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ABSTRACT Spoken keyword spotting, which is characterized by simplicity and low latency, has been
widely used in consumer electronics to facilitate always-on voice interfaces. Small-footprint keyword
spotting based on tiny convolutional neural networks can be implemented on resource-constrained, yet
energy-efficient, microcontrollers in real time. However, it is difficult for tiny neural networks to learn
the noise-robustness properties essential for successful voice interfaces. To overcome this problem, this
study proposes a joint framework of curriculum learning and knowledge distillation for noise-robust small-
footprint keyword spotting. The proposed joint framework applies noise-mixture curriculum learning to a
network that is sufficiently large, to learn various noise situations. Subsequently, knowledge distillation is
applied to compress the large network into a sufficiently small network for use in an onboardmicrocontroller.
To enhance the effectiveness of the joint framework, a curriculum learning approach is proposed with a
new noise mixture strategy along with knowledge distillation that employs an effective ensemble of neural
network snapshots for each curriculum stage. The proposed methods enable large networks to effectively
learn noisy situations, thereby transferring noise robustness to small networks. The effectiveness of the
joint framework was illustrated on the Google Speech Commands dataset with noise mixtures incorporated
from various public noise datasets. The performance of the joint framework was superior in noisy situations
compared to that of state-of-the-art noise-robust keyword-spotting methods. Consequently, the proposed
framework significantly improves the usability of voice interfaces in consumer electronics.

INDEX TERMS Curriculum learning, data augmentation, joint framework, knowledge distillation, neural
network compression, noise-robust keyword spotting, small-footprint keyword spotting.

I. INTRODUCTION
With the widespread use of intelligent consumer electronics
in daily life, voice interfaces have become prevalent in natural
and intuitive interactions. Spoken keyword spotting, owing to
its simplicity and low latency, is widely used in consumer
electronics to enable an always-on voice interface. Deep
neural networks are commonly used for keyword spotting
because of their superior accuracy [1]. A neural network
that is trained on spoken keyword samples for predefined
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keyword identification recognizes the trained keywords and
distinguishes them from all the other words or phrases in
an audio stream. A keyword can involve a specific word
or multiword phrase that functions as a wake-up word or
command. In artificial intelligence assistance, wake-upwords
can be ‘‘OK Google,’’ ‘‘Alexa,’’ and ‘‘Hey Siri.’’ Keyword
spotting is also used to recognize simple commands, such
as ‘‘Turn on,’’ ‘‘Turn off,’’ and ‘‘Play,’’ in various consumer
electronics applications.

Unlike other acoustic models, such as automatic speech
recognition that is based on large neural networks with
huge computational overhead, keyword spotting can be
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implemented using relatively small neural networks. Tiny
convolutional neural networks have been actively studied to
improve the performance of keyword spotting and reduce
the computational load [2], [3], [4]. These networks convert
input audio into image-like spectrograms and process them
efficiently using only a few network parameters. In addition,
studies have proposed various model compression techniques
for deep neural networks [5], [6], [7]. One of the effec-
tive techniques is knowledge distillation, which transfers
the superior performance of a large teacher network to a
small student network [8]. In previous studies, keyword-
spotting models based on tiny convolutional networks were
implemented on resource-constrained but energy-efficient
microcontrollers in real time [9], [10].

Noise robustness of acoustic models is crucial for a
successful voice interface. Performance degradation of the
acoustic model can arise from ambient noise which can sig-
nificantly damage the usability of the voice interface. Speech
enhancement [11], [12] and data augmentation have been pro-
posed for noise robustness of acoustic models. A promising
data augmentation approach for improving noise robust-
ness is noise-mixture training, in which background noise is
injected into clean samples in the training data [13], [14].
Noise-mixture training artificially introduces difficult train-
ing samples into the keyword-spotting model, rendering the
model more robust against noise. Neural networks have dif-
ficulty in learning loud noise situations. Thus, curriculum
learning for acoustic models has been studied [15], [16],
as a learning method that increases the difficulty of training
samples, whereby after the initial training on easy, clean
samples, training is continued on difficult samples with loud
noise, which is similar to a person studying according to
a curriculum [17]. Curriculum learning is widely used for
noise-robust keyword spotting [18].

Recently, converging voice interfaces with wearable
devices, such as hearables and IoT devices for smart homes,
has been actively investigated [19], [20]. These tiny con-
sumer electronics utilize spoken keyword spotting to create
a simple but valuable hand-free voice interface. Unlike smart
speakers with high-performance processors [21], wearables
and IoT devices utilize low-performance and low-power
microcontrollers [22] for spoken keyword spotting. Although
smart speakers exhibit good performance when using mul-
tiple microphones [23], mounting multiple microphones is
difficult because of the nature of these small devices [24].
Therefore, the development of noise-robust small-footprint
keyword spotting is required for devices with minimal
resources and single microphones.

Although the effectiveness of curriculum learning has
been demonstrated in keyword spotting, it is challenging
to develop noise-robust and small-footprint keyword spot-
ting because it is difficult to thoroughly learn loud noise
situations [25]. [26], [27]. When there are several difficult
samples, as in loud noise scenarios, a joint framework for
robust training and compression is a popular approach in
other domains. Existing studies in the fields of computer

vision and natural language processing have proposed joint
frameworks for combining curriculum learning and knowl-
edge distillationmethods [28], [29]. However, studies on joint
optimization methods for noise robustness are scarce in the
field of acoustic modeling.

In this study, we propose a joint framework for curriculum
learning and knowledge distillation for noise-robust small-
footprint keyword spotting. The joint framework comprises a
two-phase algorithm. First, curriculum learning is applied to
a sufficiently large network to learn various noisy situations.
Subsequently, knowledge distillation is applied to compress
the large network into a network that is sufficiently small
for use as an onboard microcontroller. We found that dis-
tilling the small network after applying curriculum learning
to the large teacher network is superior to directly applying
curriculum learning to the small network. To enhance the
effectiveness of the joint framework, a curriculum learning
based on a new noise mixture strategy is proposed along with
knowledge distillation that employs an effective ensemble of
neural network snapshots for each curriculum stage. Using
these methods, large networks can effectively learn to handle
loud noise situations, and the resulting noise robustness can
be transferred to the smaller networks. The main contribu-
tions of this study are summarized as follows.

