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ABSTRACT Unit commitment (UC) is a fundamental problem in the day-ahead electricity market, and it is
critical to solve UC problems efficiently. Mathematical optimization techniques like dynamic programming,
Lagrangian relaxation, and mixed-integer quadratic programming (MIQP) are commonly adopted for UC
problems. However, the calculation time of these methods increases at an exponential rate with the number
of generators and energy resources, which is still the main bottleneck in the industry. Recent advances
in artificial intelligence have demonstrated the capability of reinforcement learning (RL) to solve UC
problems. Unfortunately, the existing research on solving UC problems with RL suffers from the curse
of dimensionality when the size of UC problems grows. To deal with these problems, we propose an
optimization method-assisted ensemble deep reinforcement learning algorithm, where UC problems are
formulated as a Markov Decision Process (MDP) and solved by multi-step deep Q-learning in an ensemble
framework. The proposed algorithm establishes a candidate action set by solving tailored optimization
problems to ensure relatively high performance and the satisfaction of operational constraints. Numerical
studies on three test systems show that our algorithm outperforms the baseline RL algorithm in terms of
computation efficiency and operation cost. By employing the output of our proposed algorithm as a warm
start, the MIQP technique can achieve further reductions in operational costs. Furthermore, the proposed
algorithm shows strong generalization capacity under unforeseen operational conditions.

INDEX TERMS Deep reinforcement learning, multi-step return, optimization methods, unit commitment.

I. INTRODUCTION
Unit commitment (UC) is a crucial decision-making tool used
by Independent System Operators (ISOs) in the day-ahead
electricity market. In UC problems, the optimal schedule of
generators needs to be determined given the supply offers,
demand bids, transmission network situations, and opera-
tional limits. The UC problems can be classified into different
subgroups in a few ways [1]. With respect to security con-
straints, UC problems can be divided into conventional UC
problems and security-constrained UC (SCUC) problems
[2], [3]. According to whether uncertainty is considered and
whether the probabilistic distribution of uncertain parameters
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is known [4], UC can be categorized into deterministic UC
problems, stochastic UC problems [5], [6], and robust UC
problems [7], [8], [9].
It is critical for enhancing the efficiency of the day-ahead

electricity market to obtain near-optimal solutions to UC
problems. The existing approaches to UC problems include
heuristic algorithms [10], mathematical optimization algo-
rithms, intelligent optimization algorithms [11], [12], and
machine learning (ML) based approaches. Among these
approaches, mathematical optimization algorithms including
dynamic programming (DP), branch-and-cut algorithm [13],
Benders decomposition [14], outer approximation [15], ordi-
nal optimization [16], and column-and-constraint generation
[17] have been widely studied in UC problems. Even though
satisfactory performance is achieved by these methods, their
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calculation time grows at an exponential rate with the number
of energy resources. Thus, obtaining a near-optimal UC solu-
tion efficiently can be difficult when the renewable energy
resources and corresponding uncertainties keep rising. To
improve the performance of large-scale UC problem solvers,
some researchers try to improve the tightness and com-
pactness of the UC problem formulation as a mixed-integer
programming (MIP) model [18], [19], [20]. Recently, a novel
quantum distributed model is proposed to solve large-scale
UC problems in a decomposition and coordination-supported
framework in reference [21]. A temporal decomposition
method was proposed in reference [22] which systematically
decouples the long-horizon MIP problem into several sub-
horizon models.

The main limitation of the aforementioned mathematical
optimization algorithms used for solving UC problems is that
they assume one-shot optimization where the UC problems
need to be solved from scratch each time. In practice, UC
problems are solved on a daily basis in the day-ahead market
with small changes to the input data while the structure of the
problem formulation stays the same [23]. Thus, the previous
UC problems’ solutions provide useful information that can
be utilized to improve the solution quality of similar UC
problems. Besides, these algorithms may not scale well with
the increasing size of the power system. As the number of
generating units, transmission lines, and load nodes grows,
the computational requirements and solution time of these
algorithms tend to increase significantly.

The recent advances in artificial intelligence motivate the
development of machine learning-based methods to solve
UC problems [24]. A series of machine learning techniques
are proposed to extract valuable information from solved
instances of UC problems to enhance the warm-start capa-
bilities of MIP solvers in reference [23]. Neural networks
are developed to imitate expert heuristics and speed up the
branch-and-bound (B&B) algorithm, which achieves sig-
nificant improvements on large-scale real-world application
datasets including Electric Gird Optimization [25]. Unlike
supervised learning, which requires labeled data, reinforce-
ment learning (RL) is a mathematical tool for learning to
solve sequential decision-making problems such as volt-var
control problems in power distribution systems [26]. The
reason why UC problems can be formulated as sequential
decision-making problems is that the solution to UC prob-
lems is a sequence of generation units’ operations and the
current decision of units’ scheduling is based on the status
of units in the previous time period. In reference [27], UC
problems for a system with 4 units are modeled as multi-
stage decision-making tasks, and RL solutions are formulated
through the pursuit method. Three RL algorithms including
approximate policy iteration, tree search, and back sweep are
proposed to minimize operational costs on a 12-unit system
in reference [28]. The UC problem with 10 units is tackled
as a multi-agent fuzzy RL task, and units play as agents

to corporately reduce the overall operation cost in reference
[29]. A method based on decentralized Q-learning to find a
solution to UC problems on a system with up to 10 units is
introduced in reference [30]. An RL-based guided tree search
algorithm is developed to solve stochastic UC problems for a
system with 30 generation units in reference [31], which uses
a pre-trained policy to reduce the action space and designs a
neural network as a binary classifier that sequentially predicts
each bit in the action sequence.

Most of the existing RL-based algorithms have only been
tested on small-scale UC problems because they suffer from
the curse of dimensionality. Specifically, the number of states
and feasible actions increases exponentially with the size of
the UC problems. Besides, many operational constraints such
as the transmission line capacity limit can not be strictly
enforced in these RL-based algorithms.Moreover, the utiliza-
tion of gradient-based training in these RL algorithms makes
them susceptible to getting stuck in local optima.

