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ABSTRACT In order to maintain stable communication in 5G wireless networks, the link between a 5G
base station and user equipment (UE) should be constantly monitored and adapted to the time-varying
wireless channel. The use of UE for seamless information exchange is based on obtaining a target reference
signal. The method used to obtain the reference signal involves identifying the index of the reference
signal received from the 5G base stations. However, the existing index identification method employed in
commercial 5G networks is based on the blind detection method, which is inefficient in terms of time and can
cause misdetections. On the other hand, machine learning (ML), which is statistically predictable through
data accumulation, can be robust in practical network environments. Taking this into account, we build a
dataset consisting of reference signal data collected in a real-world 5G network environment to obtain an
optimal machine learning model that is applicable to practical 5G networks. We evaluate a total of 23 index
classification models by combining six ML models and three data pre-processing methods. The results of
the study represent optimized combinations of ML-based index classifiers and data pre-processing methods.
Performance differences between neural network (NN) models and non-NN models are also revealed.

INDEX TERMS Demodulation reference signal, machine learning, neural network, non-neural network,
pre-processing.

I. INTRODUCTION
In commercial application services based on 5G wireless
networks, ensuring accurate information delivery between
senders and receivers is an important challenge due to the
weakness of the relatively-high-frequency band. The stability
of the signal transmission may be greatly influenced by
dynamic changes in communication environments. To over-
come this problem, 5G and other mobile networks use
reference signals for synchronization, channel measurement,
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adaptation, and other important functionalities. In the con-
ventional index classification method, user equipment (UE)
uses a specific correlation formula to identify the target
signal. The UE can obtain similarities between the original
demodulation reference signal (DMRS) sequence and the
candidate DMRS sequence by calculating the correlation.
However, the conventional correlation method is performed
based on blind detection, and many calculations are required
to check all the indexes of the reference signals and obtain the
most similar signal index from the set of various reference
signals. Therefore, the conventional index classification
approach using the blind detection method may be inefficient
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in terms of computational power, and misdetections may
occur when the original sequence is damaged.

Machine learning (ML)may be an appropriate solution that
can reduce the problems of the blind detection method, such
as misdetections and the relatively high computational power
that is required. ML can perform statistics-based prediction
and classification through data accumulation, so the more
data these algorithms learn, the more robust they are to
random changes. In addition, the blind detection method has
a higher uncertainty and requires more calculations due to
the large number of candidate DMRS sequence types, but
ML-based classification methods can find a target signal
index without such limitations.

In this paper, we conduct research to develop an intelligent
software modem that can adapt to dynamically changing
communication environments through continuous learning.
For future intelligent software modems, machine learning
models that ensure performance under various signal-to-
noise ratio (SNR) conditions are necessary. To investigate
the feasibility of applying machine learning models in real
communication environments, we construct an outdoor chan-
nel environment using universal software radio peripheral
(USRP) and generate and collect demodulation reference
signal (DMRS). The collected signals are then used for
training and evaluation of the index classification model.
Even though some previous studies [1], [2] have attempted to
apply ML technologies to channel estimation and prediction,
these studies still faced practical limitations. These studies
derived results using computer simulations based on mathe-
matical assumptions; they were not based on data measured
in a real environment. Therefore, results measured in an
actual 5G environment are needed to further evaluate the
feasibility of using machine learning technologies for 5G
networks. We implemented softwarized modem testbeds that
are completely compliant with the current 5G standard to
validate various ML technologies in real 5G networks and
to produce realistic results [3]. The testbeds were used to
transmit and receive 5G signals in a real environment and
to measure the signals; then, we constructed a dataset based
on these real measurements. In addition, [3] has already
demonstrated the superiority of ML-based methods over
conventional approaches. Building upon these findings, our
main focus in this paper is to enhance the analysis of real
5G data using variousMLmethods. Specifically, we compare
the DMRS index classification performances of several ML
models using a DMRS sequence dataset collected from the
communications between a gNodeB (gNB) and UE in a
5G communication environment built using our softwarized
modem testbeds. We also combine three pre-processing
methods to create DMRS sequence datasets and use them as
training data for ML models.

This study makes several contributions. Firstly, by uti-
lizing practical gNB signals that comply with the 5G
standard, we provide new insights into real-world 5G channel
estimation scenarios. Secondly, through the analysis and
comparison of different approaches in this work, we offer

valuable insights into the impact of these methods on
index prediction performance, thereby making a significant
contribution to the field. Lastly, our comprehensive analysis
enhances our understanding of the effects of pre-processing
techniques and facilitates informed decisions regarding their
practical applicability.