1) To the best of our knowledge, this is the first study
employing a joint framework of curriculum learning and
knowledge distillation for noise-robust small-footprint key-
word spotting.

2) Novel curriculum learning and knowledge distillation
methods are proposed to enhance the effectiveness of the joint
framework.

3) The proposed framework exhibited state-of-the-art per-
formance on four well-known noise datasets comparable to
that of current state-of-the-art methods in terms of noise
robustness.

The remainder of this paper is organized as follows:
In Section II, we review related studies on small-footprint
keyword spotting and noise-robust keyword spotting.
In Section III, the proposed joint framework for noise-robust
small-footprint keyword spotting is described. In Section IV,
we discuss the experimental results obtained using public
datasets. Finally, in Section V, conclusions and future work
are presented.

II. RELATED WORK
A. SMALL-FOOTPRINT KEYWORD SPOTTING
With the advances in keyword spotting in industry and
academia, smart consumer electronics with voice inter-
faces have become widespread. These devices utilize
high-performance processors and multiple microphones for
improved accuracy under various conditions such as noise.
The Google Smart Speaker series have a quad-core appli-
cation processor and more than two microphones [21]. For
such smart speakers, Yu et al. proposed a noise-robust
keyword-spotting model with noise cancellation, using six
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microphones [23]. The number of parameters in the model
was over 5.1 M.

Wearables and IoT devices with always-on voice inter-
faces have become increasingly attractive for hands-free
control and audio scene understanding [30]. For example,
hearables can benefit from built-in spoken keyword spot-
ting for hands-free playback and volume control. In smart
homes, IoT devices can be controlled using natural voice
commands. These devices use low-power microcontrollers
with only hundreds of KB of flash memory and tens of
KB of RAM. Because of the nature of these small devices,
it is difficult to mount multiple microphones. Fernandez-
Marqueset et al. investigated tiny keyword spotting models
for various microcontrollers [22]. Kim proposed a dedicated
chip for wearable IoT devices for keyword-spotting mod-
els [24]. However, these studies on small-footprint keyword
spotting do not consider noise robustness, which is crucial for
successful voice interfaces.

Tiny convolutional neural networks (CNNs) have been
widely used for small-footprint keyword spotting because
they can efficiently learn spatial information from audio
sequences. State-of-the-art networks use efficient struc-
tures composed of repeated blocks based on residual and
depth-wise separable convolutions [2]. For efficiency, these
convolutional networks use one-dimensional (1D) or partial
two-dimensional (2D) convolutions. Utilizing temporal 1D
convolutions, TC-ResNet requires fewer computations than
2D approaches [3]. BC-ResNet employs broadcast residual
learning to address the inefficiency of 2D convolution and
inferior performance of 1D convolution [4]. The authors
apply frequency-wise 1D convolution to 2D audio features
and then average the 2D features over frequency to obtain
temporal features. After temporal operations, the 2D features
are subjected to residual mapping, whereby the 1D residual
information is broadcast.

Neural network compression has also received consid-
erable attention in small-footprint keyword spotting and is
categorized into three approaches: pruning, quantization, and
knowledge distillation. Pruning reduces model size and num-
ber of operations by eliminating unimportant parameters that
do not degrade performance [31]. The quantization method
approximates floating-point values by a set of integers and
scaling factors, to achieve a smaller size for more efficient
computations at the expense of lower bit-width representa-
tion [32]. Knowledge distillation is a learning framework
that utilizes a teacher–student network, whereby the teacher
network transfers its knowledge to enhance the performance
of the student network [8]. Ensemble distillation improves the
performance of a distilled student by extracting knowledge
from the ensemble of multiple teachers, thereby encoding it
for the student [33].
Song et al. proposed a knowledge distillation technique

for a lightweight encoder as a replacement for complex
speech front ends, such as mel-frequency cepstral coefficient
(MFCC) or convolutions, without sacrificing the perfor-
mance of small-footprint keyword spotting [5]. Tucker et al.

TABLE 1. Related work for noise-robust keyword spotting.

investigated two methods to improve the efficiency of a
small-footprint keyword-spotting model, namely, knowledge
distillation and quantization [6]. Kim et al. introduced a
method that simultaneously applies pruning, quantization,
and knowledge distillation to small-footprint keyword spot-
ting [7]. However, these studies on small-footprint keyword
spotting do not consider noise robustness.

B. NOISE-ROBUST KEYWORD SPOTTING
Data augmentation has been widely applied to acoustic
models to improve neural network performance by adding
diversity to the training data. For a successful voice inter-
face, acoustic models must effectively distinguish speech
from background noise. A promising augmentation approach
for improving noise robustness is noise-mixture training,
in which environmental noise is added to clean samples in
the training data [13], [14]. Noise mixture training introduces
difficult training samples into the model, thereby making the
model more robust against noise. Trinh et al. proposed Impor-
tantAug, which augments training data by injecting noise into
unimportant speech regions, and a data augmentation agent
trained to optimize noise addition and minimize its effect on
performance, predicts the importance level of the speech [26].
Noise mixture training is a promising technique that

achieves noise robustness in keyword spotting. However,
it is difficult for a small-footprint keyword-spotting model
to learn loud noise situations; thus, the model becomes
incompetent when confronted by louder noise. Curriculum
learning, which involves progressive training, has been stud-
ied to overcome this problem of acoustic models [15], [16].
Curriculum learning divides the learning process into sev-
eral stages and gradually increases the difficulty of training
samples, training first on easy samples such as clean speech
and then on difficult samples with loud noise [17]. Curricu-
lum learning is more effective than conventional training in
obtaining noise robustness, similar to how a person studies
according to a curriculum. Therefore, research on key-
word spotting widely employs curriculum learning for noise
robustness.