To address the limitations of the existing mathematical
optimization algorithms and RL algorithms, we synergis-
tically combine mixed-integer programming with RL and
propose an optimizationmethod-assisted ensemble deep rein-
forcement learning algorithm to solve deterministic UC prob-
lems. The overall framework of the proposed approach is
shown in Fig. 1. First, we establish a candidate action set
by solving a series of simplified optimization problems to
ensure that the solutions are feasible and can achieve decent
performance. These candidate actions will serve as part of the
inputs to the RL-based solution. Then, we design a multi-step
deep Q-learning algorithm to find good sequential unit com-
mitment decisions. By leveraging the multi-step return, the
proposed algorithm explicitly accounts for the fact that the
total impacts of a unit commitment decisionmay not instantly
appear in the system operational cost and could influence the
costs of many subsequent time steps. Finally, we propose an
ensemble framework consisting of a group of deepQ-learning
agents that are trained separately in parallel threads with
different initial model parameters to find a better UC solution.
This design can alleviate the problem that gradient-based
training is prone to be trapped by a locally optimal solution.

The performance of our proposed algorithm, a base-
line optimization method, as well as a state-of-the-art RL
algorithm [31] are evaluated on three test systems. The exper-
imental results show that our proposed algorithm identifies
feasible unit commitment solutions with lower costs than
both the Proximal Policy Optimization (PPO)-based guided
tree search algorithm and the MIP given the same amount
of computation time. The proposed algorithm can also accel-
erate solutions of MIP by using the results generated by
our algorithm as warm starts. Moreover, additional scenario
analysis demonstrates that our proposed algorithm possesses
the great capability to solve emergency unit commitment
problems in real time when there is a generation unit or
transmission line outage.
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FIGURE 1. The overall framework of optimization method-assisted ensemble RL algorithm.

The unique contributions of this paper are as follows:
• This paper proposes an optimization method-assisted

ensemble multi-step deep reinforcement learning algorithm
that synergistically combines the merits of mixed-integer
programming with reinforcement learning to accelerate the
solution process of UC problems.

• The proposed algorithm establishes a candidate action
set by solving a series of simplified UC problems, which
ensures high-quality unit commitment solutions that satisfy
operational constraints.

• The ensemble RL framework reduces the operational
costs of the power system by mitigating the problem that
gradient-based training of neural networks is prone to be
trapped by a locally optimal solution.

• The proposed optimization method-assisted ensemble
multi-step deep reinforcement learning algorithm has great
capability to solve emergency unit commitment problems
when there is a loss of generation units or transmission lines,
which will enhance system security while simultaneously
reducing operational costs.

The remainder of the paper is organized as fol-
lows: Section II gives the formulation of UC problems.
Section III introduces the technical methods. Section IV
discusses the experimental and algorithm setup as well
as the results of numerical studies. Section V makes the
conclusion.

II. PROBLEM FORMULATION
In this section, we discuss how UC problems are formu-
lated as mixed-integer quadratic programming (MIQP) in
subsection II-A, then the preliminaries of the Markov Deci-
sion Process (MDP) are provided in subsection II-B, and
finally, how the UC problems are formulated as MDPs in
subsection II-C.

A. FORMULATION OF UNIT COMMITMENT PROBLEMS
The objective of UC problems is to obtain the optimal com-
mitment of generators as well as the corresponding power
generating levels while minimizing the total operation cost

min
T∑
t=1

N∑
i=1

{
cpi (t) + cui (t) + cdi (t)

}
, (1)

where N is the number of units, T is the number of peri-
ods, cpi (t), c

u
i (t), c

d
i (t) are the production cost, startup cost,

and shutdown cost of unit i in period t , respectively. The
minimization in equation (1) is subject to the following oper-
ational constraints:
Generation Capacity Constraints: Generation levels pi(t)

of unit i are constrained as follows:

Pivi(t) ≤ pi(t) ≤ p̄i(t), i = 1, · · · ,N , t = 1, · · · ,T ,

(2)

0 ≤ p̄i(t) ≤ P̄ivi(t), i = 1, · · · ,N , t = 1, · · · ,T ,

(3)

where vi(t) is the commitment status, p̄i(t) is the maximum
available output, P̄i is the generation capacity and Pi is the
minimum output of unit i at time t .
Ramp-Rate Constraints:Ramp-rate constraints require that

unit i’s change of power from pi(t−1) to pi(t) does not exceed
RUi while ramping up, and RDi while ramplid down. More-
over, the ramp rate of a unit starting up cannot exceed SUi
and the ramp rate of a unit shutting down cannot exceed SDi:

p̄i(t) ≤ pi(t − 1) + RUivi(t − 1) + P̄i(1 − vi(t))

+ SUi[vi(t) − vi(t − 1)],

i = 1, · · · ,N , t = 1, · · · ,T , (4)

p̄i(t) ≤ P̄ivi(t + 1) + SDi[vi(t) − vi(t + 1)],

i = 1, · · · ,N , t = 1, · · · ,T , (5)
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pi(t − 1) ≤ pi(t) + RDivi(t) + SDi[vi(t − 1) − vi(t)]

+ P̄i[1 − vi(t − 1)],

i = 1, · · · ,N , t = 1, · · · ,T , (6)

Minimum Up- and Down-Time Constraints: After unit i is
turned on, it must stay online for UTi time periods:

min(Gi,T )∑
t=1

[1−vi(t)]=0, i=1, · · · ,N , t=1, · · · ,T , (7)

min(t+UTi,T )∑
n=t+1

vi(n) ≥ σ ui (t)[vi(t) − vi(t − 1)],

i = 1, · · · ,N , t = Gi, · · · ,T − 1, (8)

where Gi is the number of periods during which unit i must
be on or off in the beginning; σ ui (t) is the number of periods
that unit imust be on starting from period t , which is defined
below as:

σ ui (t) =

{
min(UTi,T − t), if T > Gi,
0, else,

(9)

Likewise, after unit i is turned off, it must stay offline for DTi
time periods:

min(Li,T )∑
t=1

vi(t) = 0, i = 1, · · · ,N , (10)

min(t+DTi,T )∑
n=t+1

[1 − vi(n)] ≥ σ di (t)[vi(t − 1) − vi(t)],

i = 1, · · · ,N , t = Li, · · · ,T − 1, (11)

where Li is the number of periods during which unit imust be
off in the beginning; σ di (t) is the number of periods that unit i
must be off starting from period t , which is defined below as:

σ di (t) =

{
min(DTi,T − t), if T > Li,
0, else.

