
Received 10 August 2023, accepted 4 September 2023, date of publication 11 September 2023, date of current version 22 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313643

K-TAHP: A Kubernetes Load Balancing Strategy
Base on TOPSIS+AHP
RONG GAO 1, XIAOLAN XIE1,2, (Member, IEEE), AND QIANG GUO 2
1School of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541006, China
2Key Laboratory of Embedded Technology and Intelligent System of Guangxi, Guilin, Guangxi 541006, China

Corresponding authors: Xiaolan Xie (xie_xiao_lan@foxmail.com) and Qiang Guo (guoqiang121@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 62262011, in part by the Natural
Science Foundation of Guangxi under Grant 2021JIA17013, and in part by the China Computer Federation (CCF)-Zhipu Artificial
Intelligence (AI) Large Model OF 202225.

ABSTRACT Kubernetes is an orchestration platform designed for containerized applications,allows the
application provider to scale automatically to match the flfluctuating intensity of processing demand.
Container cluster technology is used to encapsulate, isolate, and deploy applications, addressing the issue
of low system reliability due to interlocking failures. However, after running for a long time, Kubernetes
clusters often suffer from uneven system load, leading to a performance decline. To address this issue,
a load balancing strategy called K-TAHP, based on TOPSIS and AHP, is proposed. This strategy takes cpu,
memory, and bandwidth usage as load factors and uses K-TAHP to construct load evaluation. By employing
a warning module and a migration module, it migrates high-load pods from overloaded nodes to nodes with
lower loads, thus improving load balancing in the Kubernetes cluster and resolving performance degradation
caused by load imbalance after prolonged cluster operation. The experimental results show that the K-TAHP
load balancing strategy can improve the load balancing capability of Kubernetes clusters by around 60%.
It effectively resolves the issue of load imbalance that can occur after long periods of operation in Kubernetes
clusters. Additionally, it ensures uninterrupted pod services duringmigration, therebymaintaining the overall
performance of the cluster.

INDEX TERMS Cloud computing, Kubernetes cluster, container, load balancing, migration.

I. INTRODUCTION
The development of the Internet has brought about huge
changes in cloud computing and has developed into an open
collaborative business model that looks for services and fur-
ther diversififies other energy sources.The cloud computing
service system is divided into three levels: Infrastructure as a
Service (IaaS), Software as a Service (SaaS), and Platform as
a Service (PaaS) [1].

In complex computing environments, cloud computing can
significantly improve the utilization of computing resources
[2]. In recent years, virtualization has become a key tech-
nology in cloud computing [3]. A new virtualization tech-
nology is containerization, and with the rapid development
of containerization technology, a vast amount of services
are being migrated from monolithic architectures based
on virtual machines to cloud-native architectures based on

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

containers [4]. In containerization, an application can be
packaged into a container, which supports its running on a
multi-tenant host [5]. In large-scale systems, multiple con-
tainers are deployed throughout the system, which requires a
container orchestration tool to deploy and manage container
resources and services.

Kubernetes is one of the most popular and powerful
open-source orchestration tools for container applications
[6]. It provides various features for container orchestra-
tion, such as deployment, resource management, automatic
scaling, and load balancing [7]. Pod is the smallest
resource unit that can be created and managed in Kuber-
netes. It is the minimum resource object model created
or deployed by users in the resource object model, and
it is also the resource object running containerized appli-
cations on Kubernetes. Three types of automatic scalers
are provided in Kubernetes: Horizontal Pod Autoscaler
(HPA), Vertical Pod Autoscaler (VPA), and Cluster
Autoscaler (CA).

102132

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0009-0007-1408-8815
https://orcid.org/0009-0003-9264-0098
https://orcid.org/0000-0001-6246-6218

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

• HPA monitors resource utilization and automatically
increases or decreases the numberof pods for an
application.

• VPA directly changes the requested resources for an
application.

• CA increases or decreases the numberof nodes in the
cluster, and CA supports commercial cloud platforms
such as Google Cloud Platform (GCP) [8] and Amazon
Web Services (AWS) [9].