As shown in Table 1, although previous studies on
small-footprint keyword spotting have improved noise
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FIGURE 1. Overview of the proposed joint framework of curriculum learning and knowledge distillation. The
proposed joint framework applies the proposed noise mixture curriculum learning to a large model, whereby
the large model is compressed into a small one using weighted ensemble knowledge distillation.

robustness, their performance still needs to be enhanced
when the noise is intense. Larger models or multimicrophone
approaches display better robustness but are unsuitable for
wearables and IoT devices [23], [26]. Developing robust and
small-footprint keyword spotting is challenging because it
is difficult for tiny neural networks to learn noise robust-
ness. To address this issue, a joint framework of curriculum
learning and compression techniques, such as knowledge
distillation, is required to improve noise robustness in
small-footprint keyword spotting. Although Guimaraes et al.
utilized both curriculum learning and knowledge distillation
for keyword spotting, they used distillation to exploit a mas-
sive self-supervised model, not to compress the keyword
spotting model [26].

Curriculum learning and knowledge distillation are widely
used in small-footprint keyword spotting. Higuchi et al.
proposed dynamic curriculum learning to train a keyword-
spotting model on clean and noisy samples according to the
data parameters [18]. These parameters automatically learn
the difficulty of the classes and instances using gradient
optimization. Ng et al. proposed a keyword-spotting model
called ConvMixer, which along with a traditional curriculum
learning method enhances noise robustness [25]. The training
process is divided into five progressively harder stages, and
the model is initially trained on clean speech samples with-
out noise. A knowledge distillation method for noise-robust
small-footprint keyword spotting, referred to as prototypical
knowledge distillation (PKD), has been proposed to address
the issue of network bias toward samples that are easy to
train [27]. To effectively train hard samples, the PKDmethod
utilizes a prototype distribution based on the distance between
the class centroids and each embedding vector for knowledge
distillation. However, further research that jointly utilizes

curriculum learning and knowledge distillation is required for
small-footprint keyword spotting.

Studies on joint frameworks have been actively conducted
in other fields, such as computer vision and natural language
processing. Zhu et al. proposed a combination of curricu-
lum learning and knowledge distillation methods to solve
the long-sentence training problem in natural language pro-
cessing [27]. Panagiotatos et al. proposed a combination of
curriculum learning and knowledge distillation methods for
computer vision [28]. However, because such studies are
scarce in the field of acoustic modeling, joint frameworks for
noise robustness should be studied.

III. PROPOSED JOINT FRAMEWORK
To overcome the difficulty of learning the noise-robustness
property in small-footprint keyword spotting, we propose a
joint framework that first learns a large teacher network that
is robust to loud noise and subsequently compresses it into
a small student network. To maximize the effectiveness of
the joint framework, we propose and combine novel cur-
riculum learning and ensemble distillation methods. First,
by applying the proposed noise mixture curriculum learning
to a large model, noise robustness under loud noise scenarios
is maximized. Subsequently, the noise-robust large network
is effectively compressed into a small network using the
proposed ensemble distillation.

Fig. 1 shows the characteristics of the proposed joint
framework. Unlike traditional curriculum learning, in which
the range of noise strength is gradually widened, the proposed
curriculum adopts a strategy of gradually increasing the ratio
of noisy samples while learning the noisy samples from an
early stage for overall effective learning. This demonstrates
better performance for loud noise scenarios. The proposed
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Algorithm 1 Proposed Curriculum Learning
Input: Speech dataset DSpeech, Noise dataset DNoise, SNR
distribution Rn
Output: N Teacher Network Snapshots
01: For n in 1: N do
02: For e in 1: En do
03: For dSpeech in DSpeech do
04: Randomly select a dNoise from DNoise
05: Select a SNR r in SNR distribution Rn
06: Calculate weight factor ω to get SNR r
07: dMix ← dSpeech + ωdNoise
08: End for
09: Train teacher network θT with DMix
10: End for
11: Get teacher network snapshot θTn for stage n
12: End for

ensemble distillation method utilizes neural network snap-
shots at each stage of the curriculum learning process. Thus,
the knowledge of the large teacher network is effectively
transferred to the small student network, and the performance
of the compressed network is more effectively preserved.

The proposed curriculum learning and knowledge distilla-
tion work synergistically, as follows: the proposed curriculum
learning induces better performance under loud noise sce-
narios even though the performance is slightly lower when
the noise is weak. The performance degradation under weak
noise scenarios is mitigated by the proposed knowledge
distillation, which ensembles all neural network snapshots
generated during curriculum learning. Therefore, a distilled
network achieves good performance both in early stage net-
work snapshots with weak noise and later-stage network
snapshots with loud noise.

A. PROPOSED CURRICULUM LEARNING
Unlike the gradual widening of the loudness range of noisy
samples in traditional curriculum learning, the proposed cur-
riculum learning jointly trains on clean and noisy samples in
the initial stage, thereafter gradually increasing the proportion
of noisy samples in each subsequent stage. As a result of the
proposed curriculum learning, the performance of the neural
network trained on the initial stage is improved under weak-
noise scenarios, and the neural network trained up to the final
stage has improved performance under loud-noise scenar-
ios. In subsequent noise distillations, these neural network
snapshots efficiently provide information on various noise
intensities.

The key to successful curriculum learning for noise-robust
keyword spotting, is an effective noise mixture strategy for
each curriculum stage. In the curriculum learning process,
the noise mixture strategy determines how to mix noise with
clean speech at each stage to create training samples for the
neural network. The mixture strategy dictates the charac-
teristics of the final neural network as the stages progress.
For example, with traditional curriculum training, in which

FIGURE 2. SNR distribution Rn for each stage n. The probability of
selecting low-SNR samples for each subsequent stage is increased.

the signal-to-noise ratio (SNR) range of noise is gradually
widened, neural networks eventually perform well under
various degrees of noise. However, traditional curriculum
learning is less effective because it is difficult for small neural
networks to learn loud noises. Therefore, the proposed cur-
riculum learning focuses on loud noise situations as the stages
progress, which improves the performance under loud noise
despite a slight drop in performance when noise is weak.

To enhance noise robustness, SNR was employed as the
main metric for the noise mixture strategy. The SNR of an
audio sample is defined as the ratio of the power of speech to
the power of background noise, as in (1).