(12)

System Demand Constraints: The total power generated by
online units, should meet the total demand for each hour t as:

N∑
i=1

pi(t) =

M∑
j=1

dj(t), t = 1, · · · ,T , (13)

where M is the number of buses.
Spinning Reserve Requirements: The total maximum

power output of online units should need the total demand as
well as the spinning reserve requirement R(t) of the system
as time t:

N∑
i=1

p̄i(t) ≥

M∑
j=1

dj(t) + R(t), t = 1, · · · ,T . (14)

Transmission Capacity Constraints: For DC power flow,
the following transmission capacity constraints apply:

F−

l ≤

N∑
i=1

pi(t)0P
i,l −

M∑
j=1

dj(t)0D
j,l ≤ F+

l ,

l = 1, · · · ,L, t = 1, · · · ,T , (15)

where F−

l and F+

l are the negative and positive power flow
limit of line j; 0P

i,l and 0P
i,l are the power transfer distribution

factor from unit i to line l.
The production cost, startup cost, and shutdown cost in

equation (1) are specifically defined as follows:

1) PRODUCTION COST
Following reference [32], a quadratic production cost func-
tion is used:

cpi (t) = aivi(t) + bipi(t) + cip2i (t),

∀i = 1, · · · ,N , ∀t = 1, · · · ,T , (16)

where ai, bi and ci are the coefficients.

2) STARTUP COST
Amixed-integer linear function for the stair-wise startup cost
is formulated as follows:

cui (t) ≥ CUk
i

[
vi(t) −

k∑
n=1

vi(t − n)

]
,

∀i=1, · · · ,N , ∀t=1, · · · ,T , ∀k=1, · · · ,NDi,

(17)

cui (t) ≥ 0, ∀i = 1, · · · ,N , ∀t = 1, · · · ,T , (18)

where CUk
i is the stair-wise startup cost of unit i in period k .

NDi is the number of intervals of the staircase startup cost
function of unit i.

3) SHUTDOWN COST
The shutdown cost is defined as follows:

cdi (t) ≥ CDi(vi(t − 1) − vi(t)),

∀i = 1, · · · ,N , ∀t = 1, · · · ,T , (19)

cdi (t) ≥ 0, ∀i = 1, · · · ,N , ∀t = 1, · · · ,T , (20)

where CDi is the shutdown cost of unit i.

B. PRELIMINARIES OF MARKOV DECISION PROCESS
As the most widely used mathematical framework to formu-
late sequential decision-making problems, Markov Decision
Process can be defined as a tuple (S,A,P,R, γ ), which
consists of a state spaceS, an action spaceA, a state transition
probability P , a reward function R and a discount factor
γ (0 ≤ γ ≤ 1) [33]. This setup will allow for efficient
exploitation within the Reinforcement Learning. Namely,
by observing the environment through the above-mentioned
states, the decision-maker (the agent) chooses an action at ∈

A at every time step t depending on the current state st , and
it gains a certain reward rt+1. To achieve the above, the agent
first finds a policy π (a|s) that gives the maximum anticipated
discounted return J (π ) = E[G(τ )],1 then the agent processes

1Here G(τ ) =
∑T

t=0 γ t rt+1, T is the length of the episode, and τ is a
trajectory of states and actions.
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the state by using the policy to make an appropriate decision.
Subsequently, the environment shifts to the next state st+1
based on P(st+1|st , at ).
In order to demonstrate the value of states and state-action

pairs given a policy π , we give the definition of two crucial
value functions vπ (s) and qπ (s, a):

vπ (s) = Eπ [Gt |St = s]

= Eπ

[∑T
k=0 γ krt+k+1|St = s

]
, (21)

qπ (s, a) = Eπ [Gt |St = s,At = a]

= Eπ

[∑T
k=0 γ krt+k+1|St = s,At = a

]
. (22)

We define the best policy as π (a|s) = argmaxπ vπ (s) for
all s ∈ S or π (a|s) = argmaxπ qπ (s, a) for all s ∈ S and
a ∈ A(s).

C. FORMULATE THE UC PROBLEMS AS AN MDP
In this subsection, we construct UC problems by using MDP,
while giving the definitions of the episode, state, action, and
reward functions as follows.

1) EPISODE AND TIME STEPS
The episode is defined as one complete play of the RL agent
interacting with the UC environment. Each operation period t
is defined as a time step. Since the UC problems are solved
daily in the day-ahead market, we formulate them as continu-
ing tasks, whichmeans an episode ends only when no feasible
action can be found.

2) STATES
In order to ensure the environment is Markovian, the state
at time t is defined as st = (t,vvvt ,pppt ,uuut ,ddd t ), where t is the
global time, vvvt is a vector of the commitment status vi(t) of
generator i in time t (1 if the unit is on, 0 otherwise), pppt is a
vector of the power generation pi(t) of unit i in time t , uuut is a
vector of the number of periods that unit i has been running
or offline until time t , and the transition function of ui(t) can
be formulated as equation (23):

ui(t) =

{
ui(t − 1) + 1, if vi(t) = vi(t − 1),
1, otherwise.

(23)

Here vi(0) is the on/off state of unit i at the beginning of the
episode, and ui(0) is the number of periods that unit i has
been running or offline before the initial period of the episode.
Finally, ddd t is a vector [d(t + 1), d(t + 2), · · · , d(t + k)] of
load predictions for the next k periods.