The rest of this paper is organized as follows. We begin
with an explanation of index classification. Then, the actual
experimental environments and the structure of the DMRS
sequence are described, and three pre-processing techniques
are presented. Additionally, brief descriptions of the machine
learning models used in the experiments and the learning
process are provided. Finally, we evaluate the performances
of the machine learning models and compare them with the
conventional blind decoding method.

II. RELATED WORK
To compensate for the weaknesses in the relatively-high-
frequency band of 5G, it is becoming important to find
an appropriate index of the reference signal to create a
communication channel between the base station and the UE,
and research on these major challenges has been growing.
In [4], the authors use the measured power in the received
beam to improve the latency that the UE requires to detect
cells. Furthermore, they propose a beam scheduling algorithm
that can optimize beam sets for cell retrieval and reduce the
detection latency, as well as a beam coupling algorithm that
combines power in several reception directions. In [5] and [6],
the authors propose a novel DMRS structure to increase the
channel estimation accuracy of UE and DMRS bundling to
improve physical uplink shared channel (PUSCH) coverage,
respectively.

Blind detection methods are applied when the presence of
a signal needs to be detected without prior knowledge of the
signal characteristics or channel information; these methods
include initial cell search and the channel estimation of the
UE [7]. However, blind detection methods are likely to distort
the synchronization signal due to noise when the signal-
to-noise ratio (SNR) is low [8]. Conventional orthogonal
frequency division multiplexing (OFDM) receivers initially
estimate the channel state information (CSI) explicitly and
then utilize the estimated CSI to detect or recover the
transmitted symbols. In contrast, the deep neural network
(DNN)-based approach proposed in [9] implicitly estimates
the CSI and directly recovers the transmitted symbols.
Simulation results demonstrate that DNN approach achieves
performance similar to that of the minimum mean square
error estimator in symbol detection. The author of [3] propose
an ML-based channel learning scheme that can improve
cell search and confirm that ML-based methods perform
better than conventional correlation-based blind detection
methods. In order to solve the problem of high packet
losses caused by overlapping transmissions in random access
schemes in IoT wireless access networks, [10] proposes a
hybrid deep learning-matched filter approach called HybNet.
The proposed model demonstrates its ability to enable the
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detector to operate even in complex environments where
a large amount of data can be transmitted simultaneously.
In [11], reinforcement learning is applied to beam search
models in addition to ML, and the authors propose a blind
beamforming solution that can reduce overhead by applying
reinforcement learning to traditional beam search models.
Numerical experiments indicate that the proposed solution
exhibits better data transfer rates than conventional beam
sweeping techniques. In [12], the authors propose a deep
learning-based beam selection algorithm that utilizes channel
state information (CSI) below 6 GHz to select beams. The
proposed algorithm exhibits an improved performance in
experimental environments using 3D ray tracking simulations
and software-defined radios (SDRs).

SDRs can be used as a general-purpose hardware device
only by software replacement. Universal Software Radio
Peripheral (USRP) devices, which enable the establishment
of a wireless communication network environment at a low
price, have made it easier to develop wireless communication
applications [13], [14], [15]. Recently, USRP devices have
been used as a research tool for developing various applica-
tions because they make it possible to build a 5G network
environment at the laboratory level without expensive and
complex 5G base stations [16], [17], [18], [19], [20].
We validate the DMRS index classification performances of
six ML models in different communication environments to
build a 5G wireless network environment using these USRP
devices and find an optimal ML model.

Compared to the previous studies discussed in this
section, we tried to conduct more reliable studies in a real
environment. First, a testbed that meets the 5G standard
was implemented, and based on this, practical channel data
were collected to create a dataset. Efficient machine learning
models and pre-processingmethods that are suitable for a real
environment were developed and analyzed.

III. MACHINE LEARNING-BASED 5G INDEX
CLASSIFICATION
One of the main contributions of this paper is to present
combinations of ML-based DMRS index classification
models and pre-processing methods that are suitable for
different channel conditions, as shown in Fig. 1. These
models, including the channel-learning models, can be
effectively applied as representative scenarios in real-world
environments, leveraging the concepts introduced in the
channel-learning scheme for synchronization signal block
(SSB) index classification [3].
In this section, we describe the DMRS sequence data, the

pre-processing methods, and the ML-based models that we
applied to our measurements. The DMRS data collection
process and the DMRS structure will be described in detail
in the first subsection. We generated four training datasets,
three of which are pre-processed, and these training datasets
are described in the second subsection. For DMRS index
classification, four non-neural network (NN) and two NN
models are used. The Python-based implementation of the

FIGURE 1. Block diagram illustrating ML-based index classification.