SNR = 10log10(
Pspeech
Pnoise

), (1)

where P denotes the average power. An SNR of less than 0 dB
indicates that the background noise is louder than the noise
in speech. An SNR of−10 dB indicates that the power of the
noise is 10 times greater than that of a speech sample.

Algorithm 1 presents the training process for the proposed
curriculum learning. The training process is divided into
N progressively more difficult stages. For each stage, the
teacher network is trained on a noise-mixed datasetDMix for e
epochs. Samples from the datasetDMix are newly synthesized
for each epoch according to the SNR distribution Rn of the
corresponding stage. A clean sample dSpeech is mixed with
randomly selected noise dNoise of SNR r . The parameters θT

of the teacher network f are trained on DMix . Consequently,
N neural network snapshots θTn of the teacher network are
obtained.

The SNR distribution Rn comprises the sampling and main
ranges. The SNR of noise samples is selected from the
main range with probability ρ and from the sampling range,
excluding the main range, with probability 1 − ρ. In the
first stage, the SNR is uniformly selected from the sampling
range since the sampling and main ranges are the same.
In subsequent stages, the main range is gradually narrowed
to increase the proportion of noisy samples. Consequently,
the SNR distribution Rn gradually focuses on loud noise sit-
uations as the stages progress. The selected SNR distribution
Rn for each stage n is shown in Fig. 2.
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The settings of the parameters for the proposed curriculum
learning are summarized as follows:
Rn: Rn is a factor that adjusts the focus on loud situations

as the stages progress. The sampling range has a lower bound
of −15 dB for samples with the loudest noise and an upper
bound of 50 dB for almost clean samples. The main ranges
for each stage are [−15, 50] dB, [−15, 10] dB, [−15, 5] dB,
[−15, 0] dB, and [−15, −5] dB. We set ρ to 0.9. The larger
ρ is, the higher is the probability that the SNR of the main
range is sampled. In other words, the larger ρ is, the higher is
the concentration of loud noises. These choices are validated
in Section IV.
N : number of stages. We set the number of stages to five,

as in other curriculum learning studies [18], [25].
Speech augmentation, which is commonly used in the

training of acoustic models, was applied under the same
conditions at all stages [35].

Volume change: The volume of the clean samples was
randomly varied in the range of 40–180%.

Shifting: The speech in the samplewas shifted by 25–125%
to change the central position.

Resampling: Samples were randomly resampled in the
range of 90–110% to change the speed or pitch.

SpecAugment [36]: Samples in the range of 0–5 were
masked in the frequency and time domains.

B. PROPOSED ENSEMBLE DISTILLATION
Knowledge distillation was used to compress curriculum-
based teacher networks into smaller student networks.
The proposed ensemble distillation method considers noise
robustness to maximize the effect of distilling the student
network based on the curriculum of teacher networks. The
proposed ensemble distillation effectively uses all the neural
network snapshots for each curriculum stage.

The knowledge of teacher networks is reflected when
calculating the loss function while distilling the student net-
work. It is necessary to efficiently determine which of the
numerous large networks to receive knowledge from. In the
proposed ensemble distillation, a weighted-stage ensemble
distillation mechanism is adopted, to adjust the weight of the
teacher’s knowledge that should be prioritized according to
the training data when distilling students. Teachers, which
are neural network snapshots of the previous curriculum
learning phase, focus more on loud situations as the stages
progress. Therefore, the noisier the data to be trained, the
more knowledge is passed on from the snapshots in the
later stages, and the cleaner the data, the more knowledge is
passed on from the snapshots in the earlier stages, as shown
in Fig. 3.

We first explain how traditional knowledge distillation and
ensemble distillation work in terms of the loss function, prior
to describing ensemble distillation using all the snapshots for
each curriculum stage. Finally, the proposed weighted-stage
curriculum learning method is presented along with the loss
function and weight-adjustment method.

FIGURE 3. Overview of proposed ensemble distillation. The SNR of a
sample determines the snapshots that transfer the most knowledge.

In traditional knowledge distillation, a teacher network is
used to distill the student network. The teacher logit output
can be represented as zT = f (θT , x), where x is the input
sample, and θT refers to the trained parameters of the teacher
network f ; zS = g(θS , x) denotes the student logit output,
where θS represents the parameters of the student network g.
To determine the best parameters θS , the student is trained to
minimize the cross entropyH between the ground truth y and
the student probability output pS after applying the SoftMax
function σ , as shown in (2) and (3).

pS = σ (zS ) =
exp(zTk )∑K
j=1 exp(z

T
j )

for all classes k, (2)

LSCE = H
(
y, pS

)
=

∑K

k=1
−yk log

(
pSk

)
. (3)

Along with the cross-entropy loss LSCE , the Kullback–
Leibler (KL) divergence between the softened probability
outputs of the teacher and student are considered in trans-
ferring the knowledge of the teacher network, as shown in
(4) and (5). The softened probability outputs pT and pS are
smoothed by a temperature τ , as in other distillation studies.
Consequently, the total loss function is the weighted sum of
the cross-entropy loss LSCE and the knowledge distillation loss
LKD with the loss weight λ, as shown in (6).

pT = σ (zT , τ ) =
exp(zTk /τ )∑K
j=1 exp(z

T
j /τ )

for all classes k, (4)

LKD = τ 2KL
(
pT , pS

)
= τ 2

∑K

k=1
pTk log

(
pTk /pSk

)
, (5)

LS = (1− λ)LSCE + λLKD. (6)

In traditional ensemble distillation, multiple teacher net-
works are used to distill the student network. Let zTm =
f (θTm , x) denote the logit output of each teacher. Some inde-
pendently trained neural networks with the same architec-
ture f , same training algorithm on the same data distribution,
and different initializations by random seeds result in teachers
with different parameters θTm . As shown in (7), themean soft-
ened output PE of N teachers improves performance. Thus,
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Algorithm 2 Proposed Ensemble Distillation
Input:M × N teacher network snapshots
Output: A student network

01: For e in 1: En do
02: For dMix in DMix do
03: For n in 1: N do
04: wn← β

05: If SNR of dMix is main range of Rn
06: wn← α

07: End if
08: End for
09: Get L̂S and P̂E with wn

∑N
n=1 z

Tm,n

10: End for
11: Train student network with L̂S

12: End for

the KL divergence between the mean softened probability
output PE of the teachers and the probability output pS of
the student is used for ensemble distillation, as shown in (8).
The ensemble distillation loss LED replaces the knowledge
distillation loss LKD with the total student loss, expressed as
in (9).

