇1(8(t)) = −α1
√
2 V

1
2
1 (8(t)), (21)

along the time interval τ ∈ [t0, t) is as follows:∫ t

t0
V

−
1
2

1 (8(τ ))dV1(8(τ )) = −α1
√
2
∫ t

t0
dτ, (22)

and finally it yields:

V
1
2
1 (8(t)) = V

1
2
1 (8(t0)) −

α1
√
2
(t − t0). (23)

By using the comparison theorem, the solution of the
previous differential inequality is given by:

V
1
2
1 (8(t)) ≤ V

1
2
1 (8(t0)) −

α1
√
2
(t − t0). (24)

Note that the storage function (where it’s time variation is
depicted in (15)) is a positive definite function. This means
that eventually as time t is increasing, the time tr is obtained
from the solution of next equation

0 = V
1
2
1 (8(t0)) −

α1
√
2
(t − t0) (25)

and the storage function arrives to the origin in time less or
equal to tr . Furthermore, it remains on it for all future time
t ≥ tr . This means that the convergence of the sliding variable
to the origin is guaranteed at the same time. □
Noticed that, after time tr , the sliding variable 8(t) = 0̄m

is satisfied, in this way it is evident that

0̄m = K1ϕ(t) + K2

∫ t

t0
ϕ(τ )dτ + K3ϕ̇(t), (26)

or equivalently:

0̄m = K1ϕ̇(t) + K2ϕ(t) + K3ϕ̈(t) (27)

This means that:

ϕ(t) = −K−1
2 K1ϕ̇(t) − K−1

2 K3ϕ̈(t)

ϕ(t) = −K−1
2

{
K1
([
R, Im

]
ξ̄
)
− K3 [Q1, Q2] ξ̄ (z, t)

−K3
[
R, Im

]
˙̄ξ (z, t) − ρρρSign(8(t))

}
In this sense, for a bounded gain matrix λmax (RR⊺) ≤

δ5 < ∞ the following statement is satisfied:

∥ϕ(t)∥ ≤ δ6, δ6 = λmax(K−1
2 ) {λmax(K1)M1δ3 +M2} ,

M1 =

√
λmax

([
R Im

]⊺ [R Im
])
,

M2 = (M1δ3 +M3δ4) λmax(K3) + λmax(ρρρ),

M3 =

√
λmax

([
Q1 Q2

]⊺ [Q1 Q2
])
. (28)

From the definition of the adjoint variable ϕ(t) = z2(t) +

Rz1(t) and Proposition 2, it can be shown that z2(t) = ϕ(t)−

Rz1(t) is satisfied. In this sense, from (13) the following
statement is fulfilled:

ż1(t) = (A11 −A12R) z1(t) + ζ (t),

ζ (t) = A12ϕ(t) + ξ̄1(z, t), z1(0) = z01. (29)

where ∥ζ (t)∥ ≤ δ6

√
λmax(A⊺

12A12) + δ3. To guarantee
the UUB-stability of the subsystem (29), the following
proposition is provided.
Proposition 3: Under assumption of Proposition 2. Con-

sider the storage function V2(z1(t)) = z⊺1 (t)Pz1(t), with a
positive definite matrix P ∈ R(n−m)×(n−m). If there exists
a set of solutions (α2, β,P,R), where R ∈ Rm×(n−m) is an
adjustment matrix, α2 and ε are positive scalars, such that the
following matrix inequality is fulfilled:

W =

[
A5 + α2P P

P −εIr

]
< 0, (30)

where Ir defines the (n− m) × (n− m) identity matrix, and
A5 = P(A11 − RA12) + (A⊺

11 −A⊺
12R

⊺)P, then the storage
function V2(z1(t)) satisfies:

V2 (z1(t)) ≤
β

α2
+

{
V2 (z1(tr ))−

β

α1

}
exp(−α2(t − tr ))

(31)

where β = ε(δ + δ3), the UUB-Stability is concluded with:

b =

√
β

α2
λmax(P−1),

T2 =
1
α2

ln

{
α2V (z01) − β

βγ

}
+

√
2

trace(ρ0)
V

1
2
1 (z01) + t0, (32)

for small-enough constant ζ (t) ∈ R+.
Proof. Calculating the time derivative of the storage function
V2(z1(t)) along the trajectories (29) yields:

V̇2(z1(t)) =
[
z1(t) ζ (t)

]
W
[
z1(t) ζ (t)

]⊺
− α2V2(z1(t)) + ε∥ζ (t)∥2. (33)

From the properties given in (28), and under the assump-
tion thatW < 0, the following inequality is fulfilled:

V̇2(z1(t)) ≤ −α2V2(z1(t)) + β (34)

thus, by the comparison principle, see for instance [38], [39],
the solution of the differential equation

V̇2(z1(t)) + α2V2(z1(t)) = β (35)

in the time interval τ ∈ [0, t) is given by the upper
bound of (31). In fact, differential inequality (34) implies
that Proposition 1 is satisfied, implying that (12) is ful-
filled. This means that the storage function V (z1(t)) is
an attractive invariant set. Finally, it is clear that error
function exponentially arrives into an invariant set ϒ1 =

{z1(t) ∈ Rn
: ∥z1(t)∥ ≤ b,∀ t ≥ T2}. In other words, the error

function arrives into an attractive ellipsoid with ellipsoid
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matrix P̄ =
α
ε
P−1. From the previous inequality, it is clear

that lim
t→∞

V2(z1(t)) ≤
β
α2
, and equation (32) is obtained. □

Remark 1: Previous result (Proof of 3), say that the
ultimate bound must be reduced by increasing the parameter
α2 and decreasing ε. However, note that its ultimate bound
depends of δ6 and this one can be considerably reduced
or increased from the sliding manifold tuning. In order to
reduce the parameter β, select the eigenvalues of matrixK2 as
largest as possible, and the eigenvalues of thematricesK1 and
K3 small enough. Note that for larger magnitudes of λi(K−1

2 ),
(i = 1, . . . ,m), the parameter β approaches to δ3.
Notice that in the frequency domain, the sliding surface (8)

can be seen as a second order filter where the input is ϕ and
the output is8with its corresponding transfer function defied
as:

ϕ(s) = s
(
s2K3 + sK1 + K2

)−1
8(s) (36)

whose characteristic polynomial P(s) is given as:

P(s) =

m∏
i=1

(
s2K3,i + sK1,i + K2,i

)
. (37)

Here, the i-th characteristic polynomial is associated with
the i-th actuator, which should be adjusted via bode filter
design, a rlocus approach or a pole allocation procedure.
Remark 2: Proposition 3 indicates that for a large α2 and

small-enough β, system trajectories arrives into an attractive
ellipsoid E(0, P̄). In this way, the following optimization
problem

min
P−1

(
β
α2
λmax(P−1)

)
s. t.

(
0 < α2, 0 < ε

0 < P,W < 0

)
, (38)

is associated to obtain the minimal size of this ellipsoid,
where P̄ =

α2
β
P is the associated ellipsoidal matrix. Thus,

the maximal value of P under maximal value of α2 and ε
in which W is a negative definite matrix, means that the
system trajectories are enclosed into aminimal size attractive-
invariant set.

V. NUMERICAL RESULTS
A. AIRCRAFT DYNAMICS IN SUBSYSTEM
REPRESENTATION
The hexarotor vehicle depicted in Figure 1 was used to
illustrate the performance of the linear, nonlinear, robust and
non conventional control approaches. For control purposes,
certain considerations are made for the dynamics described
in (2). It is assumed that the Euler angles φ(t), θ (t) and
ψ(t) can be considered as small values and the angular
velocities on the inertial frame are equal to the velocities in
the body frame. Similarly, the Coriolis terms are neglected in
equation (2) and it is assumed that the attitude dynamics (φ̈(t),
θ̈ (t) and ψ̈(t)) have their own control signal (τφ(t), τθ (t) and

τψ (t)), such that:

φ̈(t)θ̈ (t)
ψ̈(t)

 ≈


IzBzB
a1
τφ(t)

IzBzB
a1
τθ (t)

IzBzB
a1
τψ (t)

 . (39)

