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ABSTRACT Peristaltic pumps play a crucial role in the pharmaceutical industry, offering advantages such
as reduced cross-contamination risks and ease of use. However, their dosing precision often lags behind
other devices like volumetric pumps. This study investigates the underlying causes of this phenomenon
and proposes effective mitigation strategies to enhance accuracy. Notably, two novel aspects are explored:
the underlying causes of dosing variation and compensation systems on precision filling. Through
comprehensive analysis, the impact of product temperature on accuracy is unveiled, resulting mainly from
variations that alter the elastic properties of the pipe material and lead to significant deviations in dosed
volume. Therefore, temperature stabilization becomes imperative for optimal performance. Additionally,
the Adaptive Dosing Control System (ADCS) based on time series prediction is introduced, enabling
real-time compensation of volume delivery. The filling system is considered as a black box, allowing
potential application of these findings on other similar industrial setups. Extensive experiments on state-
of-the-art robotic production lines validate the ADCS’s stability and effectiveness, demonstrating up to a
30% improvement in accuracy. In conclusion, this research sheds light on the critical relationship between
product temperature and peristaltic pump dosing, while the ADCS represents an advancement in precision
filling technology. These results hold potential for enhancing precision, reducing wastage, and improving
product quality in the pharmaceutical industry and other precision filling applications.

INDEX TERMS Peristaltic pumps, adaptive control system, forecasting compensatory control, ARIMA.

I. INTRODUCTION AND MOTIVATION
Filling devices are widely used in industries as they allow
for the handling of fluids, both for conveying and dis-
pensing purposes. Traditional filling technologies employed
in fields such as pharmaceuticals, chemicals, and food
and beverage industries include piston pumps and time-
pressure systems. While piston pumps are popular for
their precision, they have certain drawbacks in specific
applications [1].

A piston pump consists of variousmechanical components,
such as valves and seals, which come into direct contact
with the product. This poses a problem in certain scenarios
as these components need to be disassembled, cleaned, and
reassembled between uses to prevent cross-contamination.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

Moreover, the mechanical structure of piston pumps makes
them fragile and prone to damage. Additionally, these pumps
can impose stress on bio-pharmaceutical products [2].

In recent decades, peristaltic filling technology has gained
prominence due to new challenges and stricter validation
requirements, especially in the pharmaceutical industry [1].
In peristaltic pumps, the product only comes into direct
contact with a single piece of tubing, which can be easily
cleaned or replaced after use. This tube, typically made of
elastomers or thermoplastics, is housed in a circular seat on
the pump body and is compressed by the rotational action
of two or more rollers, as shown in Figure 1. After passing
the first roller, the tube regains its original shape, creating a
vacuum and subsequent suction. The aspirated fluid enters
the cavity formed between the rollers and, during rotation,
is pushed towards the outlet by the compression of the next
roller.
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FIGURE 1. Peristaltic pump working principle.

The ability to easily change the tube in contact with the
product makes peristaltic pumps an attractive alternative for
dispensing bio-pharmaceutical injectable drugs, significantly
reducing the risk of cross-contamination. Furthermore,
by adjusting the tube size, a wide range of filling volumes
(ranging from 0.1 to 250 ml) can be easily managed. The
setup and calibration procedure can be completed in under
five minutes, and the introduction of new silicone materials
for the tubes has improved their handling of aggressive
products [3].

As stated in [3] and [4], one major concern with peristaltic
pumps is their fill accuracy, which is particularly challenging
at low fill volumes. Achieving high accuracy is crucial
in the pharmaceutical industry due to quality compliance
requirements and the cost of the drug fluid. Improving these
capabilities can bring several benefits, not only by promoting
the use of peristaltic pumps but also by optimizing costs
through potential product waste reduction.

Therefore, the purpose of this investigation is to study
the factors that contribute to the accuracy of peristaltic
pumps with the aim of improving it through the application
of an adaptive runtime filling compensation strategy based
on time series prediction. This approach enables real-time
compensation of the volume delivered by the filling system
by leveraging predictions based on previously observed
volumes.

Similar techniques have been presented in the past [5] and
are known as Forecasting Compensatory Control (FCC) sys-
tems. The main idea behind these systems is to compensate
for errors through software rather than investing significant
resources in mechanical improvements, which often yield
limited results. Notably, this method can not only compensate
for repetitive, systematic errors but also predict non-repetitive
stochastic variations, enabling the correction of correlated
dynamic inaccuracies. In their work [5], Wu and Ni presented
examples of compensation applications, such as improving
workpiece straightness in end milling. In this case, a laser
sensor was used to evaluate the flatness of a machined object,
and any errors were compensated by adjusting the position of
the milling tool during the process.

Similar results are presented in [6], [7], [8], and [9], where
error compensation methods for milling machine tools are
explored. The authors emphasize the fundamental importance
of developing a precise error model, which is often a complex
task but necessary for achieving performance improvements.

In addition to milling machines, other manufacturing
processes have been proposed, such as integrated circuit
production [10], precision multi-axis motion control systems

with contour performance orientation [11], and additive
manufacturing for thermal distortion compensation [12].
Furthermore, recent research has explored the application of
different control techniques in various domains, including
complex systems [13] and adaptive control [14], [15].