II. RELATED WORK
In [10], Khaleq et al. proposed a cloud microservice intel-
ligent autoscaling system for real-time applications, which
automatically scales microservice applications in a cloud
environment with QoS constraints. The system identifies
microservice resource requests through a general autoscal-
ing algorithm in the Google Kubernetes Engine (GKE)
module, and then implements automatic scaling thresholds
through a reinforcement learning agent module. However,
their research did not consider the problem of load imbalance
in the cluster after long-term operation, which will affect the
performance of the entire intelligent autoscaling system.

Reference [11] proposed a hybrid autoscaling approach
for containerized applications. The article uses a machine
learning-based prediction method to predict the future
requirements of applications and combines it with a burst
identification module to make autoscaling decisions more
effective. To avoid pods service interruption during vertical
autoscaling, they proposed a rolling update module. During
the vertical autoscaling process, the information of corre-
sponding pods is obtained, and when the resource request
of pods changes, the pods are redeployed on the node with
normal working pods. After deployment, the traffic on the
original Pods is forwarded to the newly deployed pods, and
finally, the original pods are deleted. However, their research
did not consider the problem of load balancing in the cluster,
and load imbalance after a long time of cluster operation will
lead to a decrease in module performance.

Reference [12] proposed a HANSEL system based on
the Kubernetes platform. The system uses a Bi-LSTM
load prediction algorithm to accurately predict the load of
microservices and implements active elastic scaling by com-
bining passive and active methods through reinforcement
learning to optimize the horizontal autoscaling strategy of
Kubernetes.

Reference [13] designed a Kubernetes autoscaler based on
the pod replica prediction to improve resource scaling effi-
ciency. Both [12] and [13] also did not consider the problem
of load balancing of the entire cluster and pods, leading to a
decrease in cluster performance.

Reference [14] proposed an internal architecture based
on Kubernetes and Docker containers that can dynamically
autoscale based on SLO requirements to improve resource
utilization and ensure QoS.

Reference [15] proposed a general-purpose system to
dynamically adjust the Kubernetes cluster scale to improve

cluster resource utilization and ensure QoS by automat-
ically determining cpu utilization threshold to meet the
requirements of specific applications and providing a cluster
autoscaling algorithm to obtain the ideal number of nodes in
a Kubernetes cluster. However, it cannot guarantee the entire
cluster resource utilization for specified node deployment
applications.

Reference [16] did not use the default system met-
rics from the measuring server component in Kubernetes,
but mentioned several application-level metrics that affect
the performance of HPA while showing the direction for
optimizing HPA.

Reference [17] proposed a new model for collaborative
robots (CoBots) in robotics, artificial intelligence, and IoT
devices. CoBots should develop a work ecosystem system
and work together to achieve maximum productivity and
consistency. This model is also applicable to machine-to-
machine collaboration management in cloud environments
and IoT devices.

Reference [18] proposed a novel intelligent control net-
work to improve microgrid communication performance,
which is used to solve typical drawbacks of a single SDN
controller. Combining Kubernetes with SDN microservices
can eliminate single-point of failure in the hierarchical con-
trol, shorten application recovery time, and enhance container
security and portability.

Reference [19] designed and implemented a Kubernetes
simulator named K8sSim, which can quickly obtain schedul-
ing results of different scheduling algorithms, greatly reduc-
ing their scheduling time.

In the paper [20], the authors proposed a Kubernetes
Scheduler (KubeSC-RTP) to reduce processing time and
improve user satisfaction in heterogeneous environments.
They introduced a machine learning-based approach using
runtime prediction to better select appropriate cpu or gpu
resources. Similarly, in the paper [21], a Kubernetes schedul-
ing platform (KubCG) was proposed, which manages the
deployment of Docker containers in heterogeneous clusters.
The platform implements a new scheduler that reduces the
completion time for different tasks to 64% of the original
time.

Manzoor et al. proposed a suitable wireless load defini-
tion and analyzed the performance of SD-WiFi by varying
the load conditions [22]. Additionally, they also intro-
duced a QoS-aware load balancing strategy (QALB) for
software-defined wireless networks (SD-WiFi) as a solution
to address the Wi-Fi congestion among OpenFlow-enabled
access points (OAPs) [23].

