
Received 7 August 2023, accepted 3 September 2023, date of publication 11 September 2023,
date of current version 21 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313737

Character Behavior Automation Using Deep
Reinforcement Learning
HYUNKI LEE , MWAMBA KASONGO DAHOUDA , AND INWHEE JOE
Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Inwhee Joe (iwjoe@hanyang.ac.kr)

This work was supported by the Institute of Information Communications Technology Planning Evaluation (IITP) grant funded by the
Korean Government [Ministry of Science and ICT (MSIT)] (Development of the Technology to Automate the Recommendations for Big
Data Analytic Models that Define Data Characteristics and Problems) under Grant 2020-0-00107.

ABSTRACT Recently, various new attempts are being made to improve the quality of media content
according to the expansion of the media market. Pre-visualization is one of those attempts, and the behavior
of characters (agents) in virtual space is essential for pre-visualization. In this paper, a study was conducted
to automatically generate behaviors of virtual characters for more efficient visualization in pre-visualization.
In particular, we propose a method to automatically produce an appropriate behavior by detecting the state
of the surrounding environment with a deep reinforcement learning technique. A virtual environment is
created using a game engine to configure space for reinforcement learning, and a reinforcement learning
model of the training environment is configured with Python and PyTorch. The virtual environment and the
model training environment are communicated with the ML-agents toolkit. In the virtual environment,
the character basically moves in a straight line, and three obstacles appear at random locations in front
of the character. The character senses 9 states and allows 5 actions. After that, a reward is offered according
to the action to proceed with learning. For performance evaluation, reinforcement learning training was
conducted using the Proximal Policy Optimization (PPO) algorithm and Soft Actor-Critic (SAC) algorithm,
and performance comparisons were also conducted according to the batch size. As a result, we are able
to secure a reinforcement learning model with obstacle avoidance capability. Applying the model to the
character proved that the character can automatically animate according to the state of the surrounding
environment without explicit programming.

INDEX TERMS Pre-visualization, deep reinforcement learning, behavior.

I. INTRODUCTION
The media environment is rapidly changing as digital media
convergence based on high-speed Internet and advanced
information and communication technology enables high-
quality media content services using various media devices
and platforms [1]. In particular, Over-the-Top (OTT),
a representative platform for Internet media convergence,
is expanding the content market by changing the value cre-
ation structure of the media industry and creating an active
content consumption culture for users [2]. This paradigm shift
in the media industry is expanding to the entire media content
industry such as drama, film, entertainment, and behavior [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

Furthermore, as digital transformation is in full swing with
the era of the 4th Industrial Revolution, the platform market
is expected to expand further and the boundaries between the
media industries are rapidly broken as next-generation media
content using artificial intelligence, big-data, metaverse, and
virtual reality are added [4]. Meanwhile, in order to continu-
ously provide services that meet the rapidly changing needs
of users in various media platform markets and expand the
reach of media works, it is necessary to reduce production
time and production cost as well as high-quality content pro-
duction. Accordingly, as a way to cope with the trend of the
media content industry, the importance of pre-visualization
or previz work before production using computer programs is
growing [5], and in this regard, pre-visualization research of
3D behavior types using computer graphics has been actively

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 101435

https://orcid.org/0009-0008-0465-5078
https://orcid.org/0000-0003-0376-683X
https://orcid.org/0000-0002-8435-0395
https://orcid.org/0000-0003-2558-552X


H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

conducted. However, although the field of application for pre-
visualization has expanded and various types of application
methods are being developed accordingly, related research is
insufficient quantitatively and qualitatively. In addition, most
characters (Agents) are programmed to respond passively
under fixed virtual environment conditions, so there is a limit
to making behaviors that actively respond to a given environ-
ment as in reality. Therefore, in order to further maximize the
efficiency and performance of the pre-productionwork, a pre-
visualization plan in which the character actively responds
in a virtual environment similar to reality is required. Our
contributions can be summarized as follows:

• The character can only travel straight in the training
scenario configuration, and the three obstacles emerge in
front of it at random within a predefined range in order
to automatically generate the right behavior. In order to
detect a total of nine states, the character was required
to do five acts.

