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ABSTRACT This study introduces a novel, hand-drawn language designed to foster human-robot
collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’
line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints,
and timber placement within a framework. A proof-of-concept prototype has been developed, integrating
object detectors, keypoint regression, and traditional computer vision techniques to interpret this language
and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the
successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a
mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical
positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The
positioning error, approximately 3 pixels, meets industry standards.

INDEX TERMS Computer vision, cooperative systems, hand-drawn language, human–robot interaction,
robot learning, timber-joinery layout, wood stereotomy.

I. INTRODUCTION
Wood stereotomy, the process of producing wooden struc-
tures for assemblability requires great skill and is a key
aspect of carpentry and joinery. Among others, this process
involves two critical tasks: layout and cutting. Layout is a
highly skilled process that involves locating and marking
woodworking joints, such as mortise-and-tenon joints, that
connect timbers in a timber frame [1]. Cutting involves using
saws, drills, and chisels to shape the wood according to the
marked layout. Traditionally, due to the expertise involved,
senior carpenters predominantly handle the layout, while
cutting the joints becomes a collective effort, with everyone
contributing [2].

Motivated by the need to repositionwood stereotomy as the
most sustainable wood construction method and overcoming
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FIGURE 1. A proof-of-concept prototype that reads hand-drawn lines and
symbols on a workpiece to locate and classify cutting operations.

the challenges posed by automation in traditional trades,
there has been growing interest in exploring how industrial
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robots can work collaboratively with skilled carpenters and
joiners. By combining robot precision and speed with human
creativity and experience-based decision making, there is
room for significant improvements in the wood stereotomy
process that can potentially expand the possibilities of both
the trade and the construction industry. Thus, effective
communication between skilled workers and robots is crucial
for successful collaboration in wood stereotomy.

Traditionally, carpenters and joiners have used drawings
to convey instructions to their colleagues regarding where to
make cuts and how to organize their tasks. However, recent
advancements in computer vision and machine learning have
opened up new possibilities for utilizing visual cues to enable
robots to understand the intentions of human carpenters
and joiners, making this relationship more efficient and
productive.

Recent cutting-edge research by Pedersen and Reinhardt
[3], [4] has delved into the application of computer vision
and machine learning for the autonomous interpretation of
instructions from experts in hand-drawn digital fabrication
tasks. These investigations have made significant strides
by highlighting the critical role of incorporating additional
semantic content into visual cues and stressing the need to
create visual languages that foster efficient communication
between humans and robots. Despite the undeniable value
of these studies, there is still a necessity to develop
task-specific languages tailored to unique applications, such
as wood-stereotomy. Moreover, it is essential to devise more
quantifiable approaches to assess the effectiveness of these
languages under real-world challenges, including varying
materials, lighting conditions, and other factors.

Our work proposes a novel approach to human-robot col-
laboration in wood stereotomy by presenting a hand-drawn
language inspired by traditional techniques from various cul-
tures worldwide. This language includes a richer vocabulary
that allows for a broader range of operations and provides
solutions for handling mistakes made by skilled workers,
which are difficult to erase. We generate a large dataset
with more than 600 images, including various materials and
drawers, which serve as a benchmark for future work in this
field. To evaluate the effectiveness of our proposal, we also
propose and develop a computer vision solution with its
corresponding metrics to assess its suitability. We posit that
collaborative human-robot wood stereotomy has the potential
to integrate time-tested, sustainable building techniques into
Construction 4.0. Our proof-of-concept prototype is depicted
in Figure 1.

This study presents several contributions to the field of
wood stereotomy and human-robot collaboration, including:

• Generation of a novel dataset of hand-drawn timber-
joinery layouts, drawn by six different individuals on six
distinct wood species’ sawn surfaces.

• Development of a hand-drawn language specifically
designed for human-robot collaboration in wood
stereotomy, capable of being interpreted by both carpen-
ters and robots utilizing computer vision techniques.