These studies did not focus on the problem that load imbal-
ance in a Kubernetes cluster after long-term operation will
lead to a decrease in cluster performance.

III. INTRODUCTION TO KUBERNETES
Kubernetes is an open-source container orchestration plat-
form used to automate the deployment, scaling, and

VOLUME 11, 2023 102133

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

management of containerized applications. In the Kubernetes
platform, a pod is the smallest deployable unit.

A. ARCHITECTURE OF KUBERNETES
A Kubernetes cluster consists of master nodes and worker
nodes, as shown in Figure 1. Each node can run on a physical
machine or on a virtualized environment. By default, there
is usually one master node that controls the entire cluster,
but multiple master nodes can be deployed to achieve high
availability of the cluster.

The master node consists of kube-apiserver,kube-
scheduler,kube-controller-manager, and etcd [6].

• kube-apiserver is used to control the entire Kubernetes
cluster. It can communicate with all other components
in the cluster and receive requests from them. kube-
apiserver also interacts with worker nodes through
kubelet. Additionally, users can pass commands to
kube-apiserver in the master node through kubectl.

• kube-controller-manager monitors and ensures the run-
ning state of the cluster. For example, if an application
creates 10 replicas and one of them is deleted or lost,
kube-controller-manager must ensure that a new replica
is created.

• kube-scheduler is responsible for finding unscheduled
pods and scheduling them to appropriate nodes in the
cluster.

• etcd is a high-availability, distributed, and consistent
backend database used to store data in the cluster.

Applications are deployed on worker nodes. Each worker
node is managed by master node and consists of kubelet,
container runtime (such as Docker [24]), and kube-proxy
components [6].

• kubelet is responsible for managing the containers run-
ning on the machine. It reports the current status of the
worker node to the Master and operates pods based on
the instructions of kube-apiserver in the master node.

• Docker is the most commonly used container runtime in
Kubernetes.

• kube-proxy maintains network rules that allow commu-
nication with pods from within or outside the cluster.
Each pod is assigned a unique IP address when created.
kube-proxy uses these IP addresses to forward traffic to
pods.

B. KUBERNETES SERVICE
In a Kubernetes cluster, each pod can be accessed internally
since it has a unique IP address. However, the lifecycle of
pods in Kubernetes is ephemeral, as pods can be created or
destroyed at any time, and a new IP address is assigned every
time a new pod is created. Therefore, using the IP of pods
in Kubernetes is not a good solution, as the IP addresses
assigned to pods can only be accessed internally within the
cluster and not from outside the cluster.

Kubernetes Service is an abstraction for a group of pods
that allows access to deployed pods inside and outside the
cluster. There are three types of Kubernetes Service:

• ClusterIP is the default type of Service created, and it
can only be accessed within the cluster.

• NodePort is a reserved port on each node that a Ser-
vice is exposed on. For example, if a NodePort Service
is created for a group of pods with the label ‘‘App
A’’, the NodePort would be 32321, and these pods can
be accessed using NodeIP:32321. kube-proxy captures
traffic arriving at port 32321 through corresponding
iptables rules and forwards it to the ClusterIP, which
eventually distributes the traffic to the backend pods.

• LoadBalancer is provided by specific cloud service
providers.

Kubernetes provides several objects for managing replicas
of applications.Deployment are used to manage statele-ss
applications, while StatefulSets are used to manage stateful
applications. Stateless applications do not require real-time
data storage, meaning that data does not need to be syn-
chronized in real-time between replicas. On the other hand,
stateful applications require realtime data storage, meaning
that the data needs to be synchronized in real-time between
replicas.

IV. K-TAHP LOAD BALANCING STRATEGY
In order to achieve Kubernetes load balancing after the
Kubernetes cluster runs for a long time, a load balancing
strategy K-TAHP based on TOPSIS+AHP is proposed.