• We classify Proximal Policy Optimization (PPO),
an on-policy algorithm, and Soft Actor-Critic (SAC),
an off-policy method, as policy algorithms for reinforce-
ment learning. The episode is designed to finish instantly
if it encounters an obstacle, and as a result, we have
devised a travel distance reward, a weighted incentive
for the posture to go as quickly as possible, and a penalty
policy if it moves backward.

• Using the Unity game engine, we build a virtual envi-
ronment for the reinforcement learning model learning
in order to verify the proposed pre-visualization model.

• We compared and examined the training results for each
reinforcement learning algorithm based on the batch size
in order to verify performance.

The paper is organized as follows: Section II presents
related research and describes algorithms such as reinforce-
ment learning used in this study and tools used such as Unity.
Section III describes our proposed Design and the Imple-
mentation of the basic elements of reinforcement learning
such as Environment, State, Agent, Action, and Reward. The
following section IV, the performance evaluation, presents
the configuration of the experimental environment, and the
training results of reinforcement learning along with the
comparison of training results according to the batch size.
In section V, the conclusion summarizes the results of
the study, the limitations of the study, and presents future
research.

II. RELATED WORK
Recently, research using deep learning, a key element
technology of the 4th Industrial Revolution, and deep rein-
forcement learning, which combines reinforcement learning,
has been actively conducted [6], [7]. Reinforcement learn-
ing is a machine learning technique in which characters
directly explore and recognize the state of the surround-
ing environment in a given virtual environment and learn
through interaction with the environment [8], [9], [10], [11];

in other words, the agent interacts with the game environ-
ment, receives feedback in the form of rewards based on
its actions, and learns to maximize its long-term cumulative
reward. Particularly in the context of playing games, deep
reinforcement learning (DRL) has been a fascinating topic
of study. DRL has excelled over human performance in a
number of difficult games, achieving exceptional outcomes in
the gaming world. Deep reinforcement learning is effective in
games because it can handle high-dimensional input, such as
raw pixel data, and learn complex strategies through self-play
and exploration. The deep learning model for successfully
learning control rules from high-dimensional sensory input
was provided by the authors in [12].
Another intriguing study was conducted in [13], where

the author looked at how a stimulating environment can aid
in developing complicated behavior. They taught the agents
specifically in various environmental circumstances, and they
discovered that doing so promoted the creation of robust
behavior that excelled at a variety of tasks. When complex
interaction is required, environments that mimic the physical
characteristics of the target domain typically the real world
are frequently required as well. For challenges where the
objective is to translate a policy learned in a simulator to
the actual world [14], [15], [16], as would be the case for
the majority of robotics applications, this realism is crucial.

This study is meaningful in applying deep reinforcement
learning to pre-visualization tasks by differentiating it from
passive pre-visualization systems using existing 3D charac-
ter behavior. This study proposes an automatic method of
creating character behavior using deep reinforcement learn-
ing as a way to improve the efficiency of pre-visualization
work. In the proposed pre-visualization model, characters
can automatically create behaviors according to the state of
the surrounding environment without explicit programming.
In this study, we intend to create a virtual environment using
a game engine to construct a space for reinforcement learning
and to proceed with learning by providing rewards according
to the behavior of the character.

In this case, the game engine uses the ML-Agents Toolkit
0.29.0 (Machine Learning Agents Toolkit) which allows us
to create or use pre-made environments to train our agents,
provided by Unity [17] while the reinforcement learning
model environment consists of Python 3.9, PyTorch 1.21.1.

ML-Agents has two important components as described in
Figure 1, the first is the learning environment (LE), on Unity,
which contains the Unity scene and the environment ele-
ments; the second is the Python API which contains the RL
algorithms (such as PPO and SAC). Therefore, we can use
this API to launch training since it communicates with the
Learning environment through the external communicator.
Inside the Learning Environment, we have different elements:
The first is the Agent, each Agent can have a unique set
of states and observations, take unique actions within the
environment, and receive unique rewards for events within
the environment. Here, the actions of an agent are decided

101436 VOLUME 11, 2023



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

by the brain which is linked to. The second element in the
LE is the Brain, each Brain defines a specific state and action
space, and is responsible for deciding which actions each of
its linked agents will take. The Brain has 4 modes: Exter-
nal, Internal (Experimental), Player, and Heuristic; therefore,
we used externalmode because, in thismode, action decisions
are made using the ML library through communication over
an open socket with our Python API. The Last element in
LE is the Academy, it orchestrates agents and their decision-
making process.