• Empirical assessment of the proposed hand-drawn
language and computer vision solution, demonstrating
the validity of the approach and highlighting potential
future challenges.

• Provision of all necessary code for the replication of the
study’s results, including the novel dataset.1

The rest of the manuscript is organized as follows:
Section II provides an overview of the state of the art and
related work, Section III describes the characteristics of
timber-joinery layout, Section IV describes the proposed
hand-drawn language, Section V describes the computer
vision approach, Section VI describes the construction
of the dataset used in this work, Section VII presents
the experimental results, and Section VIII describes our
conclusions and future work.

II. LITERATURE REVIEW
A. HUMAN-ROBOT COLLABORATION IN WOOD
STEREOTOMY
An increasing number of small and medium-sized man-
ufacturers recognize the potential productivity benefits of
integrating humans’ problem-solving skills and creativity
with the strength and repeatability of industrial robots to
tackle ill-structured problems. However, to achieve this
goal, effective communication channels must be established
between humans and robots that are easily understandable
by both parties. Failure to do so can lead to frustration and
inefficiencies in human-robot collaboration (HRC) [5].

According to Sziebig [6], mastering the communication
challenges involved in working with these new types of
workers will enable us to create a new type of colleagues.
Several methods are available to support HRC communi-
cation, including gestures (e.g. [7]), speech (e.g., [8]), and
computer vision techniques (e.g.l [4]), such as the method
employed in this paper, which uses draws and cameras
to facilitate communication between humans and robots.
However, selecting the appropriate communication method
depends on the specific HRC application, and safety remains
the primary concern at all times.

Research in HRC for carpentry tasks has primarily
focused on the use of robots for the assembly of timber
structures. Numerous studies have explored this area, such
as Kramberger et al. [9], Zhang et al. [10], Kunic et al. [11],
Wang and Wang [12], Kyjanek et al. [13], Devadass et al.
[14], and Stumm et al. [15]. These studies typically involve
the on-site manipulation of wooden building components,
with communication between humans and robots facilitated
by offline programming and teach programming through
Augmented and Virtual Reality media. On the other hand,
Solvang et al. [16] and Sziebig et al. [6] have taken a different
approach by exploring HRC in manufacturing processes like
machining, grinding, and deburring. They use hand-drawn
sketches on the workpiece to communicate the tool path to
an industrial robot.

1https://github.com/ngunsu/hand-drawn-article/tree/main
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Pedersen et al. [4] have proposed a novel method for
providing visual feedback to robotic fabrication by detecting
hand-drawn markings on objects, which uses a camera to
recognize closed/open curves or lines representing cut lines
that a robot system can execute. In a more recent work
[3], the same team emphasizes the importance of using a
visual language for communication through drawings, rather
than isolated symbols. However, despite its innovation, their
approach lacks certain crucial elements required to determine
its suitability for use in wood stereotomy. For example,
it would benefit from a more diverse set of samples, different
materials, a quantifiable analysis of results, and a more
comprehensive language that aligns with carpenters’ existing
knowledge and allows the robot to automatically analyze the
entire workpiece, regardless of its orientation and position.

Our work introduces a comprehensive language that draws
from traditional timber-joinery layout lines and symbols,
which would be familiar to carpenters. By adopting such
a rich language, we can expand the range of operations
that a vision-based collaborative industrial robot system can
perform in wood stereotomy.

B. COMPUTER VISION AND MACHINE LEARNING
It is crucial to apply computer vision and machine learning
techniques to achieve precise comprehension and inter-
pretation of hand-drawn languages. By leveraging these
techniques, robots can accurately comprehend and integrate
the cutting instructions that human partners draw on the
workpiece by hand. Thus, it is necessary to thoroughly review
techniques such as object detection, image segmentation, and
keypoint regression to comprehend the proposed solution that
we will present in section V.
Object detection involves identifying and categorizing one

or more objects in an image, which can be visually distinct
from their background, such as a car, an apple, or in our case,
a particular type of sketch. Typically, an object detector scans
a list of pre-trained objects and returns each detected object’s
label and bounding box coordinates, usually defined by four
coordinates, x1, y1, x2, and y2, that form a rectangular shape
around the object.