A. BUILDING LOAD EVALUATION BASED ON TOPSIS+AHP
The K-TAHP load balancing strategy requires the ability to
evaluate the load status of each working node and pod. There-
fore, the cpu, memory, and bandwidth usage of each worker
node and pods are obtained from the monitoring module and
used as load factors. These load factors are evaluated using
Analytic Hierarchy Process (AHP) to obtain load weight
vectors for each factor. Finally, the TOPSIS technique is used
to obtain the final load evaluation value based on the cpu,
memory, and bandwidth usage values obtained.

To begin with, a pairwise comparison matrix of order n
is constructed. This matrix is used to represent the relative
superiority of the selected indicators. The general form of the
matrix is as follows:

A =


a11 a12 . . . a1n
a21 a22 a2n
.

an1 an1 . . . ann


where aij represents the importance comparison result of
ai to aj. Table 1 shows the 9 importance levels and their
corresponding values.

To obtain the relative weights of the three load factors by
solving the judgment matrix A, the steps are as follows:

1. The column vectors of the normalized matrix A.:

A′
= aij/

∑n

i=1
aij (1)

102134 VOLUME 11, 2023

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

FIGURE 1. The architecture of kubernetes.

TABLE 1. aij value ratio and meaning.

2. To sum up the matrix A′ by rows.:

W ′
=

(∑n

j=1
a1j,

∑n

j=1
a2j, . . . ,

∑n

j=1
anj

)T

(2)

3. To normalize W′ to obtain the weight vector W:

W = (w1,w2, . . . ,wn)
T (3)

4. To obtain the maximum eigenvalue of the judgment
matrix A:

λmax =

∑n

i=1
((AW)i /nwi) (4)

The consistency ratio (CR) is used to test the consistency
of the judgment matrix A, and its formula is shown in
equation (5):

CR =
CI
RI

(5)

TABLE 2. The random consistency indicator RI.

where CI is the consistency index introduced in AHP. When
CI is larger, the inconsistency of the judgment matrix is
more severe. When CI= 0, the judgment matrix is completely
consistent. To measure the size of CI, the random consistency
indicator (RI) is introduced.

The formula for calculating CI is shown in equation (6):

CI =
λmax − n
n− 1

(6)

The values of RI are as shown in Table 2:
When the consistency ratio CR is less than 0.1, it indicates

that the inconsistency of the judgment matrix A is within
an acceptable range, and it can pass the consistency test.
Otherwise, it is necessary to reconstruct the judgment matrix
A to improve its consistency.

In Kubernetes, cpu, memory, and bandwidth usage can be
used as load factors for monitoring and managing clusters.
A judgment matrix A can be constructed to represent the
relative importance between these load factors using AHP:

A =

 1 2 4
1/2 1 2
1/4 1/2 1


Here, ai represents load factors, a1 represents cpu usage, a2

representsmemory usage, and a3 represents bandwidth usage.
Through equations (1), (2), and (3),obtain the weight vec-

tor of A:W=(0.5714,0.2857,0.1429) and by using equations
(4), (5), and (6), we obtained CR = 7.0385 ∗ 10−8 < 0.1,
indicating that the judgment matrix A satisfies consistency.

VOLUME 11, 2023 102135

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

To obtain the load evaluation of each node using the
TOPSIS method, the following steps can be taken:

1. Standardize the obtained load data of each node:

Zi =
bi√∑n
i=1 b

2
i

(7)

In this context, where bi represents the load data of a node,
b1 represents the cpu usage, b2 represents the memory usage,
and b3 represents the bandwidth usage.

2. Obtain load evaluation for each node:

Lcn = (L1,L2, . . . ,Ln) (8)

There, Lcn is closer to 1, it indicates a higher node load, and
Lcn is smaller, it indicates a lower node load.The calculation
method for Li is as follows:

L+

i =

√∑n

i=1
(wi × (bi − 1)2) (9)

L−

i =

√∑n

i=1
(wi × b2i) (10)

Li =
L−

i

L+

i + L−

i

(11)

At the same time, the load evaluation Lcp of pods is calcu-
lated. A larger Lcp indicates a larger pod load, while a smaller
Lcp indicates a smaller pod load.The calculation formula is
shown in (12):

Lcp = b×W (12)

B. THE IMPLEMENTATION OF K-TAHP LOAD BALANCING
STRATEGY
The K-TAHP load balancing strategy involves migrating high
load Pods from highly loaded worker nodes to corresponding
low load worker nodes in order to balance the load and ensure
overall load balancing of the cluster. Therefore, a warning
module and a migration module are designed and imple-
mented to respectively detect and alert unbalanced load in the
cluster and execute the migration operation.