3) ACTIONS
The action at at time t is defined as shifting the commitment
status of all generators to vvvt+1 in period t + 1. There are
numerous infeasible statuses due to the operational limita-
tions of generators (e.g., due to minimum up- and downtime
constraints). It is important to obtain all possible actions in
the current state in order to avoid missing out on the best

action. While infeasible actions can be filtered out, the space
of feasible actions remains prohibitively large. As a result,
reinforcement learning will have difficulty learning a good
policy from such a large action space. This will be resolved
by an optimizationmethod to down-select candidate solutions
and build a feasible action subset At in subsection III-A.

4) REWARDS
A large penalty is imposed when there is no feasible action
that can be taken to prevent early termination of the episode.
Accordingly, the reward function is defined as follows:

rt+1 = −

{
Ct+1, if At+1 ̸= ∅,

ζ, if At+1 = ∅.
(24)

Here Ct+1 is the operational cost in period t + 1 defined as:

Ct+1=

N∑
i=1

cpi (t + 1)+
N∑
i=1

cui (t + 1)+
N∑
i=1

cdi (t + 1), (25)

where the production cost cpi (t + 1) is derived by solving a
single-period economic dispatch (ED) after the commitment
status vi(t+1) is obtained. Here we useuuut to directly calculate
the startup cost as:

cui (t + 1)=

{
SCU i [min{NDi, ui(t)}] , if vi(t+1)>vi(t)
0, otherwise,

(26)

where SCU i =

[
CU1

i , · · · ,CUNDi
i

]
is a list of the staircase

startup cost of unit i, and the symbol SCU i[j] represents the
j-th element of the vector SCU i.

III. TECHNICAL METHODS
In this section, we present the proposed optimization
method-assisted ensemble RL algorithm. We present a pro-
cess for finding candidate actions by using optimization tech-
niques, followed by a multi-step deep Q-learning algorithm
for solving the UC problems. The ensemble framework is
designed to boost performance further.

A. FINDING CANDIDATE ACTIONS USING OPTIMIZATION
METHODS
The process of finding candidate actions can be divided into
two parts. First, based on the current state, we solve a tailored
UC problem for the next couple of periods to obtain a unit
commitment schedule as the cardinal action. Then, given
the cardinal action, we obtain more candidate actions by
turning on or off more units based on their priority. There
is a chance that certain candidate actions may be infeasible
for the original Unit Commitment (UC) problem. To address
this, one approach is to extend the optimization horizon of the
tailored UC problem. However, it’s important to note that this
may lead to longer computation time.
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1) FINDING THE BASE ACTION
Starting from period t , the mathematical form of a H -period
UC problem can be formulated as follows:

min
t+H∑
k=t+1

N∑
i=1

{Ci(k) + ωt (vi(k + 1) − vi(k)) ρi, }

s.t. (13) − (15) (27)

where Ci(k) = cpi (k) + cui (k) + cdi (k) is the production cost
of unit i in period k . ωt is a coefficient related to t which is a
positive constant when t = 0 and equals to zero when t > 0.
ρi is the average fuel price per output power of unit i, which
is given in the following formula (28):

ρi =
ai + biP̄i + ciP̄2i

P̄i
. (28)

After solving the UC problem above, we can obtain the unit
commitment schedule of next H -period as vvvt+1, · · · ,vvvt+H
and we set vvvt+1 to be the cardinal action vvv∗t+1 of next period.

2) OBTAINING MORE CANDIDATE ACTIONS
Assume there are X units which are turned on or off at period
t+1 if we take actionvvv∗t+1, whereX =

∑N
i=1 |v∗i (t+1)−vi(t)|.

Then, instead of turning on/off X units, we turn on or off z
units that have the higher priority by solving the following
single-period UC problems:

min
N∑
i=1

(vi(t + 1) − vi(t)) ρi, (29)

s.t. vj(t + 1) = vj(t), ∀j ∈ 2t , (30)
N∑
i=1

|vi(t + 1) − vi(t)| = z,

(2) − (6), (13) − (15), (31)

where z gradually increases from max(X − Y -,0) to min(X +

Y+,N ). Y− and Y+ denote the parameters of the searching
range for unit status change beyond X . 2t denotes the set
of indexes of the units that cannot be turned on/off due to
the minimum up/downtime limit at period t+1. Specifically,
we add index i to 2t if ui(t) < 1.

Note that here we can keep the top K best solutions to
the single period UC problem, which means we can obtain
|Z | × K candidate actions, |Z | is the number of elements in
the range of z. Finally, there are |Z |×K+1 candidate actions
in the action subset At . Note that K is a trade-off parameter.
With larger K , we will have more candidate actions to find
a better solution, but it also makes the training process more
difficult to converge.

B. MULTI-STEP DEEP Q-LEARNING FOR UC PROBLEMS
For the purpose of solving MDPs with continuous state space
[34], Deep Q-learning integrates the standard Q-learning
with a deep neural network named deep Q network
(DQN) Q(st , at |θ ) to estimate the action-value function in

equation (22). We use Adam gradient descent to train DQN to
minimize the mean-squared temporal difference error L(θ ):

L(θ ) = E(s,a,r,s′)∼D

(
r + γ max

a′
Q(s′, a′

|θ ′) − Q(s, a|θ )
)2

(32)

where Q(s′, a′
|θ ′) is the target neural network with the same

structure as Q(st , at |θ ). In order to make the training process
stable, we update the parameters θ ′ of the target network from
the parameters θ of Q(st , at |θ ) in a periodical manner. D is
the replay buffer to collect the transition tuples (s, a, r, s′).

However, adopting DQN to solve UC problems without
modifications can be inefficient, since taking an action may
not only affect the next reward but also influence the rewards
multiple steps later. We need several updates to propagate
the reward to the related preceding states and actions [35],
which makes the training process both time-consuming and
tremendously sample-inefficient.

To address this issue, we use the multi-step return
method [36] to update the action-value function Q(st , at |θ ):

L(θ ) = (Q(st , at |θ ) − R(t))2, (33)

where R(t) is defined as:

R(t)=rt+1+γ rt+2+· · ·+γ n−1rt+n+max
a′∈A′

γ nQ(st+n, a′
|θ ′)

(34)

Note that we make the agent-environment interact for n steps
to acquire the rewards rt+k , k = 1, . . . , n and the n-step next
state st+n, and then calculate the n-step return.