We defined the state vector as x̄(t) = [x̄1(t) x̄2(t) x̄3(t)
x̄4(t) x̄5(t) x̄6(t) x̄7(t) x̄8(t) x̄9(t) x̄10(t) x̄11(t)x̄12(t)]⊺, where
x̄(t) is the connected manifold in R12. After these
considerations, the dynamical model can be represented in
the form ˙̄x(t) = f (x̄)+ g(x̄)u(t)+ ζ (t, x), where ζ (t, x) is the
unmodeled dynamics, as:

f (x̄) =



0
ξx(t)
0
ξy(t)
0

−g+ ξz(t)
0

ξφ(t)
0

ξθ (t)
0

ξψ (t)



, u(t) =


uz(t)
τφ(t)
τθ (t)
τψ (t)

 ,

and g(x̄) =

0 0 0 0
a6 0 0 0
0 0 0 0
a7 0 0 0
0 0 0 0

1
m (cx̄7(t) cx̄9(t)) 0 0 0

0 0 0 0
0 Izz

a1
τφ(t) 0 0

0 0 0 0
0 0 1

Iyy
τθ (t) 0

0 0 0 0
0 0 0 Izz

a1
τψ (t)



.
(40)

where a6 =
1
m (cx̄7(t) sx̄9(t) cx̄11(t) + sx̄7(t) sx̄11(t) ) and

a7 =
1
m (cx̄7(t) sx̄9(t) sx̄11(t) − sx̄7(t) cx̄11(t)). x̄1(t), x̄2(t)

and x̄3(t) define the translational positions (x(t), y(t), z(t)),
x̄4(t), x̄5(t) and x̄6(t) represents the rotational angles (φ(t),
θ (t),ψ(t)) and x̄7(t) to x̄12(t) are their velocities, respectively.
Now, consider the following feedback linearization control
law:

uz(t) =
m

cos x̄7(t) cos x̄9(t)
(g+ ūz(t)). (41)
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Then, substituting equation (41) in equation (40), the
translational equations result as:

˙̄x2(t) =

(
tan x̄9(t) cos x̄11(t) + tan x̄7(t)

sin x̄11(t)

cos x̄9(t)

)
(g+ ūz(t)) + ξx(t),

˙̄x4(t) =

(
tan x̄9(t) sin x̄11(t) − tan x̄7(t)

cos x̄11(t)

cos x̄9(t)

)
(g+ ūz(t)) + ξy(t),

ẋ6(t) = ūz(t) + ξz(t). (42)

Considering (42) and system (40), we defined the follow-
ing subsystems represented as system (4):

• Altitude subsystem: The first subsystem corresponds to
the z(t) position:

ż(t) = Azz(t) + Bzūz(t) + ξz(t). (43)

• Directional Subsystem : The second subsystem is
related to the yaw angle:

ψ̇(t) = Aψψ(t) + Bψτψ (t) + ξψ (t). (44)

• Longitudinal subsystem : The third subsystem corre-
sponds to the pitch angle and the x position:

˙̄x2(t) =

(
tan x̄9(t) cos x̄11(t) + tan x̄7(t)

sin x̄11(t)

cos x̄9(t)

)
(g+ ūz(t)) + ξx(t),

θ̇ (t) = Aθθ (t) + Bθτθ (t) + ξθ (t). (45)

• Lateral subsystem: The fourth subsystem is the
dynamic of the y position and the roll angle:

˙̄x4(t) =

(
tan x̄9(t) sin x̄11(t) − tan x̄7(t)

cos x̄11(t)

cos x̄9(t)

)
(g+ ūz(t)) + ξy(t),

φ̇(t) = Aφφ(t) + Bφτφ(t) + ξφ(t). (46)

In this way, consider the following vectors and matrices:

ż(t) =

[
˙̄x5(t)
˙̄x6(t)

]
, ψ̇(t) =

[
˙̄x11(t)
˙̄x12(t)

]
, θ̇ (t) =

[
˙̄x9(t)
˙̄x10(t)

]
,

φ̇(t) =

[
˙̄x7(t)
˙̄x8(t)