FIGURE 1. Unity ML-Agents.

We compared and analyzed the training results according
to the batch size for the on-policy algorithm Proximal Policy
Optimization (PPO) and Off-Policy algorithm Soft Actor-
Critic (SAC) [18], [19] as policy algorithms for reinforcement
learning.

III. DESIGN AND IMPLEMENTATION
In this paper, for automatic behavior generation, we present a
plan divided by environment, state, agent, action, and reward,
which are the basic elements of reinforcement learning. First,
the environment describes the virtual environment in which
reinforcement learning proceeds, second, the agent describes
the type of state and the purpose of design that the agent
identifies, and third, the agent describes basic actions and
episode settings, decision cycles, etc. Fourth, actions describe
actions that agents can take, and fifth, rewards describe
reward policies designed for proper behavior generation.

A. ENVIRONMENT
Environment refers to an object or problem to be solved
using reinforcement learning. In this paper, the purpose is
to learn to automatically generate appropriate behaviors in a
given environment. In front of the character, three obstacles,
an upper obstacle, a lower small obstacle, and a lower large
obstacle, appeared randomly at an arbitrary position within
8 meters as described in Figure 2.

B. STATE
In this paper, we proposed to use a total of nine states for
learning, and the nine states are:

1) Distance to eye height obstacles;
2) Distance from down position obstruction;

FIGURE 2. Model overview.

3) Distance from obstruction up front 30 degrees;
4) Distance from rear top 30-degree directional

obstruction;
5) Upward 90-degree distance from obstruction;
6) Forward acceleration;
7) Upward acceleration;
8) Down Position Obstacle Height;
9) Current action type

Each state is (1) identifying the upper obstruction, (2) iden-
tifying the lower Obstacles, (3) determining when to take a
sitting action, (4) determining when to switch actions that
take place, (5) determining the duration of a sitting action,
(6) calculating the appropriate forward speed, (7) calculating
the appropriate jump strength, (8) jump strength calculation,
(9) identifying the action the character is currently taking.
In this way, the character is trained to recognize nine states
and output appropriate actions and is configured to avoid
them by automatically directing appropriate behaviors for a
given obstacle as shown in Figure 3.

FIGURE 3. Types of states.

In our experiment process, we used the Markov Decision
Process (MDP), since it represents a sequential decision
problem in which behavior affects the next state and out-
come. Therefore, MDPs are general and flexible enough to
formulate the problem of learning goals through interaction,
the same problem solved by reinforcement learning. We can

VOLUME 11, 2023 101437



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

express and infer reinforcement learning problems from an
MDP perspective. The MDP consists of 4-tuples (S, A, P, R).
S is a state space with a finite set of states, A is an action space
with a finite set of actions, and P is a transition function that
defines the probability of reaching the state s’ through action
a from s.

P(s′, s, a) = p(s′|s, a) (1)

In Equation (1), the transition function is equal to the con-
ditional probability of s′ given s and a. R is a reward
function that determines the value received to switch from
state s to state s′ after taking action. For practical pur-
poses, assume MDP and a finite number of transfer state
(St , St−1, St−2, .., St−k ) can be used to solve the problem.
Such a system is partially observable and its state is called
observation. The final goal of MDP is to find a pol-
icy that maximizes cumulative compensation as shown in
Equation (2). R is the reward obtained at each step along the
policy. It is a harm to MDP when the policy does the best
possible action in each state of the MDP. This policy is called
the optimal policy.

∞∑
t=1

Rπ (St , St+1) (2)

C. AGENT
In this paper, the character is basically configured to move
only straight as shown in Figure 4. As the character moves
straight, it identifies the state and avoids obstacles with
appropriate behavior such as walking, running, and jumping.
Because the goal of the agent in this study is to move forward
without being hit by obstacles for as long as possible, the
learning step is set to a maximum of 5,000 times, and the
episode ends if it is more than 5,000 times. The observation-
determination-action-reward cycle is repeated every time an
agent makes a decision request, and in this study, the decision
request cycle is designed in five steps because it does not need
to be controlled as finely as a robot’s joint.

