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ABSTRACT This research addresses the need for effective disaster evacuation trainingmethods by proposing
a virtual reality system that utilizes Reinforcement Learning Procedural Content Generation (RL-PCG)
algorithms. The aim of this study is to provide a cost-effective and safe way to conduct disaster evacuation
preparedness training, surpassing the limitations of traditional real-life drills. The paper’s objectives
encompass the design of a novel 3-layer PCG architecture for generating realistic disaster simulations in
virtual reality, the implementation of a working prototype for fire disaster scenarios, and the evaluation
of the proposed system’s effectiveness through comparison with existing RL agents. Significant findings
include the superiority of the RL-PCG agent in generating diverse and realistic disaster scenarios with faster
training time and lesser number of steps, even with limited processor capabilities. In conclusion, this research
establishes that the RL-PCG Scenario for Disaster Evacuation Training in VR is a more effective method,
leading to improved disaster preparedness for individuals, and opens avenues for further advancements in
disaster training using virtual reality and reinforcement learning technologies. For a video demo of this work,
please visit https://youtu.be/3WZnQOfUP94.

INDEX TERMS Disaster evacuation training, procedural content generation, reinforcement learning, virtual
reality.

I. INTRODUCTION
The International Federation of Red Cross and Red Crescent
Societies (IFRC)1 defines disasters as ‘‘serious disruptions
to the functioning of a community that exceed its capacity
to cope using its own resources’’. They can be caused by
natural hazards, such as earthquakes, floods, landslides, etc.
as well as by man-made and technological hazards like fire.
The influence of disasters carries the risk of exposure of the
vulnerabilities of a community. Disasters cause huge damage
to life and property. The occurrence of a disaster cannot be
predicted in advance most of the times. Therefore, the best
way to protect ourselves when a calamity arises is to be
aware of the possibilities, and prepare ourselves to spring
into action whenever a disaster strikes. There are various
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types of disaster evacuation preparedness training which are
conducted by schools, offices, etc. to prepare individuals for
disasters. One common method of training is by conducting
a drill wherein the conditions during the time of a disaster
are replicated, and the people are supposed to evacuate out
of that scene based on certain guidelines and procedures.
Although effective, these real-life disaster evacuation drills
are really expensive and can sometimes be dangerous and
life threatening as well [1]. Moreover, it does not exactly
replicate the disaster scenario, like the production of fire
and smoke, which hinder the visibility during evacuation.
Such fire effects cannot be simulated in real-life training
drills due to safety reasons. By taking advantage of the
rapidly developing technologies, we can simulate each and
every detail of such disasters and produce realistic scenarios
virtually. Virtual disaster training provides a cost-effective
and safe way to conduct disaster evacuation preparedness
training. There are many works in literature that use virtual
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reality technology for disaster preparedness training [1], [2],
[3], [4], [5], [6]. With AR/VR and Metaverse being the latest,
most popular and rapidly accelerating field today, it is a great
time to switch to virtual methods of training with the fast
technological advancement of the HMDs (Head Mounted
Displays) by various companies, which would enable people
to prepare for disasters in a much more cost-effective and
safer manner.

But classical virtual training simulations only prepare the
user for a specific type of scenario, e.g. in the event of an
earthquake, the training simulation only shows the ceiling
debris falling from a particular place. Or in case of a fire
simulation, only a specific object is shown to catch fire in
every iteration of the training. In real life when a disaster
occurs, it can occur at any point of time and can originate
from any place. Manually creating so many variations in
virtual training is a time consuming and monotonous task
for the designers as well as for the developers. In such a
situation, if we were to programmatically generate these
disaster scenarios, and use intelligent agents to do so, then
that would decrease the work to a great extent, and we can
focus more on programming the behavior of the NPCs (Non-
Player Characters) and other agents in the scenario, rather
than in designing them. At the same time, this will make
the training simulations more efficient and effective. The
practice of programmatically generating content is called
Procedural Content Generation (PCG) and it is extensively
used in game development to create dynamic content for
games. Moreover, with the recent advancement of Artificial
Intelligence and Machine Learning algorithms, we can add
some level of intelligence to the way that the game content is
created. In this work, we have proposed a disaster evacuation
training system in VR which uses Reinforcement Learning
Procedural Content Generation (RL-PCG) algorithms to
generate dynamic scenarios for each iteration of the training
for the user, to prepare them to face any kind of disaster
situations that may occur.