There are two main types of learning-based object detec-
tion methods: one-stage and two-stage. One-stage methods,
including YOLO [17], and others like SSD [18], tend to
be faster but less accurate than two-stage methods such as
Mask R-CNN [19] and Cascade R-CNN [20], asmentioned in
[21]. YOLO, a popular one-stage method, involves training a
single convolutional neural network to predict a fixed number
of bounding boxes across an input image. After predicting
the bounding boxes, the result is filtered to avoid redundant
detections. YOLO achieves a balance between speed and
accuracy, particularly in newer versions such as [22], [23],
and [24].
Keypoint regression serves as an essential method for

identifying specific feature-related coordinate pairs (x, y) of
an object. For instance, in facial recognition domains [25],

this technique aids in pinpointing facial landmarks. In
our context, it can help determine drilling locations. The
application of keypoint regression needs solving a regression
problem, with the quantity of keypoints per object being a
configurable parameter. A straightforward implementation
can be realized via a classifier such as [26] and [27], with the
output calibrated to yield a specified number of coordinates
for regression analysis. Nonetheless, certain methodologies
may incorporate supplementary steps to enhance the pre-
cision of keypoint locations. For example, in [28], the
authors introduced a pose estimation strategy utilizing pose
refinement to generate more accurate 2D image poses.

Lastly, it is important to delve into image segmentation
techniques, which assign unique labels to each pixel in
an image, facilitating differentiation between hand-drawn
sketches and wood textures. A fundamental strategy is
color segmentation, focusing on filtering a specific color
range. Despite being simple and effective, this method lacks
robustness, often necessitating recalibration in response to
varying environmental conditions [4]. Alternatively, more
sophisticated solutions use deep learning to distinguish
between categories [29]. Although these methods exhibit
higher resilience to lighting variations, they necessitate
extensive pixel labeling, which may not be always practical.
In this article, we put forth an alternative grounded in
traditional techniques, demonstrating robustness to varying
illumination changes and requiring less frequent manual
calibration

III. TIMBER JOINERY LAYOUT
According to Beemer [30], layout is the handcrafted method
used by carpenters for locating and marking each woodwork-
ing joint in each member of a wooden structure. Carpenters
often use timbers that vary from nominal dimensions and
may be out of square. Timbers may be unseasoned and
change shape over time. In Western culture, there are mainly
two distinct layout approaches known as the scribe rule
and square rule to work through these irregularities. Timber
layout is also a communication system between colleagues.
The graphic language of the carpenters consists of lines and
symbols drawn or marked on the faces of the workpieces.
Some symbols indicate the location and orientation of each
timber in the frame so that any colleague on site will know.

Carpenters use a unique set of symbols (similar to an
alphabet) and lines to draw the layout, as seen in Figure 2.
While these symbols may vary slightly from country to
country, their purpose remains consistent, which is to identify
the position and orientation of each part within the final
frame assembly while the workpiece is on the workbench
(sawhorses). Hand-drawn marks on the workpiece’s faces
indicate where waste needs to be cut and where holes should
be drilled. Additionally, carpenters use numerals, letters, and
special symbols to communicate a visual graphic language to
other carpenters and apprentices about the local coordinate
system. Timber layout allows carpenters to adapt the joinery
to each workpiece’s individual imperfections, deformations,
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FIGURE 2. Example of a timber joinery layout using our proposed hand-drawn language.

and dimensional variations. Therefore, carpenters may use
different measurement systems, such as the square rule
or scribe rule, depending on how regular or irregular the
workpiece is.

In the next section, we describe a hand-draw language
for human-robot collaboration on wood stereotomy, using
traditional carpenters’ alphabets as the base.

FIGURE 3. Layout symbols (a) reduce, (b) remove, (c) end-cut line,
(d) invalid line, (e) peg hole, (f) mortise side, (g) reference face, and
(h) arris.