PE = σ (
1
M

∑M

m=1
zTm , τ ), (7)

LED = τ 2KL
(
PE , pS

)
, (8)

L̂S = (1− λ)LSCE + λLED. (9)

The proposed ensemble distillation method uses the neural
network snapshots learned up to the n-th stage to improve
ensemble efficiency. The network parameters θTm,n of the
neural network snapshots can be obtained from as many as
n curriculum stages for the m-th network parameter θTm . Let
zTm,n = f (θTm,n , x) denote the logit output of each teacher.
With N snapshots for each M independently trained neu-
ral networks, a total of M × N snapshots are used by the
ensemble. When assembling a large number of networks, it is
important to induce different networks to create a synergistic
effect without conflicts. However, simply assembling them
all, as in (10), can often cause conflict.

ṖE = σ (
1

M × N

∑M

m=1

∑N

n=1
zTm,n , τ ), (10)

In the proposed ensemble distillation, the ensemble differs
according to the samples used to train the neural network
snapshots θTm,n . Unlike all the snapshots contributing equally
to the ensemble, the proposed strategy is to vary the con-
tribution of each snapshot to the ensemble according to the
training sample. The proposed strategy for adjusting the
weight wn according to the training sample is shown in
Algorithm 2. The weight wn emphasizes the snapshots for the
n-th curriculum stage, as expressed in (11):

P̂E = σ (
1

M × N

∑M

m=1
wn

∑N

n=1
zTm,n , τ ), (11)

The
∑N

n=1 z
Tm,n denotes the subset ensemble with only

snapshots of the nth stage. Thus, the subset ensemble is a
subset of snapshots θTm,n . If the SNR of a training sample x is
included in the main range of the SNR distribution Rn of the
nth stage, the weightwn should be increased to emphasize the
subset ensemble of the nth stage. The weight ws is assigned
the constant α, if the SNR is included in the main range
of the SNR distribution Rn, or the constant β if it is not
included, as shown in (12). The constant α is greater than the
constant β, and these constants are set to appropriate values
through a grid search. Consequently, the proposed ensemble
distillation method is adaptive in emphasizing the snapshots
for the nth curriculum stage according to the training sam-
ple x.

wn =

{
α if x ∈ main range of Rn
β else

(12)

The settings of parameters for the proposed ensemble dis-
tillation are summarized as follows:

τ : The temperature τ of the knowledge distillation loss.
The larger τ is, a smoother teacher’s logit is transmitted to the
student. For the grid search, the temperature τ was set to five,
which is a commonly used value for knowledge distillation.

λ: The weight λ of the knowledge distillation loss. The
larger λ is, the larger is the reflection ratio of distillation
loss. For the grid search, the loss weight λ was set to 0.1,
a commonly selected value for knowledge distillation.
N : number of stages. N was set to five.
M : number of teacher networks. As M increases, the per-

formance improves, but the learning cost also increases.
wn: a factor that adjusts the focus on snapshots for loud

scenarios. The wn consists of α and β. As α increases, the
weight of the snapshots for loud situations increases. As β

increases, the snapshots are reflected evenly. We set α to
1 and β to 0. These choices are validated in Section IV.

IV. EXPERIMENTS
In this section, we present the experiments conducted to
evaluate the effectiveness of the proposed joint frame-
work for noise-robust small-footprint keyword spotting.
The experiments examine the performance and model size
of keyword-spotting models with respect to the methods
employed. To evaluate noise robustness, we compared the
accuracy for each SNR level by adjusting the noise volume in
an unseen noise environment setting, using four public noise
datasets: MUSAN [39], QUT [40], UrbanSound8K [41], and
WHAM [42] for a quantitative comparison.

The experiment consisted of the following five steps: The
proposed joint frameworkwas compared to three state-of-the-
art methods: ConvMixer, ImportantAugust, and PKD. The
efficacy of the proposed curriculum learning was verified
and compared to the baseline curriculum learning methods
without curriculum learning and traditional curriculum learn-
ing methods. The efficacy of the proposed weighted-stage
ensemble distillation was further verified through compar-
isons with baseline ensemble distillation, that is, ensemble
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distillation without curriculum learning, with curriculum
learning, and stage ensemble distillation. The hyperparam-
eters of the proposed curriculum-learning and knowledge
distillation methods were also explored. Finally, we extended
the SNR of the public datasets and evaluated accuracy based
on the SNR in loud noise situations.

A. EXPERIMENTAL SETTINGS
The experimental setup is described in detail to ensure the
reproducibility of this study. To evaluate the effectiveness of
the proposed joint framework, we selected the experimental
settings, including the neural network architecture, data pre-
processing method, and training hyperparameters.

For small-footprint keyword spotting, we used BC-ResNet,
a state-of-the-art neural network architecture [4]. The BC-
ResNet-8 architecture with 321k parameters was used as
the teacher network, and the BC-ResNet-2 architecture with
27.3k parameters was used as the student network. To gen-
erate input data using BC-ResNet, 1 s of raw audio was
preprocessed into 2D features of size 49 × 40 using MFCC
conversion. BC-ResNet uses these inputs to output the clas-
sification results for 11 classes consisting of ten predefined
keywords and one negative class. The training samples for
the negative class included words other than the predefined
keywords or background audio.

When training the teacher or student network from scratch,
the experimental settings were as follows: all code was imple-
mented in TensorFlow; the Adam optimizer was used with
a default learning rate of 0.001 and a common mini-batch
size of 256. When applying curriculum learning, the neural
networks were trained for 4000 epochs, with 2000, 500, 500,
500, and 500 epochs in five stages. The neural networks
were trained for 4000 epochs even when curriculum learning
was not applied. As the number of training samples for the
negative class was more than 10 times greater than that for
one predefined keyword, the class weight of the negative
class was set to 0.1 to prevent bias against the negative
class.