This research aims to bridge the gap between traditional
drills and advanced technological possibilities, ensuring
a cost-effective, safe, and efficient method for disaster
evacuation training. Through this work, we try to answer the
research question: Would an RL-PCG Scenario for Disaster
Evacuation Training in VR be a more effective method of
training, and would it lead to better disaster preparedness for
individuals? The main contributions of this work are: 1) A
design architecture of the RL-PCG disaster evacuation train-
ing system, 2) A novel 3-layer PCG architecture for creating
realistic disaster simulations in VR, 3) A working prototype
of the evacuation training simulation, and 4) A study showing
enhanced results of our RL-PCG agent as compared to other
RL agents in literature. The rest of the paper is structured
as follows: Section II highlights the literature survey of
our research, along with the feature comparison table of
selected works from literature, which are most relevant to our
work. In Section III we have elaborated the proposed system
and methodology followed by us to develop our working

prototype and RL-PCG algorithm. Section IV elaborates the
features and game flow of our prototype, along with the
alternate game flows. In Section V we discuss our results
and compare it with the results of the selected related works
from literature, and finally, Section VI concludes the paper
and mentions the future direction of our work.

II. RELATED WORKS
This section reviews the works in literature for the underlying
concepts and technologies of virtual reality, PCG and
machine learning for training and other purposes. At the end
of this section, we have elaborated our research findings
along with the research gaps in literature identified by us.

A. VIRTUAL REALITY (VR)
XR is defined as ‘‘a group of emerging technologies such
as virtual reality (VR), augmented reality (AR), and virtual
worlds (VWs) that involve the use of 3D models/simulations
across physical, virtual, and immersive platforms’’ [7]. Our
focus for this work is going to be on virtual reality, in which
the user is completely immersed inside the virtual word that
they are viewing. Virtual reality has been steadily gaining
popularity in recent times, for a variety of purposes. It holds
special importance for training purposes, as VR allows for
a new cost-effective and safe manner to train individuals
for various situations in a non-consequential manner, but at
the same time providing a realistic experience. Many works
in literature have their focus on building a VR simulation
system for conducting emergency disaster evacuation train-
ing. Reference [8] is one such systematic review paper that
seeks to highlight the trends, technologies, research areas
and challenges in XR technology for Disaster Management.
The authors have categorized the works into five categories
of computer simulation modelling, interaction techniques,
training, infrastructure assessment and reconnaissance, and
public awareness. The section of this review on Training,
specifically Evacuation Training, is the category where our
proposed work falls under. In [6], the authors have developed
a disaster management training simulation covering disasters
like earthquake, typhoon, tsunami and fire, which help the
users train and prepare for emergencies when a disaster
strikes. In [5], the authors have proposed a VR disaster train-
ing system specific to accidents caused by fire. The system
has 3 modes to train the users for different kinds of skill sets:
evacuations drills, firefighting, and a comprehensive training
which is a hybrid of the former two modes. They have used
multi-agent systems for their simulation scenarios. A cloud-
based collaborative VR evacuation drill has been proposed
in [1]. The main aim of their work is to study human behavior
by simulating crowd behavior using computer-controlled and
user-controlled agents. Another work [3] focusing mainly
on flood disasters, shows how we can use Kolb’s Learning
Method to train individuals for evacuation and rescue during
disasters, by ensuring learning motivation among users.
The need for simulating realistic disasters has also been
emphasized upon in [9] where the authors have used Unity
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3D to develop realistic disaster simulations using markerless
AR technology.

But all these works depend on manually designing the
scenarios and the game assets, which remain the same in
all iterations of the simulation. There is no intelligent agent
present to dynamically change the scenarios every time the
user plays it. There is an AI component present in [4],
where the system tries to recreate the scenario of disasters.
The system is doing so with the dataset of earthquakes that
occurred, inputting that information into a CART algorithm
to predict what the scenario would have looked like. This
approach heavily depends on the collection and availability
of accurate and relevant datasets, which may not always be
possible. For this reason, many AR/VR and game developers
use Reinforcement Learning (RL), which does not require
information to be collected in advance. Further details of
RL and its applications in VR simulations are discussed in
Section II.C.