FIGURE 2. The environment in which the DMRS data are collected.

those model can be found in [21]. Note that we define ML
models that are not NN-based as non-NN models.

A. DMRS DATA MEASURED IN REAL CHANNEL
ENVIRONMENT
We measured and collected DMRS data in realistic envi-
ronments, as shown in Fig. 2. Two static USRP testbeds
are used, with one serving as the gNB and the other as
the UE [3]. The gNB creates a beam to cover a single
cell’s coverage area, and within this coverage area, the UE
performs the initial cell selection process. The UE receives
the SSB from the gNB, which consists of 4 OFDM symbols
and contains 240 subcarriers in each frequency domain.
In the first and third OFDM symbols, there are primary
synchronization signal (PSS) and secondary synchronization
signal (SSS) respectively. After detecting the PSS, the
fast Fourier transform (FFT) is performed to detect the
SSS. The PSS has 3 candidate sequences, while the SSS
has 336 candidate sequences. By utilizing the candidate
sequences and indices N 1

ID (0 2) for PSS and N 2
ID (0 335) for

SSS, we can represent the gNB’s PCI (Physical Cell ID) as
follows [3]:

NCELL
ID = N 2

ID + 3N 1
ID (1)

The last 3 OFDM symbols contain the physical broadcast
channel (PBCH) [3]. In the second and fourth symbols,
the PBCH is distributed across subcarrier indices 0 to 239.
In the third symbol, the PBCH is allocated to subcarrier
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TABLE 1. DMRS data collection details.

indices 0 to 47 and 192 to 239. The DMRS is present in
the second and fourth symbols on specific subcarrier indices,
which are determined by adding v to subcarrier indices
0, 4, 8, . . . , 236. In the third symbol, the DMRS is allocated
to subcarrier indices 0, 4, 8, . . . , 44, and also to subcarrier
indices 192, 196, . . . , 236, by adding v, where the value of v
is obtained by taking the modulo 4 of the NCELL

ID .
The parameters used in the testing environment are

as follows: The sampling rate is 3072000, the downlink
frequency is 3608.79MHz, the NR-ARFCN is 640586, the
bandwidth is 20MHz, the FFT size is 1024, the subcarrier
spacing is 30kHz, and the SSB transmission period is
20ms [3].
DMRS data are collected evenly; 20,000 pieces of data are

collected for each of 12 SNR levels and 8 indices. The details
concerning the DMRS data collection are given in Table 1.
The DMRS is a complex signal with 144 elements,

and each element can be represented in two-dimensional
coordinates with in-phase (I) and quadrature-phase (Q)
axes. For a single DMRS, we represent I/Q sequences as
I = {i0, i1, i2, . . . , i143} and Q = {q0, q1, q2, . . . , q143},
respectively.

B. PRE-PROCESSING METHODS
To investigate the impact of the data pre-processing procedure
on the performance of ML models, we applied three methods
to DMRS sequences: power averaging, sequence scaling, and
principal component analysis (PCA).

1) POWER AVERAGING
Unprocessed data typically have outliers and often cause
problems when applied to machine learning due to severe
differences in the scales of different values. Therefore,
we normalized DMRS sequence elements so that they
would have a consistent scale. Through the power-averaging
process, the sequence elements are divided by the average
power of the signal. The normalized sequence element is
expressed by (2): 144 ∗ in∑143

k=0

√
i2k + q2k

,
144 ∗ qn∑143
k=0

√
i2k + q2k

 , (2)

where the sequence element’s number is n = 0, 1, . . . , 143.

2) SEQUENCE SCALING
Similar to the power-averaging method, the sequence-scaling
method is also used to create a consistent scale among signals.

However, power averaging only scales based on the power
of a single signal; it does not allow sequence elements to
be within a specific range. In the sequence-scaling process,
sequences are scaled with a mean normalization that ensures
that each sequence element is within the range -1 to 1 [22].
Unlike common mean normalization, which scales between
features, sequence scaling uses the minimum and maximum
values within each sequence. In addition, this method is
applied to each of the I/Q values, and a sequence element is
expressed as follows:

2 ∗

(
in −

max(I )+min(I )
2

max(I ) − min(I )
,
qn −

max(Q)+min(Q)
2

max(Q) − min(Q)

)
, (3)

where the sequence element’s number is n.

3) PRINCIPAL COMPONENT ANALYSIS
PCA is a technique for converting samples in a high-
dimensional space into samples in low-dimensional spaces
with no linear association; this technique finds new axes that
are orthogonal to each other while preserving the variance
of the data as much as possible [23]. In this pre-processing
method, the minimum number of new principal components
with high explanatory power are extracted to preserve at least
95% of the variance of the original data.