Using the n-step return, the long-term, as well as the
short-term impacts of taking an action, can be studied by
propagating toward the exact reward, instead of bootstrapping
from the target network Q(s, a|θ ′). Therefore, the learning
efficiency of UC problems is prominently enhanced by apply-
ing multi-step deep Q-learning algorithm [37].

C. ENSEMBLE RL FRAMEWORK FOR UC PROBLEMS
We now present a multi-threaded ensemble reinforcement
learning framework. The aim of designing this framework is
to mitigate the problem of reaching a bad local optimal solu-
tion from a single random initialization of deep Q-network
parameters. Specifically, we initialize the aforementioned
multi-step deepQ-learning algorithm in different threadswith
different random seeds and run them in parallel. The pseu-
docode for training the ensemble multi-step deep Q-learning
for UC problems is shown in algorithm 1. After the ensem-
ble multi-step deep Q-learning algorithm is trained, the M
instances of RL agents can be run in parallel during the testing
phase. The multi-step deep Q-learning agent that identifies
the unit commitment solution with the lowest operational cost
will be selected as the final solution.

Here are some key implementation details of algorithm 1.
• Q-network structure: We adopt the feed-forward neural

networks as the Q-networks, whose inputs are state-action
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Algorithm 1 Training of Ensemble Multi-Step Deep
Q-Learning for UC Problems
Initialize M evaluation Q-network with random parameters
θ1 · · · θM
InitializeM target Q-network with parameters θ ′

1 = θ1, · · · ,

θ ′
M = θM
0: for thread m = 1, · · · ,M do
0: Input historical data set of Nd days and set day d = 1
0: Initialize replay buffer D as a queue with a maximum
0: length of n
0: Initialize learning counter ν = 0
0: for episode = 1, · · · , 0 do
0: Input historical load data of day d
0: Formulate initial state s1 of day d

for t = 1, · · · ,T do
0: Obtain candidate action set At of state st using

optimization method.
0: With ϵ choose a random action at from At ,

otherwise choose at = maxa∈AtQ(st , a|θ
′
m).

0: Obtain the schedule of units on next period t + 1
based on action at .

0: Solve a single period ED and calculate reward
rt+1 according to (24).

0: Calculate uuut+1 according to (23) and then
formulate the next state st+1.

0: Use optimization method to calculate At+1.
0: Set εt = 1 if At+1 = ∅ else 0
0: Store (st , at , rt+1, st+1,At+1, εt ) in D
0: if length(D) = n or εt = 1 then
0: R = 0 if εt = 1 else maxa Q(st+1, a|θ ′

m)
0: for i = t, t − 1, · · · , t − length(D), do
0: Set R = ri + γR
0: Perform a gradient descent step on

(R− Q(si, ai|θm))2

0: Set ν = ν + 1
0: if mod(ν, Itarget ) = 0 then
0: Update θ ′

m = θm
0: if day d is over then
0: d = mod(d + 1,Nd )

pairs and outputs are the resulting Q value. The reason for
selecting this architecture is that it can scale linearly with the
number of generators.

• Episode initialization: Since UC problems are formu-
lated as continuing tasks, which means we aim to maximize
the overall reward received in all training episodes, we get
the initial state of the current day from the final period of the
previous day. Thus, the historical data of the next day will
not be utilized for training until a policy that meets all load
demands of the current day is found.

• Global Time encoding: In order to present the peri-
odic nature of the problem, the global time step t , which
varies from 0 to 23, is decomposed into two coordinates
[cos(2π t/24), sin(2π t/24)] [38].

IV. NUMERICAL STUDIES
A. EXPERIMENTAL AND ALGORITHM SETUP
In this subsection, we give the experimental and algorithm
setups. All algorithms are executed on a server with a 32-core
AMD Ryzen Threadripper 3970X 3.7GHz CPU.

1) EXPERIMENTAL SETUP
We apply the proposed method to solve a 48-hour period UC
problem for the IEEE 118-bus system, IEEE 300-bus system,
and the South Carolina 500-bus system [39]. The parameters
of units such asminimumup and down time limit are obtained
from reference [40]. The detailed experimental setup for the
three testing systems can be found in our open-source reposi-
tory.2 The aforementioned minimum and maximum staircase
startup cost CU of all units are equivalent to their hot start
cost and cold start cost. Initial on/off time is the number of
periods that one generator has been running or offline before
the first period of the starting day. Here we give four different
initial status setups to verify the generalization ability of our
algorithm. The historical load data of the California Indepen-
dent System Operator (CASIO) [41] from January 1, 2021,
to July 5, 2021, is used and scaled to be suitable for the three
testing systems. Note that we use 90 days for training, one
week for validation, and two weeks for testing.

2) RL ALGORITHM SETUP
The hyperparameters of the benchmark PPO-guided tree
search [31] and the proposed ensemble multi-step deep
Q-learning algorithm are summarized in Tab. 1. We tune all
parameters separately to achieve optimal performance.

TABLE 1. Hyperparameters of benchmark and proposed RL algorithms.

B. PERFORMANCE COMPARISON
In this subsection, we compare the performance of the
PPO-guided tree search, the MIQP algorithm with

2https://github.com/jqin020/Emsemble-Deep-RL-for-UC-problems
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Gurobi 9.1 [42] solver, and our proposed algorithm. In all
following analyses, for Gurobi we set the time limit to
10 minutes and the MIP gap to 0.01%, whichever comes first.
Note that the optimization periods of MIQP are 48 hours
and we obtain the operation cost of the first day from the
optimization result. The mean daily operational cost of our
proposed algorithm during the validation days of the three
testing systems under four initial status setups are reported
after every training episode in Fig. 2. The beginning com-
mitment status of generators on the first validation day is the
same during the training process. The solid curves and shaded
areas represent the average values and standard deviations
across different runs in 10 threads, respectively.

FIGURE 2. The average daily cost of validation days.

As shown in Fig. 2, the average daily costs of validation
days decrease rapidly as the training continues and maintain
a low level under all four initial status setups. When training
processes are done, the testing days are adopted to evaluate
the algorithms. For PPO-guided tree search and our proposed
algorithm, we use the network parameters that yield the min-
imum average daily costs of the validation dataset for testing.