All these works demonstrate that a careful and targeted
study of specific processes enables the development of
compensation systems that optimize accuracy performance.
However, a lack of research exists in the literature concerning
compensation studies specifically focused on industrial
filling systems, which exhibit distinctive characteristics
compared to other manufacturing processes. Although our
investigation primarily concentrates on precision filling sys-
tems for pharmaceutical applications, the practical benefits of
such an approach can extend to diverse domains such as food
and beverages, as well as cosmetics. Therefore, a thorough
investigation is necessary to understand the mechanisms
influencing accuracy and to determine whether compensation
systems can effectively enhance performance.

In this context, both AI and statistical methods have
been considered. AI techniques have gained widespread
adoption across various fields due to their effectiveness and
versatility. AI methods, such as artificial neural networks
(ANNs), support vector machines (SVMs), and deep learning
algorithms, have shown remarkable success in predictive
modeling tasks. For example, in [16] and [17] the authors
discuss the application of Radial Basis Function Neural
Networks (RBF NN) for system prediction, while [12]
explores the use of AI for predicting thermal distortion.
These studies demonstrate the potential of AI techniques in
optimizing different systems. Although AI techniques offer
promising avenues for investigation, for the current study, the
Autoregressive Integrated Moving Average (ARIMA) [18]
model for time series prediction was initially chosen
due to several advantages it offers. Firstly, ARIMA is a
well-establishedmethodwith a proven track record of success
in time series prediction. It has been extensively used in
various fields such as finance, economics, and engineering,
consistently providing accurate predictions in numerous sce-
narios. Its performance is well-documented, and it is widely
recognized as a reliable method for time series forecasting.
Secondly, ARIMA is a straightforward and explainable
system. The algorithm is based on linear equations and a set
of assumptions that are easy to understand and interpret. This
aspect is particularly important in industrial scenarios where
stakeholders need to comprehend the underlyingmechanisms
of the prediction models applied in complex cyber-physical
systems. Lastly, ARIMA has been also shown to outperform
other strategies in various domains [19], [20].

All the experiments reported in this paper have been
conducted at Pharma Integration [21], a company focused
on the development of highly precise and efficient filling
lines using robotic technology, in compliance with the
recently published Annex 1 of the Good Manufacturing
Practices guidelines [22]. The company’s mission aligns
perfectly with the current fourth industrial revolution, which
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is characterized by the integration of advanced technologies
into the manufacturing process.

Ultimately, this work presents the following major contri-
butions:

• A significant relationship between product temperature
and dosing accuracy is unveiled through a comprehen-
sive analysis. The effects of product density, thermal
expansion, and the elastic properties of the tube material
are considered, leading to the novel discovery that
variations in product temperature directly impact the
dosed volume. Contrary to common assumptions, this
research highlights the pivotal role of changes in
tube elasticity in influencing dosed volumes, providing
valuable implications for optimizing dosing accuracy in
various industrial dosing setups.

• To address challenges arising from inherent noise
in the dosing system, an adaptive run-time filling
compensation strategy based on time series prediction is
introduced. This approach, referred to as the Adaptive
Dosing Control System (ADCS), enables real-time
compensation of the filling system’s volume delivery.
By treating the system as a black box, this approach
offers the advantage of potential applicability to diverse
dosing setups beyond the specific one studied, making it
highly suitable for various industrial applications.

• A comprehensive analysis of predictive model parame-
ters specific to the filling system context is conducted.
By exploring various model configurations and con-
ducting thorough parameter analysis, it is found that
an auto-regressive (AR) model effectively captures the
underlying patterns and dynamics of the dosing system.
The AR model’s ability to adapt to changing dynamics
and capture sequential dependencies has proven highly
effective in improving dosing accuracy.

• The insights and innovations presented offer specific
practical implications for the pharmaceutical industry
and other applications relying on precision filling tech-
nology. Optimizing dosing accuracy and compensating
for temperature effects open possibilities for enhanced
efficiency, reduced wastage, and improved product
quality in real production environments.

II. CONTEXT OF THE ADCS
This section provides details about the main elements
involved in the setting of the ADCS. Specifically, the
architecture of an industrial dosing system, the adopted
hardware/software setup, and the investigation methodology
are illustrated.

A. SYSTEM AND WORKING METHOD
Industrial filling systems used in the pharmaceutical envi-
ronment typically consist of filling devices coupled with
weighing scales. Depending on the type of product handled
by the machine, containers such as bottles, vials, or syringes
are moved through a conveyor system under the pumps.

FIGURE 2. Time series produced by a filling system.

These containers are filled with the specific product and then
weighed to check the volume dispensed during the process.
As shown in Figure 2, when these two devices are used
together in a production process, they generate a time series
where each observation represents a dispensed volume.