]
,Ai =

[
0 1
0 0

]
,Bz =

[
0
1

]
,

Bj =

[
0
Izz
a1

]
,Bθ =

[
0
1
Iyy

]
, ξ i(t) =

[
0
ξi(t)

]
,φ(t) =

[
x̄7(t)
x̄8(t)

]
z(t) =

[
x̄5(t)
x̄6(t)

]
,ψ(t) =

[
x̄11(t)
x̄12(t)

]
, θ (t) =

[
x̄9(t)
x̄10(t)

]
,

with i = z(t), φ(t), θ (t), ψ(t) and j = φ(t), ψ(t).
Remark 3: In order to control the translational movements

in x(t) and y(t), we defined virtual controllers in the numerical
results presented below. These controllers have the structure
of a proportional-derivative control and they are designed as
ëx(t) = −k1ex(t) − k2ėx(t) and ëy(t) = −k3ey(t) − k4ėy(t),

TABLE 1. System parameters description.

respectively, where k1, k2, k3, k4 are positive constant gains
and ex(t) = x̄1(t) − xref, ey(t) = x̄3(t) − yref are the
corresponding tracking errors of x(t) and y(t). Notice that,
from equation (45), x(t) can be controlled by manipulating
θ , then, defining eθ = x̄9 − θref and, through mathematical
manipulations, the form of the reference value for theta is
given by:

θref =

arctan
{(

−k1ex(t) − k2ėx(t) + ẍref
g+ ūz(t)

− a8

)
1

cos x̄11(t)

}
,

with a8 = tan x̄7(t)
sin x̄11(t)
cos x̄9(t)

. (47)

Similarly, from equation (46), y(t) can be controlled by
φ(t). Defining eφ(t) = x̄7(t) − φref, the structure of the
reference value for φ(t) is given by:

φref =

arctan

{(
k3ey(t) + k4ėy(t) − ÿref

g+ ūz(t)
+ a9

)
cos x̄9(t)

cos x̄11(t)

}
.

with a9 = tan x̄9(t) sin x̄11(t). (48)

B. NUMERICAL RESULTS
In order to demonstrate the effectiveness of the robust con-
troller (RC) described in Section IV, we conducted trajectory
tracking simulations by using MatLab-2020Ra and multiple
Simulink toolboxes, as well as the Bogacki-Shampine
method with a sample time of ht = 0.001 seconds.
The mission profile for every simulation scenario was

defined by considering the UAV dynamics given in equa-
tion (2) and the considerations presented in Section V-A.
The system parameters used in the simulations are given in
Table 1. These values were obtained through the inertia and
angular moment concepts, as well as the characteristics of
the aircraft (lengths and mass). For all instances studied, the
simulation time was set as t ∈ [0, 100] seconds. In order to
track a given trajectory for the translational dynamics (x(t),
y(t), z(t)) and to keep the rotational dynamics (φ(t), θ (t),
ψ(t)) around the origin, the desired trajectories are given
in a three dimensional space (x(t), y(t), z(t)) by using the
parametric equations shown in Table 2.

The designed trajectory consists of a smooth transition in
speed changes during the mission. The ω term represents the
frequency of the trigonometric functions used to generate the
desired trajectories. The initial conditions were defined as
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TABLE 2. Characteristics of the desired trajectory. b1 = 3.5, b2 = 0.5,
c1 = 2 and ω = 5Hz . c2 = 2b2 − 2 b2 cos(t/w),
c3 = (b1 + b2)/(1 + exp−0.9(t−5)), c4 = c1 − c1 cos(t/w).

x̄0 = [4, 2, 0.02, 0.05, 0.03, 0.05, 0, 0, 0, 0, 0, 0]⊺. We used
the following disturbances for the translational and rotational
dynamics of the underactuated system:

1(t) =

[0 0.1 c(0.1t) 0 0.1 c(0.1t) 0 0.1 c(3.3t) 0

0.05 c(12.54 ∗ t) 0 0.05 c(12.54t) 0 0.1 c(0.1t)]⊺, (49)

where c(∗) stands for cos(∗). Similarly, we used the following
disturbances in the control signals: for ūz(t) a sawtooth
function with an amplitude of 1.2 and a frequency of 1.5 Hz,
for τψ (t), τθ (t) and τφ(t) a random function with an amplitude
of 1.2 and a frequency of 2 Hz. For the robust control, the
matrix that transforms the dynamics in the form given in (4)
to the representation given in (7) is given as:

Th =

[
−1 0
0 1

]
, for z subsystem Tz =

[
−1 0
0 100

]
(50)

where h = φ(t), θ(t), ψ(t).
In general, the sliding surface (8) for each subsystem i =

{z(t), φ(t), θ(t), ψ(t)} is obtained as follows:

8i(t) = K1iϕi(t) + K2i

∫ t

t0
ϕi(τ )dτ + K3iϕ̇i(t), (51)

with K1z = 0.03118, K2z = 0.02348, K3z = 0.0188, K1φ =

6.236, K2φ = 2.348, K3φ = 0.0376, K1θ = 1.559, K2θ =

0.2348, K3θ = 0.0376, K1ψ = 0.3118, K2ψ = 0.2348,
K3ψ = 0.188. These gains were obtained heuristically by
conducting several simulations.

Using the MatLab Yalmip-CVX toolbox, the above
numerical procedure gives the following set of numerical
solutions

α1 = 0.35, ε = 2.9 × 10−5,

X = 1.319 × 104, Y = −2.209 × 104, R = −1.674,

for φ(t), θ (t) and ψ(t).

Xz = 1.319 × 104,Yz = −2.209 × 106,Rz = −167.487,

for z(t). (52)

The robust control action associated with the UAV dynamics
is given as:

u̇(t) =

− B−1
i2 K−1

3i {(K3i {Qi1Ai11+Qi2Ai21}+K1iQi1) zi1(t)

+ (K3i {Qi1Ai12 + Qi2Ai22} + K2i + K1iQi2) zi2(t)

+ (K3iQi2Bi2 + Ki1Bi2) u(t) + ρρρiSign(8i(t))} .

(53)

FIGURE 2. Positions and velocities of the x(t) and y (t) dynamics
obtained from the implementation of the PD, ISM and Robust controllers.

For the conducted tests we used:

Az =

[
0 −1
0 0

]
Ah =

[
0 −0.01
0 0

]
, Bz =

[
0
1

]
Bh =

[
0

1 × 104

]
,Qz2 = 1.6749, Qh2 = 1.6748,

ρρρz = 7.95455 ρρρh = 0.0795.

The values forK1i,K2i andK3i have already been defined
previously. For considered γ = 0.0001, the ultimate bound is
obtained as b = 0.0010. Thus, the system’s trajectories arrive
to its ultimate bound in time T = 2.046 seconds.
In order to compare the designed robust control, traditional

PD control and integral sliding mode control (ISMC) were
tested. The simulation parameters for the last two are
described below. Figures 2 to 4, shown the simulation results
associated to system under representation (7). The blue,
orange, and black lines show the system response for the
controllers PD, ISMC and RC, respectively. The figures are
divided into subfigures, the upper ones correspond to the
positions and the lower ones are related to the speeds.

The design of PD [40] controller is

u(t) = kpx̄(t) + kd ˙̄x(t), (54)

where kp and kd are control gains. The control inputs for the
tests performed are uūz = kpzez+ kdzėz, uφ = kpφeφ + kdφ ėφ ,
uθ = kpθeθ +kdθ ėθ and uψ = kpψeψ +kdψ ėψ . The tuning of
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FIGURE 3. z(t) position, ψ(t) angular position and velocities with PD,
ISMC, and Robust controller.

the gains was done using the simulink PID toolbox, however,
through a fine tuning with kpz = 2, kdz = 1, kpφ = 2.5,
kdφ = 1, kpθ = 2.5, kdθ = 1, kpψ = 2.5, and kdψ = 1 were
the chosen values.