The average daily operation cost of testing days across four
initial status setups of three testing systems are summarized
in Tab. 2 to Tab. 4, respectively. The percentage variation of
both the PPO-guided tree search and the proposed Ensemble
N-step Q-learning from the MIQP, δ1 and δ2 respectively, are
also given to compare their performance.

TABLE 2. Daily operation cost of the 118-bus system.

TABLE 3. Daily operation cost of the 300-bus system.

TABLE 4. Daily operation cost of the 500-bus system.

From Tab. 2 to Tab. 4 we can see that the average daily
operation cost, as well as the percent variation of the proposed
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algorithm from MIQP is much smaller than that of the
PPO-guided tree search, while the computation time of our
algorithm is shorter than that of PPO-guided tree search and
MIQP. Additionally, the total computation time of testing
weeks of the three testing systems is shown in Tab. 5. Here
we only compare the testing time of RL-based and MIQP
algorithms since the training process of RL-based algorithms
can be done in an offline manner. For the 118-bus system,
the training time of our proposed algorithm is approximately
2 hours and the training time of the baseline algorithm
is around 9 hours. The speed-up factors are calculated by
dividing the computation time of both algorithms by the
computation time of MIQP. The values before the slash are
the speed-up factor of the PPO tree search. Compared to the
MIQP algorithms, our proposedRL-based algorithm achieves
about 30 times reduction in computation time on average.

TABLE 5. Total computation time of testing weeks.

To further demonstrate the improvement of our proposed
algorithm, the total operation costs of the first test week
of each of the three testing systems computed by PPO-
guided tree search, ensemble multi-step deep Q-learning,
MIQP, and MIQP using the result of ensemble multi-step
deep Q-learning as a warm start, are shown in Fig. 3. From the
figure, we can see that the performance of PPO-guided tree
search is close to MIQP while our proposed algorithm clearly
outperformsMIQP. In other words, to identify a unit commit-
ment solution of the same total operation cost, our proposed
ensemble n-step deep Q-learning only needs a fraction of the
computation time required by PPO-guided tree search and
the MIQP algorithm. Given sufficient computation time, the
MIQP algorithm will as expected eventually identify a solu-
tion, which has a lower operational cost than our proposed
method. After using the result of our proposed algorithm as
a warm start, MIQP can achieve an even lower operational
cost.

C. ABLATION STUDY
In this subsection, we study the impact of systematically
removing some features from our proposed algorithm. We
start by comparing the performance of using one-step return
and using multi-step return during the training process under
the first initial status setup. As shown in Fig. 4, the aver-
age daily costs of validation days calculated by ensemble
multi-step deep Q-learning stabilize at a lower level than that
of ensemble one-step deep Q-learning for all three testing
systems, and the standard deviations of average daily costs

FIGURE 3. Comparison of three algorithms.

across different runs received by using multi-step return are
much smaller than that of using one-step return for IEEE
118-bus, 300-bus, and the South Carolina 500-bus systems.

After the training process ends, we summarize the average
total cost of two test weeks under the first initial status setup
using different combinations in Tab. 6. Note that here we use
the final parameters of the neural networks for both ensemble
one-step and multi-step deep Q-learning, and we calculate
the average total cost of M runs for one-step and multi-step
deep-Q learning. It can be seen that the total costs of test
weeks are the smallest when using a multi-step return and
an ensemble framework.

TABLE 6. Total cost of test weeks using different RL techniques.
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FIGURE 4. Comparison of one-step and multi-step return.

D. EMERGENCY UNIT COMMITMENT
In this subsection, we compare the performance of three algo-
rithms under emergency scenarios for extended short-term
unit commitment (STUC) of the South Carolina 500-bus sys-
tem. When an unexpected outage occurs on a generation unit
or a transmission line, the ISOs need to perform STUC imme-
diately to obtain a near-optimal unit commitment solutions
in a very short period of time. For example, the California
ISO executes the STUC with a planning horizon of 18 hours
and 15-minute operation interval to commit and decommit
generation units incrementally.

In this experiment, we set the time limit of MIQP to
10 minutes and the MIP gap at 0.1%. Note that for our
proposed algorithm and PPO-guided tree search, we set the
power output of the disconnected generation unit to zero. The
extended STUC is run for 7 consecutive 18-hour horizons.
The average cost and computation time for the first test week
when losing one unit or one transmission line are reported in
Tab. 7 and Tab. 8.

As shown in the tables, our proposed algorithm yields
smaller average operational costs and computation time than
that of the PPO-guided tree search and MIQP. By leveraging

TABLE 7. Average cost of emergency unit commitment when losing one
unit.

TABLE 8. Average cost of emergency unit commitment when losing one
line.

a streamlined optimization method to identify candidate solu-
tions and combining it with the RL algorithm, our proposed
method can respond quickly to emergency events and provide
a better unit commitment solution, which will enhance the
system security and lower the operational cost at the same
time.

V. CONCLUSION
This paper proposes an optimization method-assisted ensem-
ble deep reinforcement learning algorithm to accelerate the
solution of unit commitment problems. We establish a candi-
date action set by solving simplified optimization problems.
Multi-step return is used to speed up the learning process and
improve the sample efficiency of the reinforcement learning
agent. The proposed ensemble framework can mitigate the
adverse effects that the gradient-based training could lead to a
bad local optimal solution. Numerical studies show that given
a time limit of solution, our algorithm can achieve a better
performance than the benchmark PPO-guided tree search
algorithm. Specifically, our proposed RL-based algorithm
achieves an average reduction in computation time of approx-
imately 5 times and 30 times in contrast to the PPO-guided
tree search algorithm and MIQP algorithm, respectively.
Besides, utilizing the results generated by our proposed
algorithm as a warm start enables the MIQP technique to
attain additional reductions in operational costs. Further-
more, our proposed optimization method-assisted ensemble
deep reinforcement learning algorithm has a great ability
to perform emergency unit commitment under unforeseen
operating conditions. In the future, we plan to further improve
the scalability of the proposed algorithm and tackle the
security-constrained unit commitment problems on larger
power systems.