Typically, time series are composed of a predictable and
an unpredictable part. This can be observed by calculating the
auto-correlation graph after a production process, as shown in
Figure 3. The graph indicates a strong correlation between the
volumes dispensed during the process time, suggesting the
possibility of improving the system’s accuracy by applying
prediction techniques. The results of these techniques can
be used to compensate for subsequent volumes dispensed
by the filling system itself. In this study, the dosing system,
comprising the peristaltic pump and its associated controller,
is explicitly treated as a black box. The approach adopted
does not rely on access to the internal model or algorithms
of the controller. Instead, the focus is on utilizing the
input and output information provided by the system. The
pump controller exposes a set of well-defined API software
interfaces, carefully designed to prevent improper usage
of the system. Through strict adherence to these APIs,
it is guaranteed that any data or commands sent to the
controller are within the prescribed operational limits. This
mechanism adds a layer of stability, protecting the dosing
process from potential errors or inaccuracies that might arise
from incorrect operations. By treating the system as a black
box, the proposed method gains the advantage of potential
applicability to diverse control devices, distinct from the
specific one presented in the study. The utilization of the
ARIMAmodel enables to capture predictable patterns within
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FIGURE 3. Auto-correlation of a time series calculated over a production
process.

the time series data and generate accurate predictions for
future volumes.

The study presented in this article is organized into four
main steps. First, a data gathering campaign is performed
to retrieve time series in different working scenarios, which
is fundamental for the second phase where these datasets
are studied to better understand and control the system’s
behavior. The third step focuses on evaluating and proposing
an ARIMA model to be applied, which is finally tested in a
real setup in the fourth and final phase.

All experiments in this study were conducted using
a dedicated workstation designed to accelerate the data
collection process and simulate different conditions. The
workstation replicated the filling process described earlier,
which occurs in real industrial machines. Therefore, the most
important equipment involved in the process was the same as
that normally installed in industrial applications.

FIGURE 4. Workstation equipment composition.

In the following paragraphs, referring to Figure 4, the
components of the workstation will be explained in detail
from both the hardware and software perspectives.

B. HARDWARE SETUP
As mentioned in Section II-A, the workstation used for data
collection consists of several devices commonly employed

in real industrial scenarios. Specifically, a Flexicon PD12
peristaltic pump (PP) system controlled by a Flexicon
MC100 control unit [23] (Watson-Marlow Flexicon, Ring-
sted, Denmark) was utilized for filling.

Two pieces of 1.2mm ID pump tubing (FlexiconAccusil™)
were connected via a Y-connector, both pre- and post-pump.
Another two pieces of the same pump tubing were used
to complete the dosing circuit: one connected to a liquid
reservoir and the other to a 1.6 mm ID nozzle, with a total
piping length of approximately 2 m. According to the PP
manufacturer [24], this setup can handle volumes in the range
of [1.0 - 2.0] ml. For all subsequent tests, a volume of 1.2 ml
was chosen. A simplified representation of the pump tubing
setup is shown in Figure 5.

FIGURE 5. Pump tubing setup.

Purified water, filtered by a Milli-Q® Advantage A10
equipped with a Millipak® Express 40 filter, was used
in each experiment. The filling experiments, unless stated
otherwise, employed the PP at a pre-set velocity of 600 rpm
and an acceleration of 200 rpm/s. The suck-back (SB) was
set to 1. For the Flexicon PP, the acceleration settings range
from 1 to 200 rpm/s, and the SB settings range from 1 to 10.
Before each experiment, a purging session was performed
to remove air from the piping by activating the PP for a
few seconds. Following this procedure, the PP was calibrated
to a specific fill volume according to the executed experi-
ment. To measure the dispensed volume, a Wipotec SL-M
250/300 (Wipotec, Kaiserslautern, Germany) high-precision
weighing scale (WS) installed in a Modular Multilane
System (MMS) was used. The WS was equipped with an
Active Vibration Compensation (AVC) sensor to minimize
noise, and a CAN-Fieldbus-Interface (CFI) gateway module
was employed for Profinet communication. The movement
of containers between the PP system and the WS was
facilitated by a Denso VS-050S2 (Denso, Kariya, Aichi,
Japan) robot, which meets the stringent requirements of the
pharmaceutical and medical industry. A Gimatic MPXM
gripper (Gimatic, Brescia, Italy) served as the hand-effector
for container handling. The entire system was controlled by
a Siemens ET 200SP Open Controller (Siemens, Munich,
Germany), which combines the functionality of a PLC
with a Windows PC-based platform. During the process,
environmental and product temperatures were collected via
serial communication using sensors placed in the working
area and inside the reservoir. The product sensor was coupled
with a thermostat to regulate the product temperature, as
needed.
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C. SOFTWARE SETUP
The software architecture consists of two main components,
both handled by the Siemens Open Controller:

1) PLC-side: This componentmanages the PP,WS, robot,
and gripper.

2) PC-side: This component executes a Python applica-
tion responsible for the forecasting process. It gathers
data from the PLC and calculates the forthcoming
filling.

More specifically, the PLC controls the PP, robot, and
WS to replicate a standard filling process. It commands the
robot to weigh a container, fill it, and measures the dispensed
volume. To simulate an infinite flow of containers, a loop is
applied in the process, as follows:

1) The robot tares the container by placing it on the WS.
2) The robot positions the container under the needle and

initiates the dispense command on the PP.
3) The robot moves the container back to the WS and

measures its net weight.
4) If the container is not yet full, the process returns to

step 1. Otherwise, it proceeds to step 5.
5) The robot empties the container into the same tank from

which the pump draws the product, then returns to the
first step.