The experimental settings specified to distinguish a student
from the teacher were as follows: the Adam optimizer was
used with a learning rate of 0.001 and a mini-batch size of
256, similar to scratch learning. The students were trained for
4000 epochs, regardless of the distillation method.

B. DATASETS
The Google Speech Commands (GSC) dataset version 2 was
used in all the experiments [37]. This dataset included
approximately 100k single-word audio clips of 35 unique
words. The neural networks were trained using the train-
ing set and evaluated using the test set. Randomly selected
noisy and clean samples were mixed at different SNR levels
to create noisy environments. We used the FSK50k [38]
dataset for training and the MUSAN [39], QUT [40], Urban-
Sound8K [41], and WHAM [42] datasets to evaluate the
performance in unseen noise environments.

1) MUSAN
The public GSC-MUSAN dataset was used in a related
study for noise-robust keyword spotting [26]. We used GSC-
MUSAN mixed with noise from the MUSAN dataset to
augment the clean samples from theGSC dataset. Because the
recordings in MUSAN have variable lengths, GSC-MUSAN
only uses the initial 1 s of each recording and discards shorter
recordings, as the samples are limited to a maximum of 1 s.
After removing the short samples, GSC-MUSAN randomly
selects 175 noisy audio files and combines themwith samples
from the test set.

2) QUT
This dataset contains an audio file named ‘‘HOME-
LIVINGB-1.wav,’’ which comprises 40 min of background
noise recorded in a living room setting. The audio file was
used to construct the test data in a manner similar to that of
a related study on noise-robust keyword spotting [26]. Seg-
ments were randomly selected from this noisy audio file and
blended with clean samples from the test set. Subsequently,
the file sampling rate was modified from 48 to 16 kHz to
match the GSC dataset.

3) UrbanSound8K
This dataset contains 8732 audio files of urban sounds that are
shorter than 4 s from 10 classes: air conditioner, car horn, chil-
dren playing, dog bark, drilling, engine idling, gunshot, jack-
hammer, siren, and street music. All excerpts were obtained
from field recordings uploaded at www.freesound.org.
This dataset was used in a manner similar to the QUT
dataset.

4) WHAM
The WHAM or WSJ0 hipster ambient mixtures dataset is
a compilation of two-speaker mixtures derived from the
wsj0-2 mix dataset merged with authentic ambient noise
samples. These samples were gathered from various public
spaces such as coffee shops, restaurants, and bars within the
San Francisco Bay Area. This dataset was used in a manner
similar to the QUT dataset.

C. STATE-OF-THE-ART METHODS
The keyword-spotting performance of the joint framework
was evaluated and compared with that of the state-of-the-art
methods for noise-robust keyword spotting.

1) ConvMixer
Ng et al. [25] proposed ConvMixer, a new convolutional neu-
ral network architecture that adds a mixer layer to mix
frequency and temporal domain features with 1D temporal,
2D frequency× temporary, and partial 2D convolutions. Con-
vMixer applies traditional noise mixture curriculum learning
as a training strategy to enhance noise robustness. The
training process is divided into five progressively more chal-
lenging stages. Initially, ConvMixer is trained on clean speech
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TABLE 2. Comparison with state-of-the-art noise-robust and small-footprint keyword spotting methods.

FIGURE 4. Efficacy of the proposed joint framework compared with curriculum learning and state-of-the-art methods on the MUSAN and
UrbanSound8k datasets. The proposed joint framework showed accuracy improvement and model size reduction compared to the
state-of-the-art.

samples without noise. In the subsequent three stages, noisy
samples are introduced in increments of −5 dB as follows:
{clean, 0 dB}, {clean, 0 dB, −5 dB}, {clean, 0 dB, −5 dB,
−10 dB}.

2) IMPORTANT AUG
Trinh et al. [26] proposed Important Aug, a method that
enhances the quality of noise samples for training acous-
tic models. This approach involves injecting noise exclu-
sively into unimportant speech areas while leaving important
regions untouched. The significance level for each speech is
estimated by the augmentation agent trained to optimize the
amount of noise introduced while minimizing its effect on
accuracy.

3) PKD
Kim et al. [27] presented a robust knowledge distillation and
feature extraction multilayer method. They proposed three
different distance metrics for knowledge distillation and a
novel feature extraction method that uses the distribution
between class centroids and embedding vectors. Background
noise is randomly injected, and random time shifting is
applied.

D. EXPERIMENTAL RESULTS
1) PROPOSED JOINT FRAMEWORK RESULTS
Table 2 presents the results of the comparison between
the proposed joint framework and recent state-of-the-art
methods. The state-of-the-art ConvMixer, ImportantAug, and

PKD methods were compared in terms of accuracy and
model size. Keyword-spotting accuracy was compared at
different SNRs for four noise datasets: MUSAN, QUT,
UrbanSound8k, and WHAM. The performance of Importan-
tAug on the MUSAN dataset constitutes the experimental
results under observed noise conditions, and the perfor-
mances of the other methods, including the proposed method,
are reported under the experimental results for unseen noise
conditions. The proposed joint framework exhibits better
keyword-spotting performance than all the state-of-the-art
methods under all noise conditions. In particular, the pro-
posed joint framework displays a significant performance
improvement under loud noise condition, where the power of
the noise audio is greater than or equal to that of the speech
audio.

In Fig. 4, the keyword-spotting accuracy of the proposed
joint framework is compared with that of the existing cur-
riculum learning method. The black point shows the results
of applying curriculum learning directly to the small network,
and the red star denotes the results of the proposed method
of distilling the small network after applying curriculum
learning to the large teacher network. The proposed joint
framework shows an average 8% improvement in accuracy
and an average four-fold reduction in model size compared
to state-of-the-art methods. The proposed joint framework
has an accuracy of 96.4% at 20 dB MUSAN, 91.1% at 0 dB
MUSAN, 96.4% at 20 dB UrbanSound8k, and 89.2% at 0 dB
UrbanSound8k, compared with the accuracies of curriculum
learning of 92.3%, 86.1%, 92.5%, and 82.5%, respectively.
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TABLE 3. Evaluation of small and large networks according to curriculum methods.