With these three pre-processing methods, four training
datasets are generated, including the original dataset, and we
define them as follows:

• DO: Dataset with no pre-processing,
• DA: Dataset to which power averaging was applied,
• DS : Dataset to which sequence scaling was applied,
• DP: Dataset to which PCA was applied.

C. NON-NEURAL NETWORK MODELS
We validate and compare various learning models for
performance analysis, and we refer to learning models that
do not have neural network structures as non-NN models.
We investigate four types of non-NN models: the decision
tree, random forest, LightGBM, and stacking models.

1) DECISION TREE
The decision tree model can be used for both classification
and regression in supervised training. Initially, a root node is
generated that contains all the data. This model automatically
creates child nodes using the rules or conditions of the data.
The conditions of a node are determined by the impurity. The
impurity I can be expressed as follows:

I = −

∑
c

p(c)log2p(c), (4)

where p(c) is the ratio of the data in space to the data
belonging to category c. When I is 1, the impurity is
maximum, which means that different data with the same
proportions coexist in one space. When I is 0, this means
that there is only one piece of data in one space. In addition,
in the process of generating the decision tree, the amount of
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FIGURE 3. Structure of the soft voting model.

information gain is required. The information gain (IG) can
be expressed as follows:

Ires = −

∑
v

p(v)
∑
c

p(c|v)log2p(c|v), (5)

IG = I − Ires. (6)

The IG is the difference between the current impurity and
the impurity after division, and it can be expressed using (6).
Ires, which is calculated using (5), expresses the impurity
after division. In order to increase the performance of the
classification, the IG must be increased. After the IG is
calculated, the decision tree is created by finding a condition
for which the IG value is maximized [24].

2) RANDOM FOREST
The random forest algorithm is an ensemble algorithm based
on the decision tree, and it has a relatively fast execution
speed and a high prediction performance. Additionally, it is
a bagging algorithm that creates multiple classifiers and
finally determines the output through voting [25]. After
multiple decision trees classify data individually, the output
of all classifiers is finally determined through the soft voting
model.

Fig. 3 shows the structure of the soft voting model. Various
classifiers each calculate a probability for the label value.
Then, the average is obtained by adding all the corresponding
probabilities, and the label value with the highest probability
is the final output value [26].

3) LIGHTGBM
Since the existing gradient boosting model (GBM) requires
a large amount of computation, efficient packages such as
XGBoost, CatBoost, and LightGBM have been developed.
In general, gradient boosting uses the level-wise method to
create a balanced tree while minimizing the depth of the
tree [27]. However, although the level-wise method is good
for preventing overfitting, it requires time to balance the tree.
In contrast, LightGBM uses the leaf-wise method.

The leaf-wise method increases the depth of the tree by
dividing the leaf node, as shown in Fig. 4; this creates an
asymmetric tree, and the leaf node has a maximum loss
value. Additionally, LightGBM uses the gradient-based one-
side sampling (GOSS) algorithm and the exclusive feature
bundling (EFB) algorithm. The GOSS algorithm reduces the
amount of data to be processed and improves the memory and

FIGURE 4. Structure of the level-wise and leaf-wise methods.

FIGURE 5. Stacking model structure.

processing speed as the amount of data is reduced. The EFB
algorithm reduces the amount of feature data, assuming that
the high-dimensional data are sparse. Due to the influence
of the two algorithms, LightGBM not only minimizes the
predictive error loss but also has a fast training time and
requires less memory than the original gradient boosting
algorithm [28].

4) STACKING
A stackingmodel is an ensemble model that combines several
algorithms to derive predictive results. A stacking model that
performs model-specific training and adds predictive label
values to generate new data is shown in Fig. 5. The stacking
model can be divided into two layers. The first layer is trained
on the training data individually and outputs predictions.
Then, training data are created using the predicted values, and
the final prediction is performed by the second layer with
the generated training data. In this paper, the decision tree,
random forest, and LightGBM were used as the first layer,
and LightGBM was used as the final prediction model [29].