Depending on the experiment, the PC can execute a
Python application that receives the previously dispensed
volumes. Once a sufficient number of fillings, known as the
training window (TW), have been collected, the application
applies the ARIMAmodel with different configurations. The
ARIMA model is implemented using the Statsmodels
Python package [25], which calculates and returns the
forecasted volumes. These volumes are transmitted to the
PLC, which adjusts the quantity dispensed by the PP
using the appropriate function on the PP control unit. This
compensation is calculated to reduce the error, which is the
difference between the desired target volume and the actual
volume dispensed by the filling device. Communication
between the PLC and PC is established using OPC-UA,
as illustrated in Figure 6.

FIGURE 6. Communication protocol used to exchange data between the
PLC (responsible for handling the WS, PP, and robot) and PC (responsible
for the forecasting process) components in the Siemens Open Controller.

III. EXPERIMENTS AND DATA ANALYSIS
The experiments conducted in this study can be categorized
into two main types:

• The first group focused on understanding the physical
phenomena that influence pump accuracy, aiming to
identify the optimal dosing conditions for the PP. In this
phase, no compensations were performed.

• The second group aimed to improve dosing accuracy
by using the ARIMA model as a prediction method
and applying compensation at each dispense operation.
Throughout this experimental process, numerous tests
have been conducted to ensure that the dosing system
remains stable. Particular care was taken to analyze
the system’s behavior under various conditions, thereby
affirming its coherent and reliable behavior.

A. PUMP DOSING BEHAVIOR
As mentioned briefly in the previous section, the first series
of experiments aimed to understand the phenomena occurring
during the operation of dosing devices, which determine their
accuracy. Thousands of doses were collected by running
the system uninterrupted for several days, following the
steps outlined in Section II-C. Each batch started with the
replacement of the two pieces of tubes within the Y-connector
and the calibration of the pump to a target volume of 1.2 ml.
Additionally, the filling process was performed without
controlling temperature stability. A total of 10 different
batches were conducted, each consisting of approximately
20,000 dispenses.

When plotting the amount of water dosed against the filling
number, the various runs exhibit similar trends, as shown in
Figure 7. Several features can be observed from the filling
data:

1) A seasonal component with a time period of approxi-
mately 24 hours.

2) Rapid and small fluctuations occurring over one or
more fillings.

3) A relatively slow average decay trend.

In Figure 7a, a linear fit of the decay reveals a slope
of about −7e-6 g/filling, indicating a loss of 7 mg every
1000 fillings. This behavior is known [26] and is caused
by the continuous wearing of the tube due to the action of
the pump rollers. Figure 7b shows the curve resulting from
subtracting the best-fit line (a second-order polynomial) from
the data. It represents an oscillating signal superimposed
on the mean decay trend, which correlates perfectly with
the temperature reading of the water in the tank. The
temperature variation, around 3 degrees, was caused by the
air conditioning system in the building where the filling
setup was located. The visible lag in Figure 7c between the
ambient temperature and the temperature of the liquid in the
tank can be attributed to the thermal inertia of the water,
resulting in a delay in reaching thermal equilibrium. The
corresponding variation in dispensed weight is approximately
20 mg. The correlation between water temperature and
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FIGURE 7. a) Filling data with second order polynomial best-fit line.
b) Subtraction of best-fit line from the data. c) Room/water temperature
fluctuations caused by air conditioning system of the building.

dispensed volumes is positive, indicating that higher water
temperatures correspond to higher dispensed volumes.

In a subsequent experiment, the water temperature in the
tank was maintained constant at around 30.0 ± 0.1◦C using
the thermostat mentioned in Section II-B. The new scenario,
plotted in Figure 8, shows that the seasonal component in
the filling data disappears, indicating that only variations in
water temperature, not air temperature, are responsible for
this phenomenon.

Further investigations were conducted to understand the
physical mechanisms underlying the relationship between
product temperature and dispensed volume. The following
three temperature-related factors were considered:

1) Density variation of water.
2) Thermal expansion of the pump tube.
3) Elasticity of the dosing tube.

The subsequent sections provide further details to evaluate
the relative significance of each factor and determine if they
are sufficient to explain the observed temperature sensitivity.

1) DENSITY VARIATION OF WATER
A simple calculation reveals that the observed range of
approximately 20 mg in filled weight cannot be solely

FIGURE 8. a) Filling data with second order polynomial best-fit line.
b) Subtraction of best-fit line from the data. c) Room temperature
fluctuations caused by air conditioning system of the building. d) Water
tank temperature kept constant by using a thermostat.

explained by the variation in water density. According to [27],
the density of water at the two extreme temperatures observed
during the experiment, 24◦C and 27◦C, is approximately
0.99730 g/ml and 0.99652 g/ml, respectively, at a normal
pressure of 1 atm. Assuming the dosed volume Vd remains
constant at 1.2 ml, the resulting mass variation is:

1m = Vd × 1p ≈ 0.8 mg. (1)

Not only is this value significantly lower than the observed
20 mg, but it would also imply a negative correlation
with temperature. According to this calculation, higher
temperatures should result in lower filled weights.