1) THE WARNING MODULE
In order to determine whether the Kubernetes cluster load
is unbalanced, it is necessary to dynamically and real-time
obtain the cpu, memory, and bandwidth usage of each worker
node from the monitoring module.To avoid immediate pods
migration when a worker node reaches a peak overload,
a warning threshold is set, and the threshold calculation is
performed every 5 minutes. Because application workloads
may reach a peak in a short period, there is no need to perform
pods migration during this time because it generates addi-
tional system overhead, such as cpu and bandwidth. When a
worker node exceeds the warning threshold calculated three
times, it is identified as a highly loaded node and added to the
list of highly loaded nodes. At the same time, the migration
module is notified to perform pods migration. The formula

(13) is used to calculate the warning threshold:

Threshold = δ ×

(∑n

i=1
Lni/n

)
(13)

In the formula, δ represents the load balancing factor,
which is used to evaluate whether the worker node is a hig-
hly loaded node or a low loaded node. To ensure that the
highly loaded node is selected and there are sufficient lists of
low-loaded nodes, δ is set to 1.25 and 0.75 for highly loaded
nodes and low-loaded nodes respectively.

2) THE MIGRATION MODULE
The migration module is responsible for moving high-load
pods from the high-load node list to the low-load node list to
ensure load balancing in the cluster. The main implementa-
tion steps are as follows:

1) Get the list of high-load worker node Lhigh using for-
mula (13), and if the list is not empty, proceed to step 2;

2) Get the list of low-load worker node nodes Llow using
formula (13), and if the list is not empty, proceed to
step 3;

3) Iterate through the Lhigh list, calculate the load of each
pod on each high-load node using formula (12), add
it to the Lpl list, and then sort the resulting Lpl list in
descending order of pod load;

4) To ensure that high-load pods deployed on nodes spec-
ified by label tags can be migrated, select the first
1/3 length of the Lpl list as L′

pl. This can ensure that
pods deployed on nodes specified by label tags can be
migrated;

5) Iterate through the Lpl’ list and, in order to minimize
the number of pod migrations as much as possible,
perform parallel pod migrations based on the length
of Llow list (Slow) to reduce redundant calculations.
This ensures the efficiency of pod migration. In order
to so-lve the problem of service interruption of pods
during migration, before migrating a pod, a copy of
the pod is made and the copied pod is deployed on
the low-load node to be migrated to. After the copy
is deployed, the original pod on the original node is
deleted;

6) Throughout the migration process, prioritize migrating
pods deployed on non-specified nodes to the low-load
node list. Add pods deployed on the specified nodes
with label tags to the list Lnp with tags. After the
iteration is complete, proceed to step 7;

7) Determine whether to migrate pods deployed on non
spe-cified nodes with the number of Slow. If not, iterate
through the Lnp list and migrate pods deployed on the
specified nod-es until enough pods to meet the Slow
number are migrated.

Algorithm 1 is K-TAHP Load Balancing Algorithm
pseudocode.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the K-TAHP load balancing strat-
egy, a Kubernetes cluster was deployed with Kubernetes

102136 VOLUME 11, 2023

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

version 1.18.0 and Docker version 18.06.1. Prometheus [25]
and Grafana [26] monitoring components were deployed in
the cluster, with Prometheus used to real-time monitoring
the cpu, memory, and bandwidth usage of each node, and
Grafana used to visualize the data. The cluster consists of one
master node and three worker nodes, and the configuration
information for each node is listed in Table 3.