ACKNOWLEDGMENT
The material is based upon work supported by the University
of California Office of the President under Award Number
L22CR4556.

100134 VOLUME 11, 2023



J. Qin et al.: Optimization Method-Assisted Ensemble Deep RL Algorithm to Solve UC Problems

REFERENCES
[1] I. Abdou and M. Tkiouat, ‘‘Unit commitment problem in electrical power

system: A literature review,’’ Int. J. Electr. Comput. Eng., vol. 8, no. 3,
p. 1357, Jun. 2018.

[2] Z. Zhang, Y. Chen, X. Liu, and W. Wang, ‘‘Two-stage robust security-
constrained unit commitment model considering time autocorrelation of
wind/load prediction error and outage contingency probability of units,’’
IEEE Access, vol. 7, pp. 25398–25408, 2019.

[3] S. Jiang, S. Gao, G. Pan, X. Zhao, Y. Liu, Y. Guo, and S. Wang, ‘‘A novel
robust security constrained unit commitment model considering HVDC
regulation,’’ Appl. Energy, vol. 278, Nov. 2020, Art. no. 115652.

[4] N. Yang, Z. Dong, L. Wu, L. Zhang, X. Shen, D. Chen, B. Zhu, and
Y. Liu, ‘‘A comprehensive review of security-constrained unit commit-
ment,’’ J. Mod. Power Syst. Clean Energy, vol. 10, no. 3, pp. 562–576,
May 2022.

[5] K. Doubleday, J. D. Lara, and B.-M. Hodge, ‘‘Investigation of stochastic
unit commitment to enable advanced flexibility measures for high shares
of solar PV,’’ Appl. Energy, vol. 321, Sep. 2022, Art. no. 119337.

[6] C. Zhao and Y. Guan, ‘‘Data-driven stochastic unit commitment for
integrating wind generation,’’ IEEE Trans. Power Syst., vol. 31, no. 4,
pp. 2587–2596, Jul. 2016.

[7] Z. Shi, H. Liang, and V. Dinavahi, ‘‘Data-driven distributionally robust
chance-constrained unit commitment with uncertain wind power,’’ IEEE
Access, vol. 7, pp. 135087–135098, 2019.

[8] Y. Wang, K. Dong, K. Zeng, X. Lan, W. Zhou, M. Yang, and W. Hao,
‘‘Robust unit commitment model based on optimal uncertainty set,’’ IEEE
Access, vol. 8, pp. 192787–192796, 2020.

[9] G. Zhang, F. Li, and C. Xie, ‘‘Flexible robust risk-constrained unit com-
mitment of power system incorporating large scale wind generation and
energy storage,’’ IEEE Access, vol. 8, pp. 209232–209241, 2020.

[10] S. Wang, X. Xu, X. Kong, and Z. Yan, ‘‘Extended priority list and discrete
heuristic search for multi-objective unit commitment,’’ Int. Trans. Electr.
Energy Syst., vol. 28, no. 2, Feb. 2018, Art. no. e2486.

[11] M. Nemati, M. Braun, and S. Tenbohlen, ‘‘Optimization of unit commit-
ment and economic dispatch in microgrids based on genetic algorithm and
mixed integer linear programming,’’ Appl. Energy, vol. 210, pp. 944–963,
Jan. 2018.

[12] Y. Zhu and H. Gao, ‘‘Improved binary artificial fish swarm algorithm and
fast constraint processing for large scale unit commitment,’’ IEEE Access,
vol. 8, pp. 152081–152092, 2020.

[13] Q. Gao, Z. Yang, W. Yin, W. Li, and J. Yu, ‘‘Internally induced branch-
and-cut acceleration for unit commitment based on improvement of
upper bound,’’ IEEE Trans. Power Syst., vol. 37, no. 3, pp. 2455–2458,
May 2022.

[14] C. Liu, M. Shahidehpour, and L. Wu, ‘‘Extended benders decomposi-
tion for two-stage SCUC,’’ IEEE Trans. Power Syst., vol. 25, no. 2,
pp. 1192–1194, May 2010.

[15] L. Yang, J. Jian, Z. Dong, and C. Tang, ‘‘Multi-cuts outer approximation
method for unit commitment,’’ IEEE Trans. Power Syst., vol. 32, no. 2,
pp. 1587–1588, Mar. 2017.

[16] H. Wu and M. Shahidehpour, ‘‘Stochastic SCUC solution with variable
wind energy using constrained ordinal optimization,’’ IEEE Trans. Sustain.
Energy, vol. 5, no. 2, pp. 379–388, Apr. 2014.

[17] Y. An and B. Zeng, ‘‘Exploring the modeling capacity of two-stage robust
optimization: Variants of robust unit commitment model,’’ IEEE Trans.
Power Syst., vol. 30, no. 1, pp. 109–122, Jan. 2015.

[18] G. Morales-España, J. M. Latorre, and A. Ramos, ‘‘Tight and compact
MILP formulation for the thermal unit commitment problem,’’ IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 4897–4908, Nov. 2013.

[19] S. Atakan, G. Lulli, and S. Sen, ‘‘A state transition MIP formulation for
the unit commitment problem,’’ IEEE Trans. Power Syst., vol. 33, no. 1,
pp. 736–748, Jan. 2018.

[20] B. Yan, P. B. Luh, T. Zheng, D. A. Schiro, M. A. Bragin, F. Zhao,
J. Zhao, and I. Lelic, ‘‘A systematic formulation tightening approach for
unit commitment problems,’’ IEEE Trans. Power Syst., vol. 35, no. 1,
pp. 782–794, Jan. 2020.

[21] N. Nikmehr, P. Zhang, and M. A. Bragin, ‘‘Quantum distributed unit
commitment: An application in microgrids,’’ IEEE Trans. Power Syst.,
vol. 37, no. 5, pp. 3592–3603, Sep. 2022.

[22] K. Kim, A. Botterud, and F. Qiu, ‘‘Temporal decomposition for improved
unit commitment in power system production cost modeling,’’ IEEE Trans.
Power Syst., vol. 33, no. 5, pp. 5276–5287, Sep. 2018.