FIGURE 4. Moving character.

D. ACTION
It is the design content of the action that the character can
take. There are a total of five actions that can be performed:

walking, running, sitting, jumping, and jumping intensity.
Each action was designed to move forward, avoid upper
obstacles, and avoid lower obstacles. The character can avoid
obstacles in front of him through the appropriate output of
five actions.

E. REWARD
The following is about the reward strategy and the end of the
episode. Rewards were designedwith travel distance rewards,
posture weights, and reverse penalties. The end of the episode
is when an obstacle collision or maximum step is reached.

1) DISTANCE REWARD STRATEGY
The distance reward strategy is defined as a reward provided
according to the distance traveled. It is a reward strategy that
allows the agent to learn that it must move forward without
stopping. Distance return policy is defined as follows:

Rdist = Pt − Pt−1 (3)

Rdist represents a reward for distance, Pt represents the posi-
tion of the current step character, and Pt−1 represents the
position of the character in the previous step.

2) STANDING REWARD STRATEGY
It is a reward strategy that allows you to move more quickly
than if you are moving in a standing position, so if you are
in a standing position, you can learn to move standing up
if possible by weighting the distance traveled. The Standing
reward strategy is defined as follows:

Ra = Ra + Rdist ∗Wstand (4)

Ra represents an accumulated reward, Pdist represents an
acquisition reward for a distance, and Wstand represents the
weight when standing.

3) PENALTY REWARD STRATEGY
It is a reward strategy that deducts rewards by giving more
penalties to the distance between the characters when they
go back so that they can learn to move forward. The penalty
return policy is defined as follows:

Ra = Ra + Rdist ∗Wback (5)

Ra represents the cumulative reward,Rdist represents a reward
for distance, and Wback represents the penalty weight when
moving backward.

4) EPISODE TERMINATING POLICY
This study aims to automatically avoid obstacles. Therefore,
if the obstacle is not avoided, the episode is immediately
terminated so that no more rewards are obtained. The reason
why the episode was terminated without deducting the reward
is that the character is taught to obtain the maximum reward.
However, if the reward is deducted because the obstacle
cannot be avoided, the character tends to take action that
does not move. Sometimes, if the character did not move, the

101438 VOLUME 11, 2023



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

character could not avoid obstacles and get a higher reward
than receiving a reward deduction.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL CONFIGURATION
The experimental environment can be divided into two main
settings. First, Unity and ML-Agents were used as the virtual
environment configuration for learning. The character used
a virtual laser to identify the conditions such as the distance
from the gaze position obstacle, the distance from the lower
position obstacle, the distance from the front 30-degree obsta-
cle, the distance from the rear 30-degree obstacle, and the
distance from the 90-degree obstacle. Figure 5 shows a virtual
environment implemented with Unity. The red line in the
figure identifies the distance with a virtual laser. In addition,
parallel training was used to shorten learning time. Figure 6
is a diagram of the configuration of parallel training with a
virtual environment where agents in multiple virtual environ-
ments are linked to a single brain. It was configured so that
model learning could proceed in a total of 30 identical vir-
tual environments. The second reinforcement learning model
training environment configuration used Python 3.9, PyTorch
1.21.1, and ML-Agents 0.29. Real model learning is done
through PyTorch, an open-source machine learning library,
which communicates with a virtual learning environment
composed of Unity and through the ML-Agent Python API
to conduct reinforcement learning.

FIGURE 5. Virtual environment configuration.

B. EXPERIMENTS
Reinforcement learning (RL) algorithms can be broadly
divided into model-free reinforcement learning and model-
based reinforcement learning. Model-free RL is more widely
studied; therefore, we chose a model-free RL algorithm.
In addition, as described in Table 1, Model-free RL can be
further divided into on-policy and off-policy approaches. The
on-policy algorithm is similar to the way humans directly
explore dangerous areas to determine the path of travel,
rejecting hazards as much as possible, while the off-policy

FIGURE 6. Parallel training configuration.

algorithm does not directly explore dangerous areas in a way
that humans do not. The experiment was conducted with two
main algorithms: PPO, which is the representative algorithm
of the on-policy algorithm, and SAC, which is the representa-
tive algorithm of the off-policy algorithm. Each algorithm is
characterized by a stable and general-purpose algorithm for
PPO, and SAC is an algorithm that often requires 5-10 times
fewer samples to perform the same task as PPO due to its high
sample efficiency.