2) THERMAL EXPANSION OF PUMP TUBE
The tube used in the system is made of Flexicon Accusil™,
a type of silicone called Polydimethylsiloxane (PDMS). Its
cross-section geometry is illustrated in Figure 9. When the
tube undergoes thermal expansion, its internal surface area
increases, resulting in a larger volume of water that can be
accommodated per unit length. Both analytical and numerical
calculations have been conducted, with the latter performed
using the COMSOL Multiphysics™ [28] software package.
The two methods yield similar results, indicating a weight
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FIGURE 9. Cross-section of the Flexicon Accusil™tube.

variation of 2.2 mg. This effect exhibits a positive correlation
with temperature variation, but it accounts for only around
10-15% of the total observed mass variation.

a: ANALYTICAL CALCULATION
In the analytical calculation, small temperature variations
denoted as dT are considered. The relative change in length
dl
l is given by the thermal expansion coefficient α, which for
PDMS is 3 × 10−4 K−1 [29], [30]:

dl
l

= αdT . (2)

To determine the length variation of the internal diameter a,
changes in both the circumference of diameter b and the tube
thickness s are taken into account. From Figure 9, b = a+ s,
and therefore:

da = db− ds. (3)

Substituting this into the equation:

da
a

=
db− ds
b− s

=
αbdT − αsdT

b− s
= αdT . (4)

Since the internal section S of the tube is proportional
to a2 and assuming a constant density of water, the relative
variation of weight is given by:

dm
m

=
dS
S

= 2
da
a

= 2αdT . (5)

Substituting the given values dT = 3◦C and m = 1.2 g
into the formula, the resulting mass variation is:

dm = 2.2 mg. (6)

b: NUMERICAL CALCULATION
Numeric calculations were performed using the COMSOL
Multiphysics™software. The study utilized the exact geom-
etry shown in Figure 9, with the PDMS material selected (the
thermal expansion coefficient was corrected from 9K−1 to
3K−1 according to [29] and [30]), available in the COMSOL
material database. The Thermal Expansionmodel was chosen
to represent the physics. The environmental temperature and
the external surface of the tube were maintained at 27◦C,
while the temperature of the internal part was raised from

FIGURE 10. Von Mises stress of the tube section after thermal expansion.
Only the x component of the stress is depicted on the plot.

24◦C to 27◦C. The simulation output can be visualized
through von Mises stress, as shown in Figure 10. Due to the
symmetry of the tube, the magnitude of the stress depends
solely on the distance from the center of the cylinder.

The mass variation resulting from the increase in internal
diameter is the same as the previous one within 0.1 mg.
The combined effect of thermal expansion (2.2 mg) and
the change in water density (−0.8 mg) accounts for
approximately 7% of the total observed mass change, which
is around 1.4 mg.

3) ELASTICITY OF DOSING TUBE
To observe the trend of the dosed volume as a function
of controlled changes in water temperature, a short run
was performed by varying the temperature. Specifically, the
temperature was raised from 28◦C to 36◦C in 2◦C increments.
Continuous dosing was carried out for approximately 30min-
utes at each temperature. The results are shown in Figure 11.

The step-wise temperature variation shown in Figure 11b
is clearly reflected in the dosed volume shown in Figure 11a.
The increase in dosed volume decreases as the temperature
rises. The first step has an amplitude of approximately 20 mg,
the second of 12 mg, the third of 7 mg, and the fourth
of 4 mg. This trend does not align with a simple thermal
expansion effect of the tube, which would have resulted in
quasi-constant steps.

Subsequent tests have revealed that these variations are
mainly due to the relaxation time of the tube’s geometry
between two successive deformations caused by the pump
rollers. When dosing at the maximum speed achievable by
the pump, i.e., 600 rpm, the tube cannot reach its rest position
before the next roller deforms it again. As the temperature
increases, the tube becomes more elastic, allowing it to relax
completely after each deformation.

Three experiments were conducted at different pump
speeds: 600 rpm, 300 rpm, and 100 rpm, to emphasize this
phenomenon. Each dosing experiment lasted approximately
30 minutes at a temperature of 26◦C, after which the
temperature was increased to 30◦C, and dosing continued for
another 30 minutes.
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FIGURE 11. a) Filling data for different water temperatures. The red line represents a smoothing of the data
using a 30-point window. b) Stepwise temperature variation from 28 to 36◦C.

Figure 12a clearly shows that at a pump speed of
600 rpm, a temperature increase of 4◦C results in a step of
approximately 30 mg in the dosages.

By reducing the speed to 300 rpm (Figure 12b) and
100 rpm (Figure 12c), the residual step is on the order of a
fewmilligrams, which corresponds to the overall contribution
resulting from the thermal expansion effect of the tube
and the change in water density. These results demonstrate
that changing the temperature of the dispensed product
alters the elasticity of the tube. Moreover, this phenomenon
explains 93% of the dosed mass variation due to temperature
change, as the remaining elements analyzed in the previous
paragraphs account for the remaining variation.

4) CONCLUSION
In conclusion, the results obtained in this initial part of
the study demonstrate that changing the temperature of the
dispensed product causes a variation in filling accuracy
primarily due to the combination of three major phenomena,
listed in order of relevance:

1) Elasticity of the dosing tube: which is influenced by
the temperature increase of the product, making the
tube progressively more elastic. This allows the tube
to relax completely after each deformation caused by
the pump rollers, as explained in Section III-A3. This
factor is closely related to the pump rotation speed as
well. Slower pump rotation results in better alignment
between the displaced volume and the actual pipe
capacity since the tube has more time to relax after each
deformation.

2) Thermal expansion of the pump tube: which leads
to a mass variation in the dispensed product of
approximately 10-15% of the total observed mass
variation, as discussed in Section III-A2.