IV. PROPOSED HAND-DRAWN LANGUAGE
Our proposed visual language is composed of eight symbols
and lines, as illustrated in Figure 3. The symbols help identify
the coordinate system of the workpiece, and each line or
segment’s purpose. The combination of these lines, symbols,
and strokes defines the cutting operations required on the
workpiece. The symbols selected comprise the smallest
possible set needed for wood stereotomy and are currently
used by carpenters. This choice was based on evidence from
both literature and practice [1]. The eight symbols in the
language are:

• Reduce (see Figure 3a): The X symbol within an
area bounded by lines or the edge of the workpiece
indicates where to reduce a cross-sectional area of the
workpiece. Figure 2 shows the instruction cut the tenon
cheeks (broadsides) here

• Remove (see Figure 3b): The O symbol within an area
enclosed by lines indicates where to completely remove

a cross-sectional area of the workpiece. Figure 2 shows
the instruction cut a through mortise here.

• End-cut line (see Figure 3c): The X symbol overlaid on a
line indicates where to cut off the end of the workpiece.
Figure 2 shows the instruction cut off the workpiece here.

• Invalid line (see Figure 3d): The zigzag symbol overlaid
on a line indicates that this line is useless. Figure 2 shows
the instruction ignore this line.

• Peg hole (see Figure 3e): The symbol of a cross inside a
circular stroke indicates where to drill a hole for a peg.
Figure 2 shows the instruction drill a hole here. The
center of the cross inside the circular stroke indicates the
precise location for drilling.

• Mortise side (see Figure 3f): The symbol of a little
rectangle overlaid on a line segment indicates that the
line segment represents one side of a mortise. Figure 2
shows the instruction cut a through mortise here. This
symbol is not traditional and was created by the authors
to make it easier for the robot to recognize the sides of a
rectangle.

• Reference face (see Figure 3g): The Coco Chanel-like
symbol indicates the main surface (usually receiving the
floor or wall and roof sheathing) on a workpiece from
which measurements are taken for the layout. In general,
each workpiece has two reference faces that are adjacent
and square to each other. Figure 2 shows the instruction
this side up or out.

• Arris (Figure 3h): The arrowhead symbol indicates the
edge along which two adjacent reference faces of the
workpiecemeet. Figure 2 shows the instruction this arris
up and out

In the language we propose, symbols, lines, and segments
can be placed on any side of the workpiece. However, the
side showcasing the reference face is the richest in terms of
information and serves as the starting point for extracting
the 3D details of each task. Once the reference face is
processed, it is critical to collate additional information from
the remaining sides to ascertain the depth, inclination, and
shape of the task. To achieve this, we use the same symbols,
lines, and segments on the other sides, but as a 2D projection
of the whole task.

For clarity, let us consider the example illustrated in
Figure 4. In this scenario, two peg holes can be employed
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FIGURE 4. This image illustrates how two peg holes can be utilized to
determine the angle of attack for drilling a hole in the workpiece.

to set the angle and distance the robot-tool must adopt when
drilling a hole. The top peg hole indicates the starting point
of the drilling, while the lateral peg hole represents the
projection of the distance and angle that the drilling tool must
adhere to. This example showcases how we apply the same
approach to other symbols, utilizing the projection technique
to obtain the necessary information.

FIGURE 5. Computer vision pipeline.

V. COMPUTER VISION APPROACH
Our proposed solution leverages computer vision to auto-
matically detect and recognize symbols, lines, and segments
present on a workpiece. These elements encapsulate crucial
information pertinent to the task at hand. The solution
unfolds in a four-step process, ultimately resulting in the
information being fed into the robot’s software to perform the
corresponding tasks. Figure 5 provides a visual representation
of this pipeline.