[23] Á. S. Xavier, F. Qiu, and S. Ahmed, ‘‘Learning to solve large-scale
security-constrained unit commitment problems,’’ INFORMS J. Comput.,
vol. 33, no. 2, pp. 739–756, Oct. 2020.

[24] Y. Yang and L.Wu, ‘‘Machine learning approaches to the unit commitment
problem: Current trends, emerging challenges, and new strategies,’’ Electr.
J., vol. 34, no. 1, Jan. 2021, Art. no. 106889.

[25] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, R. Addanki,
T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli, I. Ktena, Y. Li, O. Vinyals,
and Y. Zwols, ‘‘Solving mixed integer programs using neural networks,’’
2020, arXiv:2012.13349.

[26] W. Wang, N. Yu, Y. Gao, and J. Shi, ‘‘Safe off-policy deep reinforcement
learning algorithm for volt-VAR control in power distribution systems,’’
IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3008–3018, Jul. 2020.

[27] E. A. Jasmin, T. P. I. Ahamed, and V. P. J. Raj, ‘‘Reinforcement learn-
ing solution for unit commitment problem through pursuit method,’’ in
Proc. Int. Conf. Adv. Comput., Control, Telecommun. Technol., Dec. 2009,
pp. 324–327.

[28] G. Dalal and S. Mannor, ‘‘Reinforcement learning for the unit commitment
problem,’’ in Proc. IEEE Eindhoven PowerTech, Jun. 2015, pp. 1–6.

[29] N. K. Navin and R. Sharma, ‘‘A fuzzy reinforcement learning approach to
thermal unit commitment problem,’’ Neural Comput. Appl., vol. 31, no. 3,
pp. 737–750, Mar. 2019.

[30] F. Li, J. Qin, and W. X. Zheng, ‘‘Distributed Q-learning-based online
optimization algorithm for unit commitment and dispatch in smart grid,’’
IEEE Trans. Cybern., vol. 50, no. 9, pp. 4146–4156, Sep. 2020.

[31] P. de Mars and A. O’Sullivan, ‘‘Applying reinforcement learning and
tree search to the unit commitment problem,’’ Appl. Energy, vol. 302,
Nov. 2021, Art. no. 117519.

[32] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation,
Operation, and Control. Hoboken, NJ, USA: Wiley, 2013.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ in Proc. NIPS Deep Learn. Workshop, 2013, pp. 1–9.

[35] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. ICML, 2016, pp. 1928–1937.

[36] C. Watkins, ‘‘Learning from delayed rewards,’’ Ph.D. thesis, King’s
College, Univ. Cambridge, Cambridge, U.K., 1989.

[37] J. Qin, N. Yu, and Y. Gao, ‘‘Solving unit commitment problems with multi-
step deep reinforcement learning,’’ in Proc. IEEE Int. Conf. Commun.,
Control, Comput. Technol. Smart Grids (SmartGridComm), Oct. 2021,
pp. 140–145.

[38] Y. Gao,W.Wang, and N. Yu, ‘‘Consensus multi-agent reinforcement learn-
ing for volt-VAR control in power distribution networks,’’ IEEE Trans.
Smart Grid, vol. 12, no. 4, pp. 3594–3604, Jul. 2021.

[39] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, ‘‘MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,’’ IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[40] M. Carrión and J. M. Arroyo, ‘‘A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,’’ IEEE Trans.
Power Syst., vol. 21, no. 3, pp. 1371–1378, Aug. 2006.

[41] CASIO. (2022).California ISODemand ForecastWebsite. [Online]. Avail-
able: http://oasis.caiso.com/mrioasis/logon.do

[42] Gurobi Optimization. (2022). Gurobi Optimizer Reference Manual.
[Online]. Available: https://www.gurobi.com

JINGTAO QIN (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineer-
ing from Shandong University, Jinan, China, in
2018 and 2020, respectively. He is currently pur-
suing the Ph.D. degree in electrical engineering
with the University of California at Riverside,
Riverside, CA,USA.His research interest includes
machine learning and its application in the opti-
mization of power systems, specifically in areas
such as unit commitment and distribution network
reconfiguration.

VOLUME 11, 2023 100135



J. Qin et al.: Optimization Method-Assisted Ensemble Deep RL Algorithm to Solve UC Problems

YUANQI GAO (Member, IEEE) received the B.E.
degree in electrical engineering from Donghua
University, Shanghai, China in 2015, and the Ph.D.
degree in electrical engineering from the Univer-
sity of California, Riverside (UCR), Riverside,
CA, USA, in 2020. He was a Postdoctoral Scholar
with the Department of Electrical and Computer
Engineering, UCR. His research interests include
big data analytics and machine learning applica-
tions in smart grids.

MIKHAIL BRAGIN (Senior Member, IEEE) is
currently a Visiting Project Scientist with the
Energy, Economics and Environment Research
Center, University of California at Riverside,
Riverside, CA, USA. His research is geared
toward solving complex technical and societal
challenges within smart grids, manufacturing,
transportation, and healthcare. Accordingly, his
research interests include operations research,
mathematical optimization, artificial intelligence,

machine learning, quantum computing with applications to power systems
optimization, grid integration of renewables, energy-based operation opti-
mization of distributed energy systems, decarbonization through electrifica-
tion of transportation, stochastic scheduling within manufacturing systems,
and pharmaceutical scheduling.

NANPENG YU (Senior Member, IEEE) received
the B.S. degree in electrical engineering from
Tsinghua University, Beijing, China, in 2006, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from Iowa State University, Ames, IA, USA,
in 2007 and 2010, respectively. He is currently an
Associate Professor with the Department of Elec-
trical and Computer Engineering, University of
California at Riverside, Riverside, CA, USA. His
current research interests includemachine learning

in smart grid, electricity market design and optimization, and smart energy
communities. He is an Associate Editor of IEEETRANSACTIONSON SMARTGRID

and IEEE POWER ENGINEERING LETTERS.

100136 VOLUME 11, 2023