The performance improvement is significant for loud noise
samples when the joint framework is applied.

2) PROPOSED CURRICULUM LEARNING RESULTS
In this experiment, the performance of the proposed curricu-
lum learning method of our joint framework was assessed.
We verified the efficacy of the proposed curriculum learning
method compared to baseline curriculum learning methods
without curriculum learning and traditional curriculum learn-
ing, similar to that used in ConvMixer.

Table 3 presents the accuracy of keyword spotting on
the MUSAN noise dataset resulting from the application of
curriculum learning to a small network (BC-ResNet-2). ‘‘No
curriculum’’ denotes the result of applying a random noise
mixture, such as ImportantAug or PKD. ‘‘Traditional cur-
riculum’’ denotes the result of applying a general curriculum
learning approach, such as ConvMixer. In the experimental
results, the proposed noise mixture curriculum exhibits the
best performance.

Fig. 5 presents a comparison of keyword-spotting accuracy
for the application of curriculum learning to a large network
(BC-ResNet-8). The traditional noise mixture curriculum
learning applied in ConvMixer displays no performance
improvement compared with the random noise mixture used
in ImportantAug and PKD. With the proposed curriculum
learning, the performance is improved to 83.9% at −10 dB
and 79.7% at −12.5 dB, compared with 82.2% and 77.4%,
respectively, under loud noise scenarios. In addition, com-
pared with the performance of the small network in Fig. 5,
that is, 74.6% at −10 dB and 70.7% at −12.5 dB, a signif-
icant performance improvement is observed. Therefore, it is
difficult to cope with loud noises using a small network, even
when curriculum learning is applied.

Fig. 6 shows the improvement trend of keyword spotting
accuracy at −12 dB on the MUSAN noise dataset in terms
of epochs as learning progresses according to the applied
curriculum learning method. When a random noise mixture
is applied without curriculum learning, the performance con-
verges to 77.4% at 3000 epochs. In addition, when traditional
curriculum learning is applied, performance improvement

FIGURE 5. Accuracy comparison of large networks for the curriculum
methods on the MUSAN dataset.

FIGURE 6. Accuracy of the large networks according to curriculum
methods for different training epochs.

is slower than without traditional curriculum, and the high-
est performances are similar. When the proposed method is
applied, performance improves.

3) PROPOSED ENSEMBLE DISTILLATION RESULTS
In this experiment, we demonstrated the performance of the
proposed ensemble distillation in our joint framework. The
efficacy of the proposed weighted-stage ensemble distillation
was verified compared to three baseline ensemble distilla-
tions: ensemble distillation without curriculum learning, with
curriculum learning, and stage ensemble distillation.

Table 4 shows the comparison results of keyword-spotting
accuracy for the distillation methods. The performances of
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TABLE 4. Evaluation of teacher ensemble and distilled students according to ensemble distillation methods.

FIGURE 7. Ensemble accuracy of teacher networks according to ensemble
methods on the MUSAN noise dataset.

the teacher ensembles and distilled students were compared
with respect to the distillation method. Compared with learn-
ing from scratch using a small network without knowledge
distillation, the performance is significantly improved when
students are extracted through any of the distillation methods.
In addition, ensemble distillation with the proposed cur-
riculum learning improves performance compared to those
without curriculum learning. The comparison confirms that
the proposed weighted-stage ensemble distillation exhibits
the best performance under all noise scenarios.

Fig. 7 shows the keyword spotting accuracy on the
MUSAN dataset for the teacher ensemble methods. The
ensemble using only the final independently trained teachers,
as shown in (7), displays an accuracy of 80.1% at −12.5 dB.
The stage ensemble, which uses not only the final indepen-
dently trained teachers but also the intermediate teachers at
each stage, as shown in (10), displays an accuracy of 80.8%
at−12.5 dB. Finally, the proposed weighted-stage ensemble,
which provides weights for the intermediate teachers at each
stage according to the SNR of the training sample, as shown
in (11), displays an accuracy of 82% at−12.5 dB. This is the
best performance compared with the baseline.

Fig. 8 shows the accuracy of the distilled student networks
on theMUSAN dataset for the ensemble distillation methods.

FIGURE 8. Accuracy comparison of the distilled students according to
ensemble methods on the MUSAN noise dataset.

The ensemble distillation using only the final independently
trained teachers without curriculum learning, as shown in
(7), displays an accuracy of 76.1% at −12.5 dB. The stage
ensemble, which uses not only the final independently trained
teachers but also the intermediate teachers for each stage,
as shown in (10), displays an accuracy of 76.9% at−12.5 dB.
Finally, the proposed weighted-stage ensemble, which pro-
vides weights for the intermediate teachers at each stage
according to the SNR of the training sample, as shown in (11),
displays an accuracy of 78.6% at −12.5 dB. This is the best
performance compared with the baseline.

E. JOINT FRAMEWORK HYPERPARAMETERS
1) PROPOSED CURRICULUM LEARNING
As described in Section III, the proposed curriculum learn-
ing method varies the ratio of loud noise samples at each
stage with speech augmentation applied simultaneously.
In this experiment, we compared keyword-spotting accuracy
according to the noise mixture strategy for each stage and
considered whether speech augmentation was applied. The
MUSAN dataset was used for the comparisons.

Fig. 9 compares the accuracy of the teacher network in
terms of the probability ρ for the SNR distribution Rn. When
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FIGURE 9. Comparison of the noise mixture strategy according to
probability ρ of the main range on the MUSAN dataset.