On the other hand, an integral sliding mode control was
designed as it is present in [15]. To this end, system 4 was
considered. The sliding surface is defined by

σ (x̄(t)) = G(x̄(t) − x̄(0)) − G
∫ t

o
(Ax̄(τ ) + Bu0(τ ))dτ,

(55)

with G ∈ Rm×n and det(GB) ̸= 0 is satisfied. The integral
sliding mode control is given by

u(t) = u0(t) + u1(t), u(t) ∈ U (t) ∈ Rm, (56)

where u0(t) is a nominal controller and u1(t) is designed to
compensate unmatched disturbances. The design of u0(t) is
just used to stabilize the nominal system and was the PD
controller previously mentioned. The auxiliary control on
ISMC is considered as

u1(t) = −(GB)Tρ(t, x̄) sign(σ (x̄(t))) (57)

where ρ(t, x) ≥∥ ξ+(t, x) ∥ and ξ+(t, x) is upper bound for
ξ . The values used for each subsystem in the simulations are
Gz =

[
0.15 0.15

]
, Gφ =

[
0.11 0.11

]
, Gθ =

[
0.11 0.11

]
,

FIGURE 4. Attitude (φ(t) , θ(t)) and angular velocities with PD, ISMC, and
Robust controller.

FIGURE 5. 3-Dimensional Figure shows vehicle trajectories with PD,
ISMC, robust controller, and reference of x(t) , y (t) and z(t) dynamics.

Gψ =
[
0.11 0.11

]
ρz = 100, ρφ = 100, ρθ = 100 and

ρψ = 100.
The translational performance of the UAV, in the x(t), y(t),

z(t) space is shown in Figure 5. In addition, Figure 6 presents
the control signal for the strategies during trajectory tracking.

The ISMC has a good performance compared to the other
two controllers while the system is subjected to disturbances.
But one disadvantage is the high energy consumption of this
one. Also, the conclusion of which control strategy has the
highest performance is presented in an analysis based on the
error response. The analysis results are presented in Table 3
in terms of the translational dynamics. The absolute error
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FIGURE 6. Signal controls of z(t) , ψ(t), φ(t) and θ(t) dynamics.

TABLE 3. Errors comparative in the trajectory tracking of the UAV.

(for IAE and ITAE) illustrates which control algorithm has
a better performance compared to each other. The control
strategy that shows the best performance is the ISMC with
respect to the RC and PD controller, as well as, the robust
control shows values similar to the ISM controller. Also, the
analysis exhibit the energy consumption of each controller
and demonstrate the higher consumption energy is for the
ISMC to reject disturbances.

The analysis of the energy consumption is defined by:

ET =

∫ t

0
u(τ )⊺u(τ )dτ. (58)

The results demonstrate that the energy consumed during
the flight mission for the designed robust controller was
ETRC = 9041.6110 N 2m2s, while for the proportional
derivative controller was ETPD = 8905.4839 N 2m2s,
and for the integral sliding mode control was ETISMC =

28262.3408 N 2m2s. The PD control presents the best
performance in terms of energy consumption, due to it’s
structure. However, the value of the energy consumed by the
robust controller is not too far from the obtained with the PD
controller.

VI. CONCLUSION
In this paper, a robust control which reduces the uncertain
and disturbance effects of a six-rotor aircraft was designed.
By solving a specific linear matrix inequality related with a
sliding mode control, the Attractive Ellipsoid Method helped
to conclude the Ultimate Uniform Bounded Stability around
the trivial solution of the system. Furthermore, the tests with
the six-rotor underactuated system exposed the effectiveness
of the robust control algorithm designed here. The control
showed that by increasing the perturbation magnitude, the
control also augments and guarantees the same behavior in
the translational dynamics. Despite, from the comparative
study in terms of the IAE, ITAE, ISE and ITSE criteria,
the ISMC demonstrated to have a better performance with
respect to the obtained with the PD and RC controllers, it was
the robust controller which exhibited a better performance in
terms of energy consumption.

A. ABBREVIATIONS AND ACRONYMS
The following abbreviations are used in this manuscript:

UAV unmanned Aerial Vehicle.
SMC Sliding Mode Control.
AEM Attractive ellipsoid Method.
RC Robust Control.
UUB Ultimately Uniformly Bounded.
PD Proportional Derivative (control).
ISMC Integral Sliding Mode Control.
ITAE Integral Time Absolute Error.
ISE Integral Square Error.
ITSE Integral Time Square Error.
PID Proportional Integral Derivative.
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