Step 1: In the first step of our proposed process, the entire
workpiece is scanned using a depth camera. The camera
generates a point cloud representation, which maps the 2D
pixel coordinates (x, y) of the image I to their corresponding
3D positions (X ,Y ,Z ) with respect to the robot’s manipulator
arm. If the workpiece is larger than the camera’s field of view,
the robot must take multiple shots from different positions

to obtain a complete representation. Additionally, this step
allows us to segment the workpiece from the workbench by
filtering by distance, as we assume that the position and size
of the workbench are known. The output of this step is a
fully mapped workpiece, with 2D to 3D mapping (x, y) →

(X ,Y ,Z ). In our proposal, the only face of the workpiece that
is not mapped is the one facing the workbench. However, this
face is not essential to our solution.

FIGURE 6. Example of symbol detection on a workpiece.

Step 2: In the second step of our proposed process,
we aim to detect symbols as illustrated in Figure 6. These
symbols can either represent instructions, as shown by
symbols (a, b, c, e) in Figure 3, or serve as complementary
information, as depicted by symbols (d, f , g, h) in the same
figure. To achieve this, we employ a CNN-based object
detector. This detector yields a list of 2D bounding boxes
(pixel coordinates) accompanied by their respective labels
and confidence scores, which assist in filtering out improb-
able symbols. In Section VII, we train and evaluate three
distinct object detector solutions, including their variations,
to assess the effectiveness of our proposal. It is important
to remember that when selecting an object detector for
robotic applications, a balance between speed and accuracy
is essential; two crucial criteria for real-time performance.

Step 3: During the third step, we pinpoint the reference
face and all its associated symbols. Out of the detected
symbols, we are primarily interested in the symbols that indi-
cate a task instruction, such as cutting, reducing, or similar.
Following this, we extract the task-specific details for each
such symbol. This step encompasses two potential scenarios.

• If it is a peg hole symbol: Initially, we locate the
corresponding peg hole on one of the lateral sides. Using
a CNN-based regression model, we pinpoint the central
point of the cross within the peg holes. The regres-
sion model is tailored to ascertain the central point’s
normalized 2D coordinates (x, y), with values ranging
between 0 and 1. We transform a generic CNN-based
image classification model to create this regression
model, altering its output layer to accommodate two
features. These features indicate the coordinates x and y
of the peg hole. For training, the CNN regression model
uses cropped images of the peg holes from the ground
truth. During inference, the cropped images are from
the bounding boxes detected in the preceding step. In
our exploration of model options, our focus remains on
efficiency, emphasizing compact and fast models in both
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training and inference. A detailed evaluation of different
models is presented in Section VII.

• If it is a reduce, remove, or end-cut line symbol:
In this scenario, the system is required to distinguish
between the lines drawn by a human operator and
the inherent texture of the wood. While traditional
color segmentation techniques based on color range
have been used for this task (e.g., [4]), they often
require manual calibration due to variations in perceived
color resulting from different locations and times of
the day. In contrast, we propose a similar yet more
illumination-invariant approach requiring less frequent
recalibration. Our methodology involves k-means color
segmentation [31], effectively differentiating lines from
the wood texture.
We use the bounding box information from step 2 to
automatically differentiate the colors of the lines and
the background using color clustering. Given that
the bounding boxes of the symbols contain more
background than lines or strokes, we use two clusters
to separate the lines from the background. The cluster
with fewer pixels is identified as stroke, with the other
cluster representing the background. We segment the
entire workpiece by utilizing these established clusters,
assigning each pixel to its nearest cluster. For instance,
in Figure 7, we use a peg hole symbol to automatically
identify the two color clusters. The image on the left
displays the original bounding box, while the one on
the right shows the segmented image, revealing two
clusters: yellow and purple pixels. Since the yellow
cluster has fewer pixels, it is identified as the drawn
lines.
Upon completion of k-means clustering, the work-
piece is fully segmented. We then leverage computer
vision tools like contour detection to determine the
details of each task, similar to previous aproaches [4].
For instance, we identify the contour enclosing the
symbol for tasks requiring reduction or removal. We
detect the line passing through the symbol for the
end-cut line, a task accomplished using Hough Line
Transform.
While this method is suitable, it is robust under specific
conditions. Its effectiveness heavily relies on a high
contrast between the drawings and the wood texture,
which can be achieved using stroke colors that starkly
contrast the workpiece. This process is applied to all
faces involved in the task.