TABLE 1. Comparison between PPO and SAC.

The following are the primary hyperparameters used by
each algorithm. The hyperparameters used in learning with
the PPO algorithm are shown in Table 2.

TABLE 2. PPO algorithm hyperparameters.

The hyperparameters used in learning with the SAC
algorithm are also shown in Table 3.

To compare the learning results for each batch size, the
PPO algorithm was trained in 256 and 1024 batch sizes
whereas the SAC algorithm was trained in 256, 512, and
1024 batch sizes as shown in Figure 7.
In the case of the SAC algorithm, learning was conducted

in 256 and 1024 batch sizes in the same way as the PPO

VOLUME 11, 2023 101439



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

TABLE 3. SAC algorithm hyperparameters.

FIGURE 7. Average reward by algorithm and batch size.

algorithm, but it was not converged. So I also trained about
512 batch sizes. Analyze experimental results. In this exper-
iment, the model was stored every 10,000 steps to check the
change in the obstacle avoidance ability. As a result of learn-
ing the PPO algorithm at 1024 batch size, it was confirmed
that the learning was completed and converged at about 3.5M
step. As a result of learning the SAC algorithm at 1024 batch
size, learning showed an unstable pattern compared to PPO.
Although it seemed to converge at about 2M step, the acquisi-
tion reward was confirmed to be about 50% compared to the
PPO algorithm. In addition, besides the training steps, Table 4
shows the training time, max reward, and the average reword
of each algorithm based on batch size.

TABLE 4. Comparion of algorithm by batch size: BS = Batch size,
TS = Training Steps, TT = Training Time, Max R = Max Reward,
Avg. R = Average Reward.

As a result of continuous learning, it showed an unstable
pattern from about 4M steps, and the acquisition reward was
gradually decreasing. We applied the model learned with the
PPO algorithm 1024 batch size to the character in the virtual
environment and checked it. Figure 8 is the learning trend
graph of the PPO and SAC algorithms, the blue is the learning
trend graph of the PPO algorithm and the red is the SAC
algorithm. As shown in the figure, the PPO algorithm showed
a stable learning trend. The SAC algorithm showed instability
in the beginning and eventually diverged. As shown in the

graph, when the early learning model was applied, it was
difficult to avoid obstacles, and could not take appropriate
actions. When the final model was applied to the character,
it showed stable avoidance of obstacles as shown in Figure 9.
Based on these experimental results, it can be said that it is
possible to use deep reinforcement learning to automatically
generate appropriate behavior by determining the state of the
point in time without separate programming.

FIGURE 8. Learning progress chart.

As described above, in the case of the PPO algorithm,
it was confirmed that the ability to avoid obstacles can be
provided to the character when learning with a 1024 batch
size. In addition, we tested the PPO algorithm to see what
changes are madewhen changing the batch size. As a result of
learning with a 256 batch size, it showed a pattern of learning
at a faster pace in the beginning than with the 1024 batch
size. After that, a reward was stably obtained from about
500K steps. However, the reward obtained was lower than the
1024 batch size, and the result was less than 50% compared
to the learning result of the 1024 batch size. Next, we tested
what changes were made when the batch size of the SAC
algorithm was changed. Unlike the PPO algorithm, it was not
learned and showed instability even in the 1024 batch size,
so we conducted learning in 512 batch size and 256 batch
size and compared the results. The 512 batch size showed
similar trends in the case of the 1024 batch size and the
reward acquisition score, but the learning proceeded in amore
unstablemanner than the 1024 batch size. Like the 1024 batch
size, it showed that it did not learn the appropriate avoidance
ability. The 256 batch size had a lower acquisition reward
score than the 1024 batch size or 512 batch size, and from
about 2M steps, learning proceeded steadily in an unstable
manner. Similarly, appropriate avoidance skills have not been
learned. As a result of the experiment using the PPO and SAC
algorithms to adjust the size of 256, 512, and 1024 batches,
it was confirmed that the obstacle avoidance problem in the
virtual environment was solved by using the PPO algorithm
and the 1024 batch size learning model. Table 5 is a rein-
forcement learning hyperparameter of the finalmodel that can
demonstrate the method proposed in this paper.