D. NEURAL NETWORK MODELS
We used two NN models for the DMRS classification task.
NN models are represented by several layers, which include
weight parameters, and they are trained by updating the
weights according to the loss using optimizers. The layer
configuration of the model depends on which NN is used,
and a deep neural network (DNN) and a convolutional
neural network (CNN) are applied. As this is an index
classification problem, these two models use softmax in the
final layer so that they can select the class with the highest
numerical value as the predicted class [30]. In addition,
we use a categorical cross-entropy loss function and adjust
the weights using the adaptive moment estimation (ADAM)
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FIGURE 6. The structure of the DNN model.

optimizer with a learning rate of 0.001 for both models [31],
[32]. To determine the parameters for the structure of NN
models, such as the number of layers and nodes, we have
conducted multiple validations with DO. During this process,
we selected structures with lower complexity while ensuring
that they still maintain satisfactory performance. Note that
the chosen NN models for our measurements are designed
in a general manner, without specific influence from other
baselines, in order to compare their performance with other
models and ensure a comprehensive evaluation.

1) DNN MODEL
Fig. 6 illustrates the structure of the DNN model used in our
experiments. DNN-based models have more than two fully
connected (FC) hidden layers, as shown in Fig. 6 [33]. The
DNN model used in our experiments consists of four FC
hidden layers with 512 nodes for each, and the rectified linear
unit (ReLU) activation function is applied before each FC
layer [34]. To avoid overfitting, a dropout layer rate of 0.3 is
added before the output layer.

2) CNN MODEL
CNN-based models extract the features of inputs for each
adjacent section by performing convolutional operations with
filters [35]. To effectively extract the features of adjacent
regions, we modified the inputs so that they were divided
into two channels, which consist of the I and Q units of the
sequence, respectively. Note that, unlike other models, the
CNN model does not use DP as an input, because it cannot
be represented in an I/Q format. This two-channel input is
shown in Fig. 7.
Fig. 7 also shows the structure of the CNN model used in

our experiments. Our CNNmodel has three 1D convolutional
layers, which extract the main features of a sequence. Every
1D convolutional layer in the model is followed by a ReLU
function and uses a stride of 1 and half-padding. Specifically,
the initial layer employs four 10-sized filters, the second uses
eight filters of size 5, and the third employs sixteen filters of
size 5. To reduce the number of parameters, a max pooling
layer with a size of 2 is used. After the convolution process,
all parameters are flattened into a one-dimensional form and

FIGURE 7. The structure of the CNN model with a two-channel input.

connected to the next FC layer consisting of 256 nodes.
In addition, a dropout layer rate of 0.3 is used to avoid
overfitting.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of six ML-based
DMRS index classification models for four types of datasets:
Four non-NN models are evaluated in the first subsection,
and two NN models are evaluated in the next subsection.
We measure the average number of decoding attempts
needed to identify the correct signal index and compare
the ML-based models with the conventional blind decoding
method in the subsequent subsection. In the following
section, we analyze the computational complexity of each
ML model by representing their inference time using
Big-O notation. Additionally, we investigate the impact of
different pre-processing techniques on the training time of
NN-models in the subsequent section. In the last subsection,
we comprehensively compare and evaluate all six models.

The entire dataset is divided into training data and test data
using a ratio of 8:2, and 20% of the training data are used as
validation data to measure the loss value during training.

For all measurements, each model is collectively trained
on data with multiple SNR levels and evaluated for each
SNR level. For model performance verification, we input test
data, which were not used for model training, into the model.
We defined the success probability of the index classification
as an evaluation metric. For the index x, the classification
accuracy Sx is obtained using the number of test data points
Nx and the number of correctly classified data points Cx .
Using Sx , we define the success probability SP for n indexes
as follows:

Sx =
Cx
Nx

, (7)

SP =
1
n

n−1∑
i=0

Si. (8)

A. NON-NEURAL NETWORK MODELS
Fig. 8 shows the SP values obtained for each pre-processed
dataset using four non-NN models in low-SNR cases. When
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FIGURE 8. Success probability (SP) of DMRS index classification for each pre-processing method for non-NN models: (a) Decision tree;
(b) random forest; (c) LightGBM; (d) stacking.

the SNR is quite high, all non-NN models except for the
decision tree had SP values of 1 for all cases, and only the
decision tree had an SP of about 0.99.

Fig. 8a shows the SP of the decision tree for four datasets.
At −2.51 dB, the highest SNR shown in the figure, the
PCA dataset provides a very high SP compared to the other
datasets, with an SP of about 0.76. Other SNRs also indicate
that the PCA dataset resulted in higher SP values than the
other datasets, and the difference in the SP decreased starting
at −4.5 dB. All other datasets showed SP values of less than
0.3 at −2.51 dB, and it was also found that using the PCA
dataset was most appropriate when a decision tree was used.
However, the overall results of the decision tree indicate that
it is difficult to use in practice.