Step 4: The final stage of the process entails using all the
information collected in the previous steps to generate the
tasks that the robot must execute. The deep camera’s output
plays a crucial role in this step, as it supplies a normals data
point cloud that allows us to determine each task’s details
with high accuracy. Since our primary focus is on wood
stereotomy, the majority of tasks can be predefined offline,
necessitating only the adjustment of parameters based on the
locations identified on the workpiece.

FIGURE 7. Example of k-means color clustering: On the left is the original
image, while on the right is the segmented image, achieved through the
use of two clusters.

VI. DATASET GENERATION
The proposed visual language was employed to produce
timber layouts across more than eight different wood species,
such as pinus radiata and lenga. A team of six individuals
was tasked with drawing symbols, lines, and segments on
each workpiece. Our strategy involved combining layouts
from different team members and wood species to generate
a varied dataset that can assist in evaluating the effectiveness
and robustness of the suggested computer vision solution and
future ones.

Our process for generating each sample in the dataset was
methodical. Each workpiece was within the length range of
30-90 cm and had a maximum width of 60 cm. To ensure a
well-balanced dataset, we maintained a consistent number of
symbols per sample. Among the symbols, only the borderline
symbol had a higher occurrence, appearing four times more
frequently than the other symbols.

FIGURE 8. Image samples from the generated wood stereotomy dataset.

We set up a collaborative robot, UR5, which had a ZED2
stereo camera mounted on it, to capture visual images of
each workpiece. Starting from a position 40 cm above the
workpiece, the robot began to capture image sequences
by making small displacements along the long axis of the
workpiece. To ensure enough images for the object detector’s
training process, we obtained ten visual images of 1280 ×

720 with depth information for each workpiece. However,
due to practical limitations, only 70% of the samples were
captured using this procedure, while the remaining 30% was
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TABLE 1. Dataset specifics: Each group in the dataset corresponds to a different individual who drew a timber layout on the workpieces. The
abbreviations FQ, EV, CQ, JN, LG, and LC correspond to initials where the first letter represents the first name and the second letter represents the last
name of each expert.

obtained using standard cameras in an attempt to manually
emulate the robot procedure.

The details of the symbols dataset are presented in Table 1,
where each group’s name represents the first two letters of
the human collaborator who drew the layout. Figure 8 shows
image samples from the dataset.

We ensure that the symbols and their corresponding
bounding boxes are provided for each image, accurately
outlining the objects in the image. To further aid in object
detection and recognition, we provide an image mask that
delimits the boundaries of each workpiece in the image.
We also give a set of points of interest, as discussed in the
previous section, which serves as additional cues to define
the robot tasks.

VII. EXPERIMENTS
A. SYSTEM SETUP
Weuse C++ and Python for the implementation of each one of
our experiments. In particular, we use Pytorch [33] to train the
different models evaluated in this work. For the evaluation,
we use an 8-Core Intel Core i7-1070 desktop computer with
32 GB in RAM and an NVIDIA GeForce RTX 3090.

B. SYMBOL DETECTION
Our experiments evaluated three object detection solutions
for identifying hand-drawn symbols on workpieces. Specif-
ically, we trained and assessed seven models with varying
numbers of parameters. We aimed to measure their precision
and their runtime performance, determining the solution’s
suitability for real-time applications. The models we trained
and evaluated include YOLO5nu [23], YOLO5mu [23],
YOLO5m6u [23], YOLO8n [24], YOLO8m [24], YOLO8x
[24], and RT-DETR [32]. Among these, YOLO5nu is the
smallest and fastest, while YOLO8x is the largest and
slowest. We determined the optimal parameters for each
model through a grid search, considering batch sizes and
learning rates. During training, we utilized multiple image
augmentations such as angle, saturation, exposure, and hue
value adjustments. After identifying the best parameters,
we retrained the network on the entire training dataset and
conducted the final evaluation of the testing set.