B. PROCEDURAL CONTENT GENERATION (PCG)
Procedural Content Generation is the generation of content
using algorithms. If procedural is the how then content is the
what [10]. Any assets which are used as content for games
can be generated procedurally. This includes levels, character
models, and even the textures, music, sounds, the story line
used in the game. By using PCG, we are letting the computer
take some responsibility of the design process, allowing the
developers to focus on working on the core functionality
of the game. Many algorithms have been proposed for
implementing PCG, and a lot of these algorithms are specific
to the type of game content that needs to be generated. In [11],
the authors have classified the types of game content that
can be generated procedurally into categories like game bits,
game space, game scenarios, etc. and have listed out the
various algorithms that exist to generate each of these game
contents. One of the most common algorithms is the Pseudo
Random Number generation or PRN which uses seed values
to randomly decide on the position of objects in the game,
the choice of weapons, etc. like in the work presented in [12]
where PRN is used to dynamically generate game levels and
difficulty for a 2D game developed using the Unity Game
Engine. Other popular algorithms are generative grammars,
image filtering, L-Systems, spatial algorithms, etc. A survey
of PCG algorithms used in virtual reality environments have
been presented in [13]. Most of these algorithms overlap with
the classical PCG algorithms mentioned earlier, with specific
focus on the balanced compromise between the feeling of
presence and realism in VR, and the performance of the
PCG algorithms. They have also highlighted the fact that
the awareness of using PCG for virtual worlds has increased
significantly in recent years, not only through researchers, but
mainly through practitioners. One such work, [14] has made
use of the surrounding of the user’s physical space to create
the game path and obstacles in mixed reality.

The use of PCG as a means to retain the interest
of users and encourage exploration in games and virtual

environments is quite prevalent, and stands as one of the
most popular use cases for these algorithms. Such a use case
has been explored in [15], wherein the amount of time a
user spends interacting with each of the game assets is used
as a parameter to generate an open world game for them.
Similarly, in [16] the authors have used PCG techniques
based on decision trees to make a VR game which offers
a unique game experience to each individual based on the
time they spend interacting with the various game assets. For
example, players interacting more with trees and greenery
are given more forest-like scenarios and users interacting
more with battle weapons are given a battle scenario.
This work has an AI component to it, which allowed the
system to take intelligent choices for the scenario generation.
Similarly, many researchers have started proposing PCG
algorithms with a machine Learning component to generate
functional environments that are unique, but at the same
time not too random, making the scenarios look logically
possible and compatible with the physical laws of the real
world. A PCGML framework has been proposed in [17]
for automated scene layout generation using neutrosophic
evaluation. The game scenes are initially generated randomly
after which they are sculpted using a genetic algorithm.
This method creates unique and non-repetitive game levels
even with several runs of the same algorithm. In [18], the
authors present a survey of the various PCG algorithms in
literature which make use of ML algorithms like neural
networks, LSTMnetworks, autoencoders, deep convolutional
networks, and many others. They have also considered five
broad categories of training algorithms: Back Propagation,
Evolution, Frequency Counting, Expectation Maximization,
and Matrix Factorization. The vast majority of work covered
in this paper deals with 2D PCG. Moreover, large datasets
are required for these ML approaches. This is where
Reinforcement Learning (RL) comes into play, which does
not require any complex methods for the acquisition of
datasets beforehand. For VR systems, the data is collected
through rendering during training. We will discuss the works
using RL for PCG in the following section.

C. REINFORCEMENT LEARNING (RL)
Reinforcement learning is the problem faced by an agent
that must learn behavior through trial-and-error interactions
with a dynamic environment [19]. In a reinforcement
learning problem, an agent generates its own training data
by interacting with the environment based on its current
policy [20]. For this reason, RL is preferred over other
classical supervised ML algorithms for AR/VR and game
development. A Reinforcement Learning problem can be
framed as a typical Markov Decision Problem (MDP) with a
set of agent states, S; a set of agent actions A; the probability
of a transition at time t from state s to s’ under an action α,
Pr(st+1 = s′|st = s, αt = α) and the immediate reward
after the transition from s to s’ with action α,Rα(s, s′). The
aim of the RL agent is to choose an action policy π :

A × S → [0, 1], π(α, s) = Pr(αt = a|st = s) that
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would maximize its expected cumulative reward. However,
in complex simulation environments, the rewards are not
direct and immediate, and the action states are continuous
instead of being discrete, therefore MDP fails to provide
a good result here, and so Deep Reinforcement Learning
needs to be used [21]. In Deep Reinforcement Learning, the
observations that the agent collects are used as input for the
neural network. This neural network then chooses an action
based on the current policy. At the end of each episode,
the agent receives rewards based on the actions it performs,
and the information about the rewards received by it is fed
as feedback to the neural network, which then alters its
decisions based on the positive or negative rewards received.
In works like [22], the authors have used RL to change the
behaviour and response of persons playing a game without
their prior knowledge, encouraging the players to develop a
strategy while playing the game. Authors of [23] and [24]
have proposed a deep reinforcement learning approach to
model their PCG algorithm to generate unique immersive
VR environments for an Industrial Engineering course in
order to maintain the students’ interest in the coursework.
The reward function of their RL PCG algorithm is such that
on the basis of the position of a subset of objects in the
environment, the RL agent is able to decide the position
and orientation of the other objects in the environment. The
results of their work are quite relevant for us, and we will
be using the results of their work to compare our own work.
The same authors have also experimented with this same
approach in [25] to generate multi-contextual environments
to teach the same underlying academic topic, in this case the
mathematical concept of probability. On the basis of the user
input for some parameters, the RL agent generates a scenario
for the user in VR. The user can tweak the parameters like
the probability distribution of certain objects and observe
the changes it causes in the environment that is procedurally
generated by the RL agent. In the above three works, the
authors have used the Proximal Policy Optimization (PPO)
algorithm [26], [27] which is implemented using the ML
Agents Toolkit of the Unity Game Engine. This toolkit
provides another implementation of an RL algorithm called
Soft Actor Critic (SAC), which is an off-policy method in
which agents learn from stored data of previous episodes to
make decisions [20]. The authors of [28] have used the SAC
algorithm to procedurally generate dungeons in their game.
They havemanaged to decrease the training time significantly
by training the RL agent only using the data structures,
removing the need to render the scenes while training the RL
agent. The dungeon is generated procedurally with the use of
multi-agents, each specialized to render a particular room of
the dungeon, which helped them to parallelize the training,
and narrow down the source of errors that arose.

D. RESEARCH GAP
To the best of our knowledge and research, there are no PCG
environments proposed which use reinforcement learning
for generating unique disaster evacuation training scenarios.

Although the need for dynamic fire scenarios in simulation is
highlighted in [2], the virtual simulations they have created
only include 3 pre-planned virtual scenarios for the disaster
evacuation training. The authors of [29] have used HTN
planning to generate different emergency scenarios with
buildings that are collapsed at different places during a
disaster, and the parameters can be adjusted according to the
desired goals that the user wants to train for, but there is no
ML or RL component to aid the scenario generation process.
No other work has considered the fact that disaster evacuation
training should have unique scenarios in each iteration of the
training, and none of them have proposed machine learning
aided methods to do so. Table 1 sums up the main works from
Section II which we will be using to compare our work with.

III. PROPOSED SYSTEM AND METHODOLOGY
In this work, our aim is to design a Disaster Evacuation
Training application using Procedural Content Generation
and Reinforcement Learning in a Virtual 3D environment,
which allows the user to train for diverse situations and
prepare them for a natural disaster, and evaluate this system
to test whether it helps to increase the efficiency and
effectiveness of training as compared to traditional disaster
evacuation training simulations, by comparing our algorithms
and reward functions with the ones in related works in the
literature.

We propose a virtual reality training simulation game
which can simulate fire disasters. The VR environment is
an apartment with various floors, and various rooms on all
these floors. When the user starts the training simulation,
they will be spawned in one of the rooms on one of the
floors of this apartment. Spawning means the origination
or appearance of the player at a particular point in the
game level. The furniture of this room will be procedurally
generated using our reinforcement learning procedural level
generation algorithm, which will be explained in detail later
in this paper. Our aim is to dynamically generate and present
scenarios to the user, each time they start the training.
To achieve this, wewant to create a virtual environment that is
unique, and logically correct at the same time. For achieving
this, the primary idea is to train the RL (Reinforcement
Learning) agents in such a way that they place themselves
relative to the position of some other objects in the room.

A. DESIGN ARCHITECTURE
The system design architecture of our proposed system can
be seen in Fig. 1. This architecture consists of 3 high-level
layers:

1) Unity ML Agents Toolkit: The ML Agents Toolkit2

of the Unity Game Engine provides implementation
of several Deep Reinforcement Learning algorithms
which can be used to implement intelligent multi-agent
behaviour in virtual environments. The most important
step in this is to tweak the hyperparameter values to

2https://unity.com/products/machine-learning-agents
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TABLE 1. Summary of related works in literature.

FIGURE 1. System design architecture diagram for the proposed system
of the RL-PCG training simulation in VR.

get an optimal result. There are several RL algorithms
which can be implemented using this toolkit, depend-
ing upon the use case of the virtual environment [30].
For this work, we are using the PPO (Proximal Policy
Optimization) algorithm to train the RL agents. PPO
is an on-policy gradient method, meaning that unlike
popular Q-learning methods such as Deep Q-Networks
that learn from stored offline data, PPO learns directly
from the experiences it gathers in its environment. This
makes it ideal for use in virtual environments where
it is very difficult to obtain data in advance. This is
also the layer where we will be executing our RL-PCG
algorithm for the reward function to train the agents
using a python virtual environment along with Unity.

2) Unity Game Engine: The Unity game engine provides
us with the platform and tools to make our virtual
environment realistic, by making use of 3D models,
scenes, interactions and physics mechanisms. We used
3D models of the various objects in the environment
like the furniture, and the evacuation equipment like
fire extinguisher, etc. We used the physics engine
of Unity to simulate realistic disaster scenarios by
simulating fire and smoke effects and spreading it

FIGURE 2. Living room virtual environment with fire and smoke effect.

around the room utilizing the physics mechanism of
the game engine. We can see how this fire effect looks
like in the virtual environment in Figure 2. The physics
engine was also used to set the velocity and force of the
multiple RL agents in the scene.

3) Hardware: The entire evacuation training simulation
is deployed on the Meta Quest 23 headset for testing.
Meta Quest 2 is a mixed reality headset with 6 DoF
and 2 controllers, and features like hand gestures and
passthrough. Input can be taken through hand gestures
as well as through the various buttons of the two
controllers.

B. 3-LAYER PCG ARCHITECTURE
In order to achieve a realistic simulation of a disaster in a
virtual environment, we implemented PCG algorithms in this
work in many layers, with each higher layer dependent on the
lower ones. A pictorial representation of this approach can be
seen in Figure 3. The proposed architecture for creating such
realistic disaster simulations can be visualized as 3 high-level
layers:

1) PRN (Pseudo Random Number) Generator: This is
the bottom layer of the architecture, which holds the
implementation for the most common PCG algorithm,
called PRN. This algorithm is used to decide the initial
spawn position of the user in the virtual environment.

3https://www.meta.com/quest/products/quest-2/
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For implementing this, the List data structure of C# is
used. The list consists of several Vector3 variables, and
eachVector3 variable holds the x, y and z coordinates of
a particular spawn position in the virtual environment.
The PRN algorithm chooses one of these positions
at random, and that is where the user is spawned at
in the beginning of the training simulation. The PRN
algorithm is also used to place the Fire Source object
randomly at some point in the room. There are infinite
number of possible positions where the Fire Source
might be placed at by the algorithm in any given
virtual scenario. On the basis of the position of the
Fire Source, the position of the RL agents will be
decided.

2) RL-PCG: This layer holds the implementation of our
Reinforcement Learning PCG algorithm. We have
used the PPO algorithm of the Unity ML Agents
toolkit to train the furniture objects, which are the
RL-PCG agents in this scenario. Each agent uses virtual
sensors to collect information from its surroundings
during training, and on the basis of its action policy,
it performs actions, receives rewards for those actions
in accordance to the reward function, and alters its
decisions accordingly in the subsequent episodes. The
information obtained from the PRN layer is used as
input for deciding the actions of the agents in this layer.
The furniture agents place themselves relative to the
position of the other objects present in the room, and
also relative to each other’s positions.

3) Fire Algorithm: After the RL agents have placed them-
selves in the virtual scenario, we have to generate fire
and smoke effects in a logical way in the environment.
For this, each of the object in the virtual environment is
assigned with properties or tags like flammable, non-
flammable, etc. On the basis of the properties assigned
to the objects, and the relative position of these objects
in the environment, the fire is spread in the scene. For
example, if there is flammable object, and if it has been
placed close to the fire source, then that object will
be the fastest to catch fire. Additionally, the fire will
start with a very low intensity, and till the time the user
does not extinguish it, the intensity of the fire and the
amount of smoke will keep increasing gradually over
time. Moreover, if the user starts extinguishing the fire,
and then they stop extinguishing it before the fire is
completely extinguished, the fire will start regenerating
itself after a certain delay of time. The amount of fire
that is extinguished per second can also be set in the
algorithm.

C. DATASET
Since Reinforcement Learning does not require any dataset to
be collected in advance, the RL agent will collect its data from
its environment during simulation and training itself. We are
collecting the following data points from the virtual sensors
of the Unity scene:

FIGURE 3. 3-Layer PCG architecture for creating realistic disaster
simulations in VR.

• The x, y, z coordinates of the position of the fire source
object

• The x, y, z coordinates of the position of each of the RL
agents (furniture objects)

• The velocity of each RL agent (furniture objects) along
its x and z axes

D. CREATING SIMULATION FOR FIRE DISASTER
EVACUATION TRAINING IN VR
For creating an evacuation training simulation for disaster
preparedness, many strategies have been discussed in various
works. In [31], the authors have elaborated a two-step process
for creating such environments, with emphasis on the need
for presence and effective intensity. In [32], the authors
have discussed how naturalistic decision making can be used
to form the basis of a learning model which can be used
for emergency management training. They have proposed
the Recognition Primed Decision making model within
NDM to design the training modules. Such a game-based
training scenario provides an immersive effect on the learner
and aids dynamic decision making in the VR simulation.
In [33], the authors have developed a computer-based fire
safety virtual evacuation model and tested it with users,
to test for symptoms like cyber-sickness, etc. They have
also recorded the EEG signals while using the training
simulation as a physiological measure. They have divided the
development of the virtual environment into various steps,
like the development of training content, the assessment tools,
training module development and the virtual training module
development.

The fire disaster evacuation training simulation in this
work has been designed as follows. The RLAgents will be the
furniture objects of the room that the user is spawned in. Out
of these furniture agents, few of them will be flammable, and
the others will be non-flammable objects. Apart from these
RL agents, there will be an object in the room which will act
as the fire source, i.e., the object from where the fire will
originate. In the living room virtual environment, we have
a lamp game object, which is acting as the fire source. The
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FIGURE 4. Setup of the living room virtual environment with the fire
source object and the other furniture RL agent objects for simulating the
fire disaster.

position of this lamp in the room will be generated randomly
in the beginning of every episode using the PRN (Pseudo
Random Number) Generator algorithm of PCG as mentioned
in the Layer 1 of the architecture in Figure 3. Once the lamp
is placed, the other RL objects of the scene get activated
one-by-one, and get placed in the scene. The position of
each of these agents will be relative to the other objects in
the scenario. For the living room scenario, we have 5 RL
agents: sofa, media table, sculpture table, carpet and a shelf.
The setup of the living room environment can be seen in
Figure 4. Out of these, the sofa, media table and carpet are
the flammable objects. All these objects have a Rigidbody
component attached with them, which allows us to give force
and velocity to the objects, so the objects can move around
the room and place themselves in the virtual environment.
Our aim is to create a training environment in which a fire
disaster is bound to occur. Therefore, the RL agents will place
themselves in the room environment in such a way that the
flammable objects are placed at an optimal specified distance
from the fire source, thus ensuring that if the source object
catches fire, it will spread around in the room and the user will
need to evacuate out of the situation. Similarly, for the shelf
agent, the algorithm will place it close to the walls, as shelves
are placed such in a typical room. Whereas for the sculpture
table agent, it is placed in such a way that it gets a positive
reward for placing itself at the intersection position of two
walls, i.e., at the corners of the room. The dynamic positions
of the objects in 4 different iterations of training can be
seen in Figure 5. We can see that dynamic environments are
getting generated every time the application starts (Figure 5).
By placing each object (agent) of the scenario one-by-one,
each subsequent object (agent) is more sensitive about its
surroundings and has to take into account the positions of
a greater number of objects before placing itself in the
environment. The reward function of the flammable object
RL agents can be represented mathematically as follows:

Rf = α(dft ) − β(dff ) − γ (of ) − δ(wf ) − σ (ot ) (1)

where,
• dft = a binary variable indicating whether the agent is
placed at a specified value of optimal distance from the
fire source

• dff = a binary variable indicating whether the agent is
placed too close to the fire source

• of = a binary variable indicating whether the agent
collides with the fire source object

• wf = a binary variable which indicates whether the agent
collides with any of the walls of the room

• ot = a binary variable which indicates whether the agent
collides with any other objects in the room, and

• α, β, γ, δ, σ are the reward values for each of these
variables

IV. PROTOTYPE: FEATURES AND GAME FLOW
A. WRIST UI
In order to evacuate out of the disaster scenario, the user
needs to undergo a certain number of tasks. Only after
completing all these tasks, the mission will be successful.
We have designed 5 tasks for the user, and these tasks are
made visible to the user on a panel which is attached to the
virtual counterpart of their left hand controller, to make it
easily accessible for them at all times. They can toggle this
task panel on and off by using the Menu button on the left
controller. A visual representation of this wrist UI along with
the user tasks can be seen in Figure 6.

B. USER TASKS
As we can see in Figure 6, the user needs to complete 5 tasks
in order to successfully complete the fire evacuation training
simulation. These tasks are as follows:

• Task 1 - Locate the Fire Source: The first task for the
user is to locate where the fire is coming from. In the
start of the mission, the user will be spawned randomly
in one of the rooms of the apartment, and they will
only be able to hear the sound of the smoke alarm
alert in the virtual environment. The user needs to move
around the apartment using the hand-held controllers
and locate the source of the fire.

• Task 2 - Locate the Fire Extinguisher: The next task
for the user is to navigate outside the apartment using the
hand controllers and locate the fire extinguisher which is
placed outside the main door of the apartment, as can be
seen in Figure 7.

• Task 3 - Grab the Fire Extinguisher: Next to the fire
extinguisher, there will be a panel instructing the user
on how to grab the extinguisher using the controller. The
user needs to point the raycast of the controller over the
fire extinguisher, and press the grip button to grab it.

• Task 4 - Bring the Fire Extinguisher to the Disaster Area:
Once the user has grabbed the fire extinguisher, the next
task is to bring the fire extinguisher to the disaster area.
Once the user accomplishes this, the instructions to use
the fire extinguisher to extinguish the fire will appear
over the extinguisher, as seen in Figure 8.

• Task 5 - Extinguish the Fire: Once the user has brought
the fire extinguisher to the area of the apartment where
the fire is spreading, they need to extinguish the fire.
To do this, they have to aim the fire extinguisher at the
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FIGURE 5. Procedurally generated scenarios using RL-PCG which generate different position of the furniture agents in every iteration of
training.

FIGURE 6. Wrist UI with task panel attached to left controller.

FIGURE 7. Completion of Task 2, and instructions of performing Task
3 appearing in front of the user on a panel.

base of the fire, and press the trigger button repeatedly.
The users will see that the intensity of the fire slowly

FIGURE 8. The user gets instructions on how to extinguish the fire once
they bring the extinguisher to the disaster area.

starts decreasing, and eventually it will be completely
extinguished. As per the third layer of our proposed
3-layer PCG architecture (refer Figure 3), if the user
does not extinguish the fire completely, the fire will start
regenerating itself after a specific time delay, and the
user will have to extinguish it again.

C. ALTERNATE GAME FLOW
If we consider the real world, if there is a fire disaster which is
not contained in time, it will eventually spread out to such an
extent that it will become dangerous for humans to extinguish
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FIGURE 9. Training results of the flammable object RL agent, graph
(a) shows the cumulative reward of the environment over the iterations
and, graph (b) shows the variation in length of each episode over the
iterations of training.

it at that point. That is why it is important to have a game
flow for situations in which the user fails to extinguish the
fire. The importance of having a failure mechanism has been
emphasized on in great detail in [34] where the authors have
built a failure-enhanced disaster evacuation training which
creates a bias in such a way that the user is bound to fail
during the first iteration in the training virtual environment.
For our evacuation training system, in case the user fails to
extinguish the fire in time, the fire starts spreading out in the
entire room, at which point they get a warning that they need
to drop everything and evacuate out of the scenario. At this
point, the user needs to follow the exit signs and start moving
out of the building by using the stairs. If even after the final
warning, the user fails to evacuate out of the building, they
will get a ‘‘Game Over’’ message indicating that they have
failed to move out of the building safely before the spreading
of the fire.

V. RESULTS AND DISCUSSION
The results of training the flammable object RL agents can
be seen in the subsequent figures. In Figure 9, the first
graph shows how the cumulative reward of the environment
increases over time, with the progression of the training iter-
ations. The reward first decreases, and then steadily starts
increasing until it reaches the end of training. This indicates
that the agents are performing the desired actions, i.e. placing
themselves close to the fire source, while avoiding collision
with the other objects and walls of the room. The second

TABLE 2. Cumulative mean rewards of the untrained and trained RL
agents in the virtual environment.

TABLE 3. Comparison of our results with selected related works.

graph shows how the episode length, initially being very low,
increases over time, but by the end of the training, it again
becomes low. This is happening because during the start
of the training, the agent collides with some objects which
causes it to gain a negative reward, which ends the episode.
Over time, the agent learns to not collide with the objects,
thus reducing its negative reward, but since it has not achieved
the positive reward, it keeps moving around the room, thus
increasing the length of each episode. The episode ends only
either when the agent collideswith another object in the room,
thus obtaining a negative reward, or if it places itself correctly
in the room, thus obtaining a positive reward. Through trial
and error, the agent eventually learns to obtain the desired
positive reward fast, thus ending the episode, which can be
seen in the graph as a steady decline in the episode length
towards the end of the training. The RL agents in the scene
are becoming more aware of their surroundings and are able
to take decisions faster, which leads to shorter length of
episodes. So, we can see that the length of the episodes is
short with high negative rewards in the beginning of the
training, and towards the end of the training, the episodes
again become short, but with a high positive reward.

Table 2 summarizes the results of our RL agents training.
We can see the cumulative mean reward of each of the
agents in the environment before training (untrained) and
after training the agent. We can see that for all the 5 agents,
the cumulative mean reward is greater for the trained agents
as compared to the cumulative mean reward of the untrained
agents.

The comparison of our current work with the selected cited
related works has been done in Table 3. In [29], the authors
have proposed a system which generates dynamic scenarios
for fire evacuation training. But they have not used any RL
or ML algorithms to do so. Yet we have included it as an
important work for the comparison of our work, since this is
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the only work we found in which the authors have considered
the need for dynamic generation of scenarios for disaster
training, and implementedmethods to do so. The work in [23]
and [24] has focused on the generation of dynamic scenarios
in an Industrial Engineering environment, to maintain the
interest of the users by providing them with unique scenarios
during each iteration of training. They have parallelized
their training and used an intel i7 processor machine to do
the training of their agent, whereas our work has trained
the agents in 1.06 hours, as compared to their 3.25 hours,
by using an i5 processor machine and without parallelizing
the training, due to the limitation of the computing power
of the hardware used. Despite the limitation of hardware,
we were able to achieve good results in lesser amount of
time, for greater number of agents (5 agents as compared
to 3 agents trained in [23] and [24]). In [25], the authors
have developed a systemwhich can generatemulti-contextual
dynamic scenarios to teach the same underlying academic
topic. Although their training time is significantly lesser than
ours, due to the fact that they have parallelized their training
with 32 parallel environments and worked on the i7 processor
for training, we have trained a greater number of agents (5
as compared to 3 in their work) in lesser number of steps
(100 thousand steps as compared to 2.4 million steps in
their work). In [28], the authors have procedurally generated
dungeons using the Unity ML Agents toolkit. Their training
time is less than ours, but they have mentioned that their
model does not require any visual rendering to be trained,
since the environment is grid based and the entire training
can be done solely using the data structure in the code itself.
Whereas for our training, visual rendering is essential due to
the multiple possibilities of the position of objects, which are
not discrete fixed values, but continuous values. Moreover,
we trained a greater number of agents in lesser number
of steps. These results show that we were able to achieve
enhanced results in many aspects as compared to the related
works in literature.

The efficiency improvements observed in training
RL-PCG agents for disaster scenario generation hold sig-
nificant implications for the overall effectiveness of disaster
evacuation training in a virtual reality (VR) environment.
The enhanced efficiency, demonstrated by faster training
and fewer steps required for convergence, aligns with our
overarching goal of creating a practical and impactful disaster
preparedness training system. By significantly minimizing
the time required to generate diverse and dynamic disaster