3) Density variation of water: which causes a slight
decrease in the dosed volume per unit, as shown in
Section III-A1.

To ensure system control and achieve stable filling accu-
racy, it is important to maintain a fixed product temperature
and pump rotation speed at specific values.

Finally, by controlling the temperature and conducting
time-limited runs to minimize the influence of tube con-
sumption, it was possible to determine the accuracy value
of the dosing device. For the volumes considered in the
experimental phase, the accuracy was found to be less than
±1%, in accordance with the manufacturer’s statement [1].

B. ADCS THROUGH ARIMA MODEL
In the following sections, a new method is proposed that
is capable of improving the accuracy of the pump beyond
its inherent limits. Specifically, the aim of the second series
of experiments was to develop and test the ADCS by
applying an ARIMA model [18] to forecast future fillings
and implementing a compensatory mechanism. This was
made possible through the PLC-PC interaction described in
Section II-C.
In time series analysis, an ARIMA model is a generaliza-

tion of an Autoregressive Moving Average (ARMA) model.
Both models are fitted to time series data to understand the
data better or predict future points in the series (forecasting).
ARIMA models are applied when the mean trend of the
data is not constant, meaning that the data is not stationary.
When a periodic behavior (seasonality) is present in addition
to the mean trend, seasonal differencing can be applied to
eliminate this component and work with only the residual
noisy part of the data. The AR part of ARIMA models
the evolving variable of interest as a linear combination
of its past values. The MA part, similar to autoregression,
is a linear combination of past white-noise error terms.
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FIGURE 12. Filling data with pump speed set to 600 rpm (a) , 300 rpm (b), 100 rpm (c), and temperature ranging
from 26 to 30◦C.

FIGURE 13. Logic representation of the implemented ADCS.

The I (integrated) indicates that the original time series has
been differenced one or multiple times to remove the mean
trend. The purpose of each of these features is to make
the model fit the data as well as possible. Non-seasonal
ARIMA models are typically denoted as ARIMA(p, d , q),
where arguments p, d , and q are non-negative integers. The
parameter p represents the order (number of time lags) of
the autoregressive model, d is the degree of differencing,
and q is the order of the moving-average model. These
three inputs determine the effectiveness of the forecasting
results. In the first phase of the study, specific tests were
conducted to identify the best values for these parameters.
In the second phase, two different adaptive approaches based
on the ARIMAmodel were evaluated in real-time to improve
accuracy performance. A schematic representation of the
implemented control system is shown in Figure 13, where
Vtg represents the target volume, Vd is the dispensed volume,
Vp is the predicted volume, and Vc is the compensation
amount to be added for the forthcoming filling. These
approaches involved dynamically adjusting the next filling

volume based on the predicted dosed volume Vp. The
adaptability of the ADCS relies on the absence of prior
knowledge regarding the model governing the dosing system.
As the PP continuously doses, the temporal behavior of
the compensated volumes Vd is kept monitored, and the
compensation amount Vc is adjusted accordingly to optimize
dosing accuracy. By continuously analyzing the time series
data and predicting the next dosed volume, the system can
calculate the compensation and incorporate it as an input
to the pump controller. This adjustment mechanism ensures
adaptation to the uncertain and potentially time-varying
behavior of the dosing system, thus improving accuracy and
compensating for the forthcoming filling.

1) ARIMA PARAMETERS EVALUATION
As discussed in Section III-A, the dosing trends consist of
three main components: an average decay due to tube deteri-
oration, a seasonal component with a 24-hour period caused
by temperature variations, and rapid small fluctuations over
one or more fillings.
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FIGURE 14. ARIMA(p, 0, q) prediction performances measured for different (p, q) pairs and averaged over different runs. Performances are
expressed in terms of RMSE between predicted and actual weight values.

The decay due to tube deterioration and the seasonal
component can affect the stationarity of the trend. The degree
of differencing (parameter d) can be used to make the signal
stationary and improve the forecasting performance of the
ARIMA model. However, based on the previous analysis,
the tube consumption phenomenon was found to have a
negligible effect, causing only a minimal loss of a few
milligrams per 1000 fillings. The seasonal component can
also be neglected by setting the temperature to a constant
value, as was done in the experiments. Therefore, it can be
assumed that the filling trend, within a time-limited range,
can be considered stationary without loss of generality, and
differencing is not necessary.

Several experiments confirmed that the argument d had no
significant effects on the forecasting performance. However,
dedicated tests were conducted to determine the optimal
values for the remaining two parameters.

Using the datasets collected in Section III-A, where the
pump was calibrated at the beginning of each process,
pairs (p, q) with p and q ranging from 0 to 28 were
evaluated, resulting in a total of 400 pairs. The performance
of each model was measured using Root Mean Squared Error
(RMSE), a commonly used metric for evaluating prediction
quality. RMSE measures the average squared difference
between the predicted and observed values and is expressed
as:

RMSE =

√√√√1
n

n∑
i=1

(Pi − Oi)2, (7)

where Oi are the observed fill volumes, Pi the predicted fill
volumes and n the number of observations available for the
analysis.