Almost all models were trained using batch size 16 and
image size 640× 640x3 except for YOLO5m6u, which used
images of 1280 × 1280x3 and batch size 8 due to memory

requirements. Other parameters were left as default. The
learning rate of all models was the same at 0.01.

Table 2 displays the results of our symbol detection
experiments. The mean average precision for each model
exceeded 85%, indicating robust generalization across
diverse collaborators and wood types. Among the symbols,
the invalid line exhibited the weakest performance. The
invalid line symbol poses a unique challenge as it is
drawn over other symbols or lines, resulting in greater
appearance variability. This intricacy hinders the detector’s
ability to generalize, requiring more training samples than
other symbols. Additional challenges arose with similar X
symbols, such as the reduced operation and the end-cut line.
Notably, the X symbols were often mistakenly identified
between the reduce and the end-cut-line, indicating a need
for further refinement in distinguishing between these two
symbols.

In Figure 9, it is evident that most models can oper-
ate in real-time (exceeding 30 FPS) on desktop devices
and GPU-embedded devices like the Jetson AGX Orin.
The latter is particularly well-suited for robotics appli-
cations, owing to its compact size and reduced energy
consumption. The importance of using embedded devices
in robotics stems from their ability to offer real-time
processing, reliability, customizability, seamless integration,
and cost-effectiveness. These factors contribute to devel-
oping more efficient, responsive, and affordable robotic
systems that perform tasks in various environments and
conditions.

C. PEG HOLE DETECTION
We evaluated six models to determine the drilling locations
of peg holes. On the one hand, we assessed faster and smaller
models such as ShuffleNet [26] and ResNet-18 [34]. On the
other hand, we looked into larger and relatively slowermodels
like ConvNeXt Tiny [35] and ConvNeXt Large [35]. We
utilized pretrained models from Torchvision, modifying only
the final layers to perform regression instead of classification.
The Optuna [36] hyperparameter optimization framework
was employed to identify the best parameters for each
model. The hyperparameter optimization was done using a
4-fold cross-validation strategy and conducting 100 trials per
model. The parameter search covered a range of batch sizes,
learning rates, optimizers, learning decay rates, and scheduler
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TABLE 2. Dataset symbols evaluation using different object detectors. Higher is better. The results are an average of 5 runs.

FIGURE 9. The runtime performance of the symbol object detector is
evaluated on both a desktop RTX 3090 GPU and a Jetson AGX Orin
embedded device. For all experiments, we utilize TensorRT. In the case of
the Jetson AGX Orin, evaluating RT-DETR runtime was impossible due to
software limitations.

strategies. Table 3 shows the final hyperparameters chosen for
each model.

TABLE 3. Hyperparameters for regression models, optimized using
Optuna. Abbreviations: lr (learning rate), bs (batch size), g (gamma or
factor), gs (gamma step), opt (optimization method), and sch
(optimization scheduler). Training duration ranged from 100 to
200 epochs, with early stopping implemented after 30 epochs without
improvement. All models were trained in 16-bit mixed precision.

To ensure robustness, we augmented the input data with
rotations, vertical and horizontal flips, and color jitter. We
chose the Smooth L1 Loss as our loss function. The input
image size for each peg hole was resized to 128 × 128 × 3.
The outcomes of our experiments are presented in Table 5.

As depicted in the table, the average L2 error is under 4 pixels,
demonstrating the viability of our proposed method. The JN
subset posed a greater challenge for the network due to the
texture of the material, as JN was the sole collaborator using
non-brushed wood.