Fig. 8b shows the SP values obtained by the random
forest for the four datasets. The random forest obtained the
highest SP for the PCA dataset when the SNR was−2.51 dB,
as shown in Fig. 8a. Likewise, at −2.51 dB, the highest SNR,
PCA resulted in the highest SP, with an SP of about 0.97.
However, unlike the results shown in Fig. 8a, when PCA was
used, the SP remained above 0.9 until the SNR decreased

to −3.42 dB. It can be seen that the SP of all datasets also
decreases as the SNR decreases in all sections, except for
SNRs from −2.51 dB to −2.81 dB. In addition, at −4.5 dB
and −4.66 dB, the lowest SNRs, all four datasets showed no
significant differences in terms of the SP. When the random
forest is used for index classification, it can be seen that PCA
datasets are suitable for multiple SNRs.

Fig. 8c shows the SP values obtained by the LightGBM
model, and it shows a trend similar to that shown in
Fig. 8b. Fig. 8c shows that when PCA was used, the SP was
maintained at a value of at least 0.9 until the SNR decreased
to−3.7 dB. In addition, the PCA dataset resulted in higher SP
values than the other datasets for all SNRs except −4.66 dB.
For LightGBM, unlike the decision tree and random forest,
all datasets show SP values of 0.8 for SNRs up to −3.13 dB,
so it is appropriate to use LightGBM in this SNR range.

Fig. 8d shows the SP values obtained for the four datasets
using stacking. For the stacking model, all of the datasets
for all SNRs showed higher SP values than they did for
the previous non-NN models. In addition, with PCA, the SP
remained above 0.97 until the SNR decreased to −3.42 dB,
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FIGURE 9. Success probability (SP) of DMRS index classification for each pre-processing method for NN models: (a) DNN-based model;
(b) CNN-based model.

and the SP remained above 0.9 until the SNR decreased to
−3.7 dB, similar to the results shown in Fig. 8c. In addition,
as the SNR decreased, the SP also decreased, but for the
lowest SNR values (−4.5 dB and −4.66 dB), the SP tended
to increase slightly, except for the power-averaging dataset.

The non-NN model that is considered most appropriate to
use is the stacking model, which has a high SP overall. From
the dataset perspective, the PCA dataset, which provides a
higher SP than the other datasets, is considered the most
appropriate dataset. If the stacking non-NN model and the
PCA dataset are used together, good results are expected
when DMRS index classification is performed.

B. NEURAL NETWORK MODELS
In this subsection, we discuss the performance of the NN
models for each pre-processing method. The results of the
DNN-based model are shown in Fig. 6 and the results of the
CNN-based model are shown in Fig. 7. All these experiments
were conducted using the popular deep learning framework
Keras (version 2.8). During the training of both models, the
batch size was 512, and if the loss value converged within
1000 epochs, the training process was terminated early.

Fig. 9 shows the performance of the NN models for each
SNR environment. At 23.37 dB and 9.56 dB, which are not
shown in Fig. 9, the SP is 1 for all pre-processing methods,
and the performance decreases starting at −2.51 dB. Mean-
while, in the CNN-based model, as previously mentioned,DP
could not be used to create two channels, so it was not applied.

For all datasets, the DNN-based model shows no signifi-
cant difference in the SP above −3.7 dB, as shown in Fig. 9a.
The largest SP difference between datasets above −3.7 dB is
only about 0.003. However, there is a performance difference
for SNRs below this value. Generally, below −4.11 dB, the
performance is good for DA, DS , DP, and DO, and there is
no significant SP difference between DP and DO. Compared
with DO, at −4.11 dB, DA and DS improve the SP by
0.021 and 0.015, respectively, butDP only improves the SP by

0.014. According to these results, it is beneficial to use data
processed with the power-averaging method in a DNN-based
DMRS index classifier.

The CNN-based model reveals a pattern similar to that
shown by the DNN. As shown in Fig. 9b, DA and DS did not
show much difference in the SP, and when DO was applied,
the lowest SP was recorded for all SNRs. At −2.99 dB,
DA and DS improved by 0.015 and 0.004, respectively,
compared to DO, but at −4.11 dB, they improved by
0.071 and 0.054, respectively. This result also indicates
that DA provides slightly higher SP values than DS in
general. Thus, we can reveal that power averaging is the
most advantageous pre-processing method for a CNN-based
DMRS index classifier according to these results.