Algorithm 1 K-TAHP Load Balancing Algorithm
Input:cpu, memory and bandwidth usage
Output:pod migration to worker node information
1: Lhigh = getHighNode(Nodes) && Llow =

getLowNode(Nodes) //get a list of high load and low
load nodes
2: if notNull(Lhigh, Llow)
3: while i ∈[0,M]
4: loadPod(pods) //calculate pods load
5: end while
6: while j ∈[0,N]
7: while k ∈[0,S]
8: if labelPod(podk)
9: add(podk)
10: else
11: copy(podk)
12: migrate(podk) //migrate pods with no label
13: end if
14: end while
15: end while
16: while l ∈[0,Q]
17: migrate(labelPodl) //migrate pods with label
18: end while
19: end if

TABLE 3. Cluster nodes configuration.

20 pods were deployed in the cluster, with 15 of them
deployed on node1. Each pod requested 200m of cpu
resources and 100Mi of memory resources. A Service object
was created to expose these pods externally. To verify the
effectiveness of the K-TAHP load balancing strategy, the
Hey [27] testing tool was used to perform a load test on
the deployed pods, making the workload of the entire cluster
unbalanced.

Figures 2 and 3 show the changes in cpu and memory
usage on each node in the cluster using the K-TAHP load
balancing strategy. As shown in Figures 2 and 3, before
using the K-TAHP load balancing strategy, the cpu and mem-
ory usage on node1, node2, and node3 in the cluster was

FIGURE 2. Cpu usage of each node in the cluster.

FIGURE 3. Memory usage of each node in the cluster.

TABLE 4. Number of pods with label in cluster nodes.

79.20%, 18.58%, and 12.32%, 56.27%, 14.00%, and 7.93%.
The entire cluster was in an unbalanced load state.However,
after using the K-TAHP load balancing strategy, the cpu and
memory usage on node1, node2, and node3 in the cluster was
50.00%, 31.50%, and 30.50%, 34.30%, 22.58%, and 19.65%,
respectively. It can be seen that the K-TAHP load balancing
strategy can ensure that the entire Kubernetes cluster is in a
load-balanced state.

To verify that the K-TAHP load balancing strategy can
migrate pods with label, 15 pods with label were deployed on
node1 using label tags. Table 4 shows the number of podswith
label on node1, node2, and node3 in the cluster before and
after using the K-TAHP load balancing strategy. According
to the data provided in Table 4, it can be observed that the
K-TAHP load balancing strategy can migrate pods with label
to nodes with lower loads.

To validate whether the K-TAHP load balancing strat-
egy can ensure uninterrupted service during pod migration,
Hey was used to test the throughput of pod during the

VOLUME 11, 2023 102137

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

migration process. Figure 4 presents the throughput of pod
during migration under different numbers of clients. It can be
observed that as the number of clients increases, the through-
put generated during pod migration is nearly the same as
the throughput generated under default conditions. Therefore,
Figure 4 verifies that the K-TAHP load balancing strategy
can guarantee uninterrupted service during pod migration,
thereby preserving the performance of pod.

FIGURE 4. Pod throughput.

The Kstd metric is used to measure the degree of load
balancing in a cluster system, with a value of Kstd approach-
ing 0 indicating greater stability in the cluster system. The
calculation formula for Kstd is as follows:

Kstd =

√∑n
i=1 (Li −

∑n
i=1 Li
n)2

n
(14)

Figure 5 illustrates the load balancing degree of the entire
cluster system under default conditions, using the AHP strat-
egy, and using the K-TAHP strategy. From Figure 5, it can be
observed that as the number of deployed pods increases, the
K-TAHP load balancing strategy is more effective in improv-
ing the load balancing degree of the cluster system compared
to the AHP strategy. This ensures the overall performance of
the cluster.

FIGURE 5. Load balancing of cluster system.

VI. CONCLUSION AND FUTURE WORK
The K-TAHP load balancing strategy utilizes cpu, mem-
ory, and bandwidth usage as load factors to construct load
assessment. By employing a warning module and a migration

module, it migrates high-load pods from overloaded nodes to
nodes with lower loads, thus improving load balancing in the
Kubernetes cluster and resolving performance degradation
caused by load imbalance after prolonged cluster operation.
Experimental results demonstrate that this strategy effec-
tively resolves the problem of load imbalance in long-running
Kubernetes clusters. Moreover, the strategy ensures uninter-
rupted service of Pods during the migration process, thereby
preserving the performance of the cluster applications.