All regression models demonstrated efficiency in runtime,
completing tasks in under 12 ms on desktop and embed-
ded GPUs. Notably, ShuffleNet and ResNeXt exhibited a

favorable balance among performance, training duration, and
runtime. Generally, the regression phase barely added to the
total processing time, ensuring the real-time performance of
our computer vision solution. Figure 10 provides a glimpse
of the regression outcomes.

TABLE 4. This table displays the quantity of peg holes allocated for
training and testing purposes. Specifically, the JN and LC subsets were
employed for testing and the others subsets for training, consistent with
previous experiments.

FIGURE 10. Regression outcomes from utilizing ShuffleNet on the testing
subset, where red represents ground truth and yellow indicates predicted
values.

D. UTILIZING COLOR SEGMENTATION FOR TASK
GEOMETRY IDENTIFICATION
Geometry detection has been addressed using traditional
computer vision techniques, such as contour and line
detection [4]. However, for these techniques to function
effectively, they require an accurate color segmentation
technique that discriminates between pixels from strokes and
those from the background, precisely, the wood texture.

Conventionally, color segmentation is accomplished using
a range of color values that need to be pre-selected and
calibrated. This process must often be repeated multiple
times, as the color range is influenced by varying illumination
conditions that change throughout the day.

In this article, particularly in Section V, we present
our innovative solution to this challenge. By leveraging
k-means, an unsupervised clustering technique, we are not
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TABLE 5. Regression results for the evaluated models. Runtimes measured using TensorRT.

FIGURE 11. Effective use of the k-means algorithm for color-based segmentation of hand-drawn carpentry drawings. The
original image is on the left, and the segmented one is on the right.

FIGURE 12. Ineffective use of the k-means algorithm for color-based segmentation of hand-drawn carpentry drawings. The
pencil color is too similar to wood imperfections. The original image is on the left, and the segmented one is on the right.

only addressing the issue but doing so with a significantly
reduced need for manual interventions.

Given the absence of a segmentation ground truth,
we believe a qualitative evaluation provides a comprehensive
and meaningful assessment of the segmentation results. By
sharing instances where our technique excels and instances
where it falls short, we offer a balanced view of its
performance. Furthermore, we delve into the causes of any
failures to provide a holistic understanding. This approach
ensures that our evaluation is not just about success or
failure but a deep exploration into understanding the strengths
and limitations of our method, paving the way for further
improvement.

Figure 11 effectively illustrates the successful application
of our technique in segmenting strokes from the background.
Despite the strokes being drawn with a conventional carpen-
ter’s pencil, the contrast with the background is substantial
enough to allow the technique to accurately distinguish
between pixels corresponding to strokes and those belonging
to the background. Moreover, the use of custom pencils,
which provide even greater contrast with the background,
could further enhance the segmentation, particularly in
scenarios where the wood’s texture closely resembles that of
the strokes.

Conversely, Figure 12 illustrates a situation where our
proposed technique may not be as effective due to insufficient
contrast. This can be partially attributed to the wood’s texture,
which features several natural lines similar in color to the
carpenter’s pencil. Additionally, imperfections in the wood
tend to produce comparable effects on the images. In these

cases, opting for a different pencil color could readily address
the issue. Importantly, the system does not need to be adjusted
to this new color; it can autonomously differentiate between
strokes and the background when there is a high contrast
between the pencil and the texture.

VIII. CONCLUSION
In conclusion, our study offers promising insights for
enhancing human-robot collaboration in carpentry and
joinery. We introduced a hand-drawn language designed
for human-robot collaboration in wood stereotomy tasks.
Furthermore, we presented a method for its automatic
interpretation. Our results indicate that the proposed language
and computer vision solutions are feasible on embedded
devices, achieving mAP values that exceed 90% while
maintaining real-time speed. Concurrently, regressionmodels
can precisely pinpoint specific locations under 3 pixels of
error, taking less than 1 ms on embedded systems. However,
a limitation of our study is its focus on only six types of wood.
While our findings generalize well, different wood types
might necessitate further training. More than just additional
data, our results emphasize the importance of ensuring
sufficient contrast between drawings and the wood surface.
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