A well-trained reinforcement model with the ability to
avoid obstacles actually showed stable avoidance of obsta-
cles, as shown in Figure 9 when applied to the environment in
which learning was conducted. Even when the reinforcement

101440 VOLUME 11, 2023



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

FIGURE 9. Applying final model to character.

TABLE 5. Final hyperparameters.

learning model is applied to new virtual environments and
new characters, the proposal for an automatic behavior gen-
eration method in this paper can be proved only when the
obstacle avoidance ability is maintained. Thus, we created
three additional virtual environments and applied the corre-
sponding reinforcement learning model to three characters to
conduct experiments on the ability to avoid obstacles. First,
the three new environments added for the experiment are
named Environment 1, Environment 2, and Environment 3,
respectively. The characters are named Character 1 for the
existing characters and Character 2, 3, and 4 for the three
newly added characters, respectively. Characters 1, 2, 3,
and 4 are different and unrelated 3D models. The experi-
ment first tested the ability to avoid obstacles by applying
Character 1, a character used in existing reinforcement learn-
ing, to Environment 1. Next, character 2 was applied to
Environment 1 to experiment with obstacle avoidance ability,
and the experiment was conducted in the order of character 2
in Environment 2, character 3 in Environment 2, and char-
acter 4 in Environment 3. Figure 4 is an experimental video

FIGURE 10. Apply the final model to different environments and
characters.

of the ability to avoid obstacles by applying the final rein-
forcement learningmodel to various virtual environments and
different characters. As shown in Figure 10, it was confirmed
that the ability to avoid obstacles remains the same when
using the PPO algorithm and a reinforcement learning model
learned in a batch size of 1024 even when the environment or
character changes.

V. CONCLUSION AND DISCUSSION
This study proposes a method to help advance visualization
to help create more competitive content in the market by
increasing the quality of content in a situation where the
size of the media market is growing significantly. In par-
ticular, an in-depth reinforcement learning technique was
applied to the behavior production of characters essential
for pre-visualization. Using the deep reinforcement learning
technique, we propose a method in which characters can
automatically create behaviors by detecting the state of the
surrounding environment on their own. As a method of this
study, a space for reinforcement learning was constructed
using the game engine Unity. Reinforcement learning model
training was constructed using Python and the machine
learning library PyTorch. The virtual environment for rein-
forcement learning composed of game engines and the model
training environment composed of Python and PyTorch were
communicated using the ml-agents toolkit. The character was
able to detect nine states in a virtual environment and avoid
obstacles through five actions. Reinforcement learning was
conducted by designing a function that provides rewards
according to behavior so that characters can automatically
avoid obstacles. As for the learning results, it was possible
to secure a convergent model when learning with a batch
size of 1024 using the PPO algorithm. When learning using
the SAC algorithm, convergent learning results could not
be obtained even if the batch size was changed. When the
model converging with the PPO algorithm was applied to
the experimental environment, it was possible to actually

VOLUME 11, 2023 101441



H. Lee et al.: Character Behavior Automation Using Deep Reinforcement Learning

avoid obstacles stably. As a result of the experiment, it was
confirmed that even if the environment or character changes,
the character to which the reinforcement learning model is
applied stably avoids obstacles. As a result of this study,
the following points were proved. First, we demonstrate that
deep reinforcement learning can be used to automatically
generate behaviors in certain situations without the need
for separate explicit programming. Second, it is proved that
even if the model obtained through reinforcement learning
is applied to different environments and characters from the
learning environment, it can reliably generate appropriate
behaviors. Third, even under the same conditions, it was
confirmed that there was a significant difference in learning
results depending on hyperparameters such as algorithms and
batch sizes. In this study, we conducted experiments on two
reinforcement learning algorithms, PPO and SAC, and further
experiments on additional reinforcement learning algorithms
seem to need to explore more optimal algorithms. In the case
of the SAC algorithm, it seems necessary to compare the
performance of the PPO algorithm if it eventually failed to
learn the ability to avoid obstacles, but succeeded in learning
through additional experiments through more various hyper-
parameter adjustments. This study is expected to contribute to
the development of the media market by quickly visualizing
text-based data such as movie scripts or novels to create
applications that can be used in the actual media content
production market.