Future work will focus on the issue of elastic scaling of
pods in Kubernetes, aiming to ensure the performance of pods
through proactive scaling mechanisms.

REFERENCES
[1] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, ‘‘Geo-distributed

efficient deployment of containers with Kubernetes,’’ Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020.

[2] A. Botta, W. De Donato, V. Persico, and A. Pescape, ‘‘Integration of cloud
computing and Internet of Things: A survey,’’ Future Gener. Comput. Syst.,
vol. 56, pp. 684–700, Mar. 2016.

[3] C. Arango, R. Dernat, and J. Sanabria, ‘‘Performance evaluation of
container-based virtualization for high performance computing environ-
ments,’’ 2017, arXiv:1709.10140.

[4] D. Gannon, R. Barga, and N. Sundaresan, ‘‘Cloud-native applications,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 16–21, Sep. 2017.

[5] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, ‘‘Cloud container technolo-
gies: A state-of-the-art review,’’ IEEE Trans. Cloud Comput., vol. 7, no. 3,
pp. 677–692, Jul. 2019.

[6] Kubernetes. Accessed: Jun. 10, 2023. [Online]. Available:
https://www.kubernetes.io

[7] N. Nguyen and T. Kim, ‘‘Toward highly scalable load balancing in
Kubernetes clusters,’’ IEEE Commun. Mag., vol. 58, no. 7, pp. 78–83,
Jul. 2020.

[8] Google Cloud Platformhttps. Accessed: Jun. 10, 2023. [Online]. Available:
https://cloud.google.com,

[9] Amazon Web Service. Accessed: Jun. 10, 2023. [Online]. Available:
https://aws.amazon.com

[10] A. A. Khaleq and I. Ra, ‘‘Intelligent autoscaling of microservices in the
cloud for real-time applications,’’ IEEE Access, vol. 9, pp. 35464–35476,
2021.

[11] D.-D. Vu, M.-N. Tran, and Y. Kim, ‘‘Predictive hybrid autoscaling for
containerized applications,’’ IEEE Access, vol. 10, pp. 109768–109778,
2022.

[12] M. Yan, X. Liang, Z. Lu, J. Wu, and W. Zhang, ‘‘HANSEL: Adaptive
horizontal scaling of microservices using bi-LSTM,’’ Appl. Soft Comput.,
vol. 105, Jul. 2021, Art. no. 107216.

[13] T. Hu and Y. Wang, ‘‘A Kubernetes autoscaler based on pod replicas
prediction,’’ in Proc. Asia–Pacific Conf. Commun. Technol. Comput. Sci.
(ACCTCS), Jan. 2021, pp. 238–241.

[14] L. M. Ruíz, P. P. Pueyo, J. Mateo-Fornés, J. V. Mayoral, and
F. S. Tehas, ‘‘Autoscaling pods on an on-premise Kubernetes
infrastructure QoS-aware,’’ IEEE Access, vol. 10, pp. 33083–33094,
2022.

[15] Q. Wu, J. Yu, L. Lu, S. Qian, and G. Xue, ‘‘Dynamically adjust-
ing scale of a Kubernetes cluster under QoS guarantee,’’ in Proc.
IEEE 25th Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2019,
pp. 193–200.

[16] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, ‘‘Horizontal
pod autoscaling inKubernetes for elastic container orchestration,’’ Sensors,
vol. 20, no. 16, p. 4621, Aug. 2020.

[17] M. Niazi, S. Abbas, A. H. Soliman, T. Alyas, S. Asif, and T. Faiz, ‘‘Vertical
pod autoscaling in Kubernetes for elastic container collaborative frame-
work,’’ Comput., Mater. Continua, vol. 74, no. 1, pp. 591–606, 2023.