RMSE values were collected by repeating the fit of a
given model on different subsets of the entire datasets
shifted by five forward weights at a time, until a cutoff
value in the series, set at the 1000-th dose, was reached.
To train the model’s parameters, datasets with different
lengths, known as training windows (TWs), were considered,
ranging from 100 to 300 points. These points were extracted
from the available series. The selection of the TW is
crucial as it greatly influences the model’s accuracy and its
ability to capture underlying patterns in the data. The TW
size is an important consideration in ARIMA modeling as
it significantly affects the model’s performance. A larger
TW allows the model to capture longer-term dependencies
and trends, while a smaller TW focuses more on short-
term variations. The chosen range of 100 to 300 points
aimed to explore the impact of different TW sizes on
the ARIMA model’s accuracy specifically for the dosing
system under consideration. The goal was to find the optimal
balance between capturing relevant dynamics in the data
and maintaining the window length as short as possible.
During each iteration, the oldest five values in the list were
removed, and a new set of five values were inserted at
the end of the window to maintain a constant number of
points. This process allowed the TW to move through the
entire dataset, recalculating the ARIMA prediction for the
following dosage.

The results shown in Figure 14 indicate that the best
prediction performance is achieved in the high-p and
low-q region. This suggests that the model can be reduced
to a simple autoregression AR(p).

The reported results are based on tests with a
TW size of 100 points, as no significant differences
were observed with different window lengths in terms
of RMSE.
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FIGURE 15. Auto-correlation functions of the residuals of ARIMA(p, 0, 0) model.

To assess the prediction process’s effectiveness, the
autocorrelation of the residuals was calculated for increasing
values of p (with q and d set to 0). The residuals represent
the differences between the values predicted by the ARIMA
model and the corresponding dosed values during the process.

As shown in Figure 15, increasing the autoregressive
parameter results in residuals with autocorrelation patterns
that resemble white noise more closely. This indicates that
as p increases, the model becomes better at forecasting the
predictable part of the data. Once p reaches 10 or higher,
the auto-correlation patterns become similar. Since further
increases in p require higher computation time without
significant improvement in terms of auto-correlation, AR(10)
was chosen as the optimal parameter for further analysis.

2) ADCS WITH STATIC TRAINING WINDOW
Based on what was discussed in Section III-B1, an AR(10)
model was chosen for these experiments. The workstation
used was exactly the same as described in Section II-A,
the overall control system is depicted in Figure 16, and the
logic representation of the ADCS is shown in Figure 13.
The experiments conducted in this phase involved calibrating
the PP once at the beginning of each process to the target Vtg.
The water temperature was set to 26◦C. In this first algorithm,
represented in Figure 17, the main idea is to train the AR
model by looking at the last TW dispensed volumes to capture
the PP pattern. To improve the filling accuracy, the AR
model is used to forecast the next N values. These forecasted
measurements are then used to compensate each subsequent
dosage of the PP. Once the compensation is completed,
new dosages are collected, and the process is repeated. The
following steps are performed in more detail:

1) The PP is triggered to dispense the new volume, which
is weighted with the WS and inserted into a list called
Vdispensed , as shown in Figure 17a.

2) If the number of measurements collected in Vdispensed
is less than the designated training window TW , the
process repeats from step 1. Otherwise, the next step
is performed.

3) Starting from the TW previously observed volumes in
Vdispensed , an AR(10) model is used to forecast the next
N fillings, which are stored in the Fvolumes[N ] array,
as shown in Figure 17b.

4) For each predicted quantity Vp in Fvolumes[N ]:

a) To increase the accuracy of the PP, volume
compensation is performed according to the
following formula:

V = Vtg ·
Vtg
Vp

≡ Vtg + Vc

= Vtg +
Vtg
Vp

· (Vtg − Vp). (8)

b) The result is then applied to the PP controller
using the set-volume(V ) primitive to adjust
the next dosage according to the forecasted
value.

c) The PP is triggered to dispense the new volume,
as shown in Figures 17c, 17d, 17e, and 17f.

5) If the total number of dispensed fillings is sufficient, the
process stops; otherwise, the set-volume(Vtg) primitive
is called, Vdispensed is cleared, and the process repeats
from step 1.

Results calculated after several runs with TW = 100,
N = 50, and reported in Table 2, demonstrate that no
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FIGURE 16. Dosing control system. A) The PP is triggered to dispense the volume set into the MC100. B) The filled
container is weighted; the weight is registered by the PLC and transmitted to the ADCS. C) the ADCS performs the
forecasting process and returns the volume adjustment based on the analysis. D) the PLC sets the adjusted volume into the
MC100 by using the set-volume() primitive.

FIGURE 17. ARIMA ADCS with Static Training Window representation.
a) TW dispensed volumes are collected. b) AR(10) is trained on top of the
collected volumes, and the forthcoming N fill volumes are forecasted. c, d,
e, f) PP is compensated according to the forecasted volume, and the next
fill is triggered, resulting in a dispensed volume closer to Vtg.

performance improvements can be observed. On the contrary,
as shown in Table 1, a negative impact on the standard
deviation (STD) has been observed, with an average loss
of 28.8%. This suggests that the set-volume() primitive
significantly alters the behavior of the PP, affecting the
predictive effectiveness of the AR model. However, applying
the ADCS results in a positive average gain of 5.6% with
respect to the RMSE, as the system better centers the time
series around the target volume. As a reference, an example
of a run is reported in Figure 18.