FIGURE 10. Comparison of the noise mixture strategy between a stage
boundary on the MUSAN dataset.

the selected probability ρ is 0.9, the accuracy improves
slightly from 79.5% or 79.6% to 79.7% at −12.5 dB com-
pared to other values of probability ρ.
Fig. 10 shows a comparison of the accuracy of the teacher

network in terms of the loud–noise ratio at each stage. The
selected curriculum increases the main range for each stage
as follows: [−15, 50] dB, [−15, 10] dB, [−15, 5] dB, [−15,
0] dB, and [−15, −5] dB, displaying better performance
than other curriculums. In particular, the selected curriculum
shows slightly better performance, 79.7% versus 79.1% at
−12.5 dB, at the main ranges of [−15, 50] dB, [−15, 5] dB,
[−15, 0] dB, [−15, −5] dB, and [−15, −10] dB for each
stage.

Fig. 11 compares the accuracy of the teacher based on
whether speech augmentation was applied. The accuracy
improves slightly from 79.4% to 79.7% at −12.5 dB, when
speech augmentation is applied.

2) PROPOSED ENSEMBLE DISTILLATION
As described in Section III, the proposed ensemble distilla-
tion method distills a student using neural network snapshots
for each curriculum stage. In this experiment, we explored
the hyperparameters for the proposed ensemble distillation,
including the number of teachers used and the size of the
teacher network. The MUSAN dataset was used for the
exploration.

Fig. 12 shows a comparison of the accuracy with respect
to the constants α and β. The constants α and β were set
to 1 and 0, respectively. The performance of the proposed
ensemble for the selected constant s, as shown in (11), was

FIGURE 11. Comparison of the noise mixture strategy depending on
whether augmentation was applied on the MUSAN dataset.

FIGURE 12. Comparison of the proposed ensemble according to α and β

of the weight factor wn on the MUSAN dataset.

FIGURE 13. Comparison of the ensemble depending on the number of
teachers on the MUSAN dataset.

better than those of other choices, with the accuracy improv-
ing slightly from 81.7% to 82% at −12.5 dB.
Fig. 13 shows a comparison of the accuracy in terms of the

number of teachers for the ensemble, as shown in (7). The
performance of the ensembles is better than that of the teach-
ers. Accuracy improves as the number of teachers increases,
78.8% with no ensemble at −12.5 dB to 80.1% with an
ensemble of five teachers.

Fig. 14 shows a comparison of the accuracy of the teacher
network with respect to the number of network parameters.
The larger the size of the teacher, the higher is the accuracy.
In the case of a teacher with 120k parameters, the accuracy is
75.1%, as opposed to 79.7% when the number of parameters
is increased to 350k and 80.9% when the number of parame-
ters is increased to 700k.

The ensemble using a larger size and number of teachers
displays better accuracy. An appropriate size or number of
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FIGURE 14. Comparison of teachers according to the number of network
parameters on the MUSAN dataset.

FIGURE 15. Accuracy of the (a) proposed joint framework and
(b) curriculum learning according to the SNR on four noise datasets.

teachers can be selected considering the limitations of com-
puting resources.

F. RESULTS ON EXTENDED SNR OF NOISE DATASETS
Thus far, the experiments were conducted using pub-
lic datasets to compare three state-of-the-art methods.
We extended the SNR of public datasets and evaluated their
accuracy according to the SNR in loud noise situations.
Fig. 15 illustrates the keyword-spotting accuracy of the pro-
posed joint framework in terms of SNR on four public noise
datasets. The proposed joint framework showed an accuracy
of 66.8% at −15 dB MUSAN, 54.1% at −15 dB QUT,
59.6% at −15 dB UrbanSound8k, and 53.3% at −15 dB
WHAM, compared with the accuracies of curriculum learn-
ing of 57.2%, 43.2%, 50.2%, and 43.9%, respectively. The
performance improvement is significant for loud noise sam-
ples when the joint framework is applied.

V. CONCLUSION
This paper presents the first study on a joint framework of cur-
riculum learning and knowledge distillation for noise-robust
and small-footprint keyword spotting. The main finding is
that distilling a small network after applying curriculum
learning to the large teacher network is superior to directly
applying curriculum learning to the small network. Key-
word spotting is a voice interface technology that is already
widespread in consumer electronics, such as smart speak-
ers. However, keyword-spotting models must be more robust
and lighter for battery-powered and resource-constrained
devices. We believe that the proposed joint framework
will promote keyword-spotting-based voice interfaces for

wearable devices, such as hearables and IoT devices for smart
homes.

This study proposes a joint framework that benefits from
curriculum learning and knowledge distillation. We propose
curriculum learning with a new noise mixture strategy and
knowledge distillation with an effective ensemble of neural
network snapshots for each curriculum stage to enhance the
effectiveness of the joint framework. In particular, the pro-
posed joint framework applies the proposed curriculum learn-
ing to a network that is sufficiently large to learn various noise
situations. Subsequently, the proposed ensemble distillation
is applied to compress the large network into a sufficiently
small network for onboard microcontrollers. The proposed
joint framework achieved superior accuracy in noisy situa-
tions compared to state-of-the-art methods. In particular, the
proposed joint framework achieved small-footprint keyword
spotting with an accuracy of 79.1% at an SNR of −12.5 dB
on the MUSAN dataset. Therefore, the proposed framework
can significantly improve the usability of voice interfaces in
consumer electronics.

The limitations of our study and potential directions for
future research are summarized as follows:

1) Our research targeted low performance, low power, and
tiny consumer devices. A limitation is that more research is
required on the adaptive operation of devices with different
numbers of microphones and performances. Therefore, our
future work will focus on a joint framework that considers
hardware-specific conditions, similar to the research field of
hardware-aware neural architecture searches [43].

2) We treated all sounds except voice commands as noise,
but audio-based consumer technology can advance scene
understanding through comprehensive noise analysis [30].
Recognizing the context of ambient noise can improve voice
recognition or situational awareness.

3) We demonstrated the effect of the joint framework
and presented a knowledge distillation method to enhance
it; however, there are additional considerations. Studies on
new loss functions or knowledge transfer methods [44] have
been actively conducted in knowledge distillation to boost
teacher-student matching. Therefore, in future work, we will
apply advanced loss functions and transfer methods to the
joint framework to improve the performance under loud noise
scenarios.
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