C. AVERAGE NUMBER OF ATTEMPTS TO IDENTIFY THE
SIGNAL INDEX FOR ML MODELS
We compare the average number of attempts of theML-based
methods with the average number of attempts of the
conventional blind decoding method. Herein, the average
number of attempts is defined as the average number of
decoding operations performed before the correct index is
identified. The conventional blind decoding method checks
the signal sequences one by one to find the correct signal
index. For ML-based methods, we calculate the average
number of attempts based on the measured SP values.
The conventional blind decoding method involves simple

random sampling without replacement. Thus, the probability
of finding an index in every trial is equal to 1/N for the total
number of indices N . We can represent the average number
of attempts of the conventional blind decoding method as
follows: ∑N

i=1 i
N

, (9)

where i represents the number of trials.
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TABLE 2. Average number of attempts to detect the correct signal index for 5G.

The ML-based methods involve sampling with replace-
ment, so a different equation is needed to calculate the
average number of attempts. When a certain modelM has an
SP of SPM , we can representM ’s average number of attempts
(AM ) as follows:

AM =

∞∑
i=1

((1 − SPM )i−1
· SPM · i), (10)

where i represents the number of trials.
From the perspective of the average number of attempts,

ML-basedmethods significantly outperform the conventional
method for high SNRs, but their performance decreases
rapidly when the SNR is lower than a particular value. Table 2
shows the average number of attempts for all methods, and the
results for SNRs under 9.56 dB are shown in Fig. 10. Non-NN
methods other than the decision tree at −4.11 dB or higher
require an average number of attempts close to 1 when using
DP. NNmethods using any pre-processing method require an
average number of attempts close to 1 at −4.11 dB or higher.
On the other hand, the conventional blind decoding method
requires 4.5 attempts on average for all SNRs. This means
that ML-based methods require about 3.5 fewer attempts on
average than the conventional method at SNRs of −4.11 dB
and above. However, when the SNR drops to −4.5 dB,
the average number of attempts of the ML-based methods
increases rapidly, and at −4.66 dB, most ML-based methods
require more attempts than the conventional method on

average. In environments with low SNR, noise or interference
tends to be more pronounced compared to the signal. In such
cases, ML-based models can learn the patterns of noise or
interference. This result can be observed in Fig. 10, where
the conventional model demonstrates better performance than
most of ML models. It is clear that a process that increases
the SNR itself, such as signal accumulation, is required to
distinguish DMRS indexes under a specific SNR using the
ML-based methods. With this process, we can generate a
highly efficient ML-based DMRS index classifier.

D. INFERENCE COMPLEXITY ANALYSIS FOR ML MODELS
In the context of 5G network environments, enhancing the
prediction accuracy of an inferencemethod is important, but it
is also crucial to improve the computational efficiency of the
software. Therefore, in this section, we analyze the compu-
tational complexity of each model in terms of the operations
required for index inference, using the Big-O notation. It is
important to note that the specific computational complexity
may vary depending on the structure and parameters of each
model.Note that the variables in this subsection are distinct
from those used elsewhere.

Table 3 represents the inference complexity of each
non-NN model using Big-O notation. The decision tree
performs class inference by traversing condition nodes up to
the tree depth (D). In addition, random forest and LGBM
models perform inference by traversing a number of trees
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FIGURE 10. The average number of attempts needed to decode the DMRS index for the ML-based methods and conventional blind
decoding method for different datasets: (a) DO; (b) DA; (c) DS ; (d) DP .

TABLE 3. Inference complexity of each Non-NN model.

equal to the number of estimators (E). For the stacking
model, it requires passing through the first and second layers.
In terms of inference complexity, the first layer includes the
three preceding models, while the second layer includes the
LGBM model. Therefore, the overall complexity is the sum
of the complexities of these four models.

The inference complexity of NN-models varies greatly
depending on the configuration of the layers, and therefore,
inference is handled at each NN-model’s key layers in this
part. In DNN models, the commonly used layer is the fully
connected (FC) layer, where each node in the current layer is
multiplied by its corresponding weights and summed to form
a node in the next layer. Consequently, the FC layer requires
inference computations proportional to the product of the

TABLE 4. Inference complexity of each NN layer.

number of nodes in the current layer (Lc) and the number of
nodes in the next layer (Ln).
The CNN models employed in this paper mainly utilize

1D convolutional layers, followed by additional FC layers for
classification purposes. The 1D convolutional layer performs
convolutional operations by shifting filters one step at a time
over the input sequence. Each filter conducts convolutions
based on the length (S) and channel count (C) of the input
sequence, repeated for the number of filters (Fn) used.
Denoting the filter size as (1× Fs), the inference complexity
of each key layer in the NN model can be expressed using
Big-O notation, as presented in Table 4.