REFERENCES
[1] J. M. Bauer and M. Latzer, Handbook on the Economics of the Internet.

Cheltenham, U.K.: Edward Elgar Publishing, 2016.
[2] J. Sujata, S. Sohag, D. Tanu, D. Chintan, P. Shubham, and G. Sumit,

‘‘Impact of over the top (OTT) services on telecom service providers,’’
Indian J. Sci. Technol., vol. 8, no. S4, p. 145, Feb. 2015.

[3] L. Jong-Won, ‘‘Extension and competition of media platform,’’ KISDI,
Jincheon, South Korea, KISDI Premium Rep. 8, 2021.

[4] M. Song, ‘‘Over-the-top (OTT) platforms’ strategies for two-sided markets
in Korea,’’ Int. J. Internet, Broadcast., Commun., vol. 13, no. 4, pp. 55–65,
2021.

[5] P. Seongho, ‘‘A study on the role of 3D animated pre-visualization for
VFX film production,’’ in Cartoon Animation Research, no. 51. 2018,
pp. 293–319.

[6] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
IEEE Trans. Neural Netw., vol. 9, no. 5, p. 1054, Sep. 1998.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning series). Cambridge, MA,
USA: MIT Press, 2018.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

[9] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approx-
imation error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[10] H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao,
W. Liu, Y. Yang, W. Tao, and L. Wang, ‘‘What about inputing policy in
value function: Policy representation and policy-extended value function
approximator,’’ 2020, arXiv:2010.09536.

[11] P. Li, H. Tang, J. Hao, Y. Zheng, X. Fu, and Z. Meng, ‘‘ERL-Re2: Efficient
evolutionary reinforcement learning with shared state representation and
individual policy representation,’’ 2022, arXiv:2210.17375.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602.

[13] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, S. M. A. Eslami, M. Riedmiller, and D. Silver, ‘‘Emergence of
locomotion behaviours in rich environments,’’ 2017, arXiv:1707.02286.

[14] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell,
‘‘Sim-to-real robot learning from pixels with progressive nets,’’ 2016,
arXiv:1610.04286.

[15] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from simu-
lation to the real world,’’ 2017, arXiv:1703.06907.

[16] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, ‘‘Learning
dexterous in-hand manipulation,’’ 2018, arXiv:1808.00177.

[17] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, ‘‘Unity: A general platform
for intelligent agents,’’ 2018, arXiv:1809.02627.

[18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ 2018, arXiv:1801.01290.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

HYUNKI LEE received the M.S. degree in com-
puter science from Hanyang University, Seoul,
South Korea. Since 2014, he has been a Soft-
ware Engineer with CJ Olivenetworks, Seoul. His
current research interests include deep learning,
reinforcement learning, generative AI, computer
vision, digital human, and augmented reality.

MWAMBA KASONGO DAHOUDA received the
B.S. degree in information system engineering
from the University Protestant of Lubumbashi,
Lubumbashi, Democratic Republic of the Congo,
and the M.S. degree in software engineering
from Hanyang University, Seoul, South Korea,
in 2020, where he is currently pursuing the Ph.D.
degree in software engineering. His research inter-
ests include artificial intelligence, deep learning,
wireless-powered communication networks, and
non-terrestrial networks.

INWHEE JOE received the B.S. and M.S. degrees
in electronics engineering from Hanyang Univer-
sity, Seoul, South Korea, and the Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 1998. Since 2002, he has been a Fac-
ulty Member with the Department of Computer
Science, Hanyang University. His current research
interests include the Internet of Things, cellular
systems, wireless-powered communication net-

works, embedded systems, network security, machine learning, and perfor-
mance evaluation.

101442 VOLUME 11, 2023