FIGURE 18. Example of a filling process where ADCS with a fixed window,
TW = 100, N = 50, and Vtg = 1.2 ml, has been applied. The only
improvement that can be observed is that the red line is more centered
around the target volume, thus resulting in a positive RMSE percentage
gain. At the same time, calculations show a worsening in terms of STD
gain.

3) ADCS WITH MOVING TRAINING WINDOW
Based on what discussed in Section III-B1, for these
experiments an AR(10) model was chosen. The workstation
used was exactly the same described in Section II-A, the
overall control system is depicted in Figure 16, and the logic
representation of the ADCS is shown in Figure 13. The water
temperature was set to 26◦C. Each experiment began by
calibrating the PP to the target Vtg at the start of each batch.
Subsequently, N consecutive fillings according to the chosen
TW were gathered. Once the first TW quantities are collected,
the following algorithm is applied (Figure 19a):

1) The AR(10) model is used to forecast the next filling
volume, denoted as Vp, based on the previous TW
observations (Figure 19b).
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FIGURE 19. ARIMA ADCS with Moving Training Window representation.
a) TW dispensed volumes are collected. b) ARIMA(10,0,0) is trained on
top of the collected volumes and the forthcoming fill is forecasted. c) PP
is compensated according to the forecasted volume and the next fill is
triggered resulting in a dispensed volume closer to the Vtg. d) The TW is
moved to consider the last compensated volume and ARIMA(10,0,0) is
trained producing another forecast. e) PP is compensated according to
the forecasted volume and the next fill is triggered resulting in a
dispensed volume closer to the Vtg. f) The TW is moved to consider the
last compensated volume and ARIMA(10,0,0) is trained.

FIGURE 20. Example of a filling process where ADCS with a moving
window, TW = 100, and Vtg = 1.2 ml was applied. In this case, both the
STD and RMSE percentage gains show positive improvements, and it is
clearly visible as the red line is better centered and more compact
around Vtg.

2) To improve the accuracy of the PP, a compensation is
performed according to the Formula 8.

3) The resulting volume is then applied to the PP
controller using the set-volume() primitive to adjust the
next filling based on the forecasted value.

4) The PP is triggered to dispense the new dosage
(Figure 19c). To keep the TW length unchanged, at each
iteration, the oldest value in the list is removed and the
new compensated value dispensed is inserted at the end
of the window (Figure 19d).

TABLE 1. Precision gain of the pump using STD as the evaluation metric.
The first column indicates the target volume used in the experiment. The
second column specifies the approach used for compensation: moving or
fixed training window. The third (fourth) column shows the STD of the
filling series when ADCS is turned off (on). The last column represents the
percentage gain in STD obtained when ADCS is activated. A positive gain
indicates an increase in pump accuracy. All values are averaged over
multiple runs.

TABLE 2. Precision gain of the pump using RMSE as the evaluation
metric (the error is relative to the target volume). Please refer to Table 1
for a description of the column contents.

5) If the total number of dispensed fillings is sufficient, the
process stops. Otherwise, the process is repeated from
step 1.

In this case, better results are achieved. As reported in
Tables 1 and 2, both the percentage gains in STD and RMSE
were positive, with values of 19.5% and 29.4% respectively.
This indicates that the ADCS with a moving training
window not only brings the mean value closer to the target
volume but also reduces the width of the value distribution
around the mean. As a reference, an example run is shown
in Figure 20.

IV. CONCLUSION
In this paper, a real industrial dosing system was analysed
with two objectives: i) studying the relationship between
product temperature and dosing accuracy and ii) using
an adaptive control system to increase the accuracy per-
formance. Firstly, a thorough investigation revealed that
alterations in the elastic properties of the tube material
due to the temperature of the product is one critical
phenomena that directly impacts the dosed volume. The
results have highlighted the significance of considering
temperature effects for achieving precise dosing in real
production lines, particularly in pharmaceutical applications.
By understanding the pivotal role of tube deformation in
influencing dosed volumes, valuable implications have been
provided for optimizing dosing accuracy in various industrial
dosing setups. In pursuit of the second objective, an adaptive
control system based on the AR model was proposed to
enhance accuracy performance even under optimal working
conditions, where temperature has been stabilized. Two
different approaches were introduced to implement the
prediction system called ADCS: one employing a static
training window to forecast the forthcoming volumes and
another utilizing a moving training window to forecast one
volume at a time. The latter approach has shown good results,
yielding a remarkable 30% increase in pump dosing accuracy.
This strategy, treating the system as a black box, provides the
advantage of potential applicability to diverse dosing setups
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beyond the specific one studied, making it adaptable for
various industrial applications.

As future work, exploration will be conducted on the
use of machine learning (ML) techniques for time series
prediction in comparison to the ARIMA model. While
ARIMA has proven to be a reliable and simple approach
for the current task, there may be other ML methods, such
as Recurrent Neural Networks (RNNs) and Transformers,
which have shown promising results in time series prediction
tasks, despite their higher model complexity. These ML
models are capable of capturing non-linear relationships
and patterns in the data, which may be difficult to identify
using traditional statistical methods like ARIMA.Overall, the
integration of ML techniques may lead to improved accuracy
and efficiency in time series prediction tasks. Through these
future works, comprehensive evaluations will be conducted
on different prediction techniques and their applicability
to this specific domain, further enhancing dosing precision
and advancing the field of precision filling technology in
industrial applications.
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