In the case of inference with non-NN models, the value
of D represents the maximum number of classification
conditions that can be represented by a tree, up to 2D

conditions. Consequently, it is generally unnecessary for D
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TABLE 5. Average epochs for model training with different
pre-processing methods.

to have a large value. In our measurements, the maximum
value of D is set to a sufficient value of 24. As a result,
even with a large value of E , it can be observed that non-NN
models do not require extensive computations in terms of
inference.

On the other hand, NN-models generally require more
extensive computations in inference compared to non-NN
models. DNN models consist of multiple FC layers and
typically have hidden layers with a larger number of nodes
than the input features. Moreover, the nodes in these layers
are fully connected, forming a dense network of connections
between the current and next nodes, which increases the
computational complexity. While the convolutional layers
in CNN models are much less complex than DNN models
as they are not fully connected to all the preceding and
subsequent elements in the sequence, they still involve
relatively higher computational requirements compared to
non-NN models. Additionally, CNN models often include an
FC layer as the final classifier, further contributing to the
overall computational load. In conclusion, non-NN models
offer computational advantages over NN models in terms of
inference.

E. TRAINING TIME COMPARISON FOR PRE-PROCESSING
METHODS ON NN-MODELS
Based on the measurements presented, it is evident that
non-NN models exhibit significant superiority when using
PCA compared to other pre-processing methods. However,
for NN models, it is challenging to determine the most
suitable pre-processing method as there is no clear hierarchy.
Therefore, this subsection focuses on analyzing the impact of
pre-processing methods on training time for NN models. The
metric used to evaluate training time is the number of epochs
required for training, with the SP of the model converging to
its maximum value. Early stopping criteria for model training
are defined as no improvement in SP within 20 epochs.
The average number of epochs required for training across
all SNR levels is used as the comparative metric. When
considering the 12 SNR levels and their corresponding
training epochs for each model (e1, e2, . . . , e12), the metric
can be expressed as 1

12

∑12
i=1 ei.

Table 5 presents the average number of epochs required
for training each NN model with different pre-processing
methods. For the DNN model, the epoch counts were
lower in the order of DA, DS , DO, and DP. Although
DA and DS showed a slight difference, using DO and DP
required approximately 20 additional epochs compared to
the former. The CNN model exhibited a more pronounced
trend compared to the DNN model, particularly with a

FIGURE 11. Comparison of the performances of all models. The lines
show the results of applying DO to each model, and each area with the
same color as a line shows the best and worst performance for the model
associated with that line when different pre-processing methods are
applied.

threefold increase in training time when using DO compared
to DA. Overall, from the perspective of training time, the
power-averaging method demonstrated superiority among
the NN models.

F. COMPREHENSIVE RESULT
In this subsection, we derive a comprehensive result by
comparing the performances of all models, which are
shown in Fig. 11. Except for the SNR of −4.66 dB, the
highest-performing model is the DNN-based model, regard-
less of the pre-processing method that is used. The models
are ranked by performance in the following order: DNN,
stacking, LightGBM, CNN, random forest, and decision tree.
Overall, among the models used in this experiment, it is most
ideal to use a DNN-based model in environments in which
an NN model can be implemented. In environments in which
NN models are not available, it is appropriate to apply PCA
to the available datasets and use them to train the stacking
model. On the other hand, it can be seen that the decision
tree does not perform well enough to be used in practice; it
has an SP of less than 0.9 at −2.51 dB and is not suitable
for DMRS index classification. In addition, it is clear that
the performance of non-NN models depends greatly on the
pre-processing method compared with NN models, so pre-
processing methods such as PCA are essential.

V. CONCLUSION
In this work, we first considered the possibility of using ML
technologies to perform 5G reference signal identification in
practical environments. Practical testbeds with embedded 5G
softwarized modems were implemented and used to collect
a 5G signal dataset from real communications. Suitable
combinations of MLmodels and pre-processing methods that
can be used when ML technology is applied in 5G networks
were investigated and verified in practice. This allowed us
to demonstrate the feasibility of applying our findings to
real-world systems and confirm the potential for performance
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improvement. In addition, our results can be used to apply
an ML-based DMRS index classification model efficiently.
In future research, we will propose new ML-based models
that are suitable for various real-world environments based
on our research findings. Through this, we aim to create
robust and generalized models that perform well in practical
settings and contribute to the intelligentization of base
stations. Furthermore, we acknowledge the importance of
hyperparameter tuning in optimizing the performance of ML
models. Therefore, we plan to conduct extensive experiments
in the future to explore the impact of different hyperparameter
settings on the performance of the models. We will also
analyze existing studies that can reduce complexity and
improve performance, further improving the accuracy and
efficiency of the proposed machine learning-based model in
real-world 5G environments.
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