[18] R. Pérez, M. Rivera, Y. Salgueiro, C. R. Baier, and P. Wheeler, ‘‘Mov-
ing microgrid hierarchical control to an SDN-based Kubernetes cluster:
A framework for reliable and flexible energy distribution,’’ Sensors,
vol. 23, no. 7, p. 3395, Mar. 2023.

102138 VOLUME 11, 2023

R. Gao et al.: K-TAHP: A Kubernetes Load Balancing Strategy Base on TOPSIS+AHP

[19] S. Wen, R. Han, K. Qiu, X. Ma, Z. Li, H. Deng, and C. H. Liu,
‘‘K8sSim: A simulation tool for Kubernetes schedulers and its applications
in scheduling algorithm optimization,’’ Micromachines, vol. 14, no. 3,
p. 651, Mar. 2023.

[20] I. Harichane, S. A. Makhlouf, and G. Belalem, ‘‘KubeSC-RTP: Smart
scheduler for Kubernetes platform on CPU-GPU heterogeneous systems,’’
Concurrency Comput., Pract. Exper., vol. 34, no. 21, p. e7108, Sep. 2022.

[21] G. E. H. Ahmed, F. Gil-Castiñeira, and E. Costa-Montenegro, ‘‘KubCG:
A dynamic Kubernetes scheduler for heterogeneous clusters,’’ Softw.,
Pract. Exper., vol. 51, no. 2, pp. 213–234, Feb. 2021.

[22] S. Manzoor, C. Zhang, X. Hei, and W. Cheng, ‘‘Understanding traffic load
in software definedWiFi networks for healthcare,’’ inProc. IEEE Int. Conf.
Consum. Electron., May 2019, pp. 1–2.

[23] S. Manzoor, Z. Chen, Y. Gao, X. Hei, andW. Cheng, ‘‘Towards QoS-aware
load balancing for high density software defined Wi-Fi networks,’’ IEEE
Access, vol. 8, pp. 117623–117638, 2020.

[24] Docker. Accessed: Jun. 10, 2023. [Online]. Available:
https://www.docker.com

[25] Prometheus. Accessed: Jun. 10, 2023. [Online]. Available: https://
prometheus.io

[26] Grafana. Accessed: Jun. 10, 2023. [Online]. Available: http://grafana.com
[27] Hey. Accessed: Jun. 10, 2023. [Online]. Available: https://

github.com/rakyll/hey

RONG GAO received the B.E. degree from Anhui
Agricultural University, Hefei, China, in 2021.
He is currently pursuing the master’s degree in
computer technology with the Guilin University of
Technology, Guilin. His research interests include
cloud computing and cloud native.

XIAOLAN XIE (Member, IEEE) received the M.S.
degree in computer science from Shanghai Mar-
itime University, in 2001, and the Ph.D. degree
in mechanical manufacturing and automation from
Xidian University, China, in 2009. She is cur-
rently a Senior Visiting Scholar with Middlesex
University, U.K. She is also the Deputy Direc-
tor of the Guangxi Key Laboratory of Embedded
Technology and Intelligent System and the Dean
of the School of Information Science and Engi-

neering, Guilin University of Technology. She has published more than
100 scientific research articles, including more than 50 SCI/EI papers and
more than 20 Chinese core journals. Her research interests include cloud
computing, big data, intelligent computing, and manufacturing informatiza-
tion. She is a fellow of the American Computer Society (ACM), the Chinese
Computer Society (CCF), the Cloud Computing Expert Committee of the
Chinese Institute of Communications (CIC), the High Performance Comput-
ing Expert Committee of CCF, and the Collaborative Computing, Distributed
Computing and Processing Expert Committee of CCF. She is also the
Director of the International Institute of Engineering and Technology (IETI).

QIANG GUO received the B.E. degree from the
Liaoning University of Petroleum and Chemical
Technology, China, in 2001, and the master’s
degree in computer application technology from
Guizhou University, Guiyang, China, in 2005.
He is currently a Lecturer with the Information
Science and Engineering School, Guilin Univer-
sity of Technology. His research interests include
pattern recognition and cloud computing.

VOLUME 11, 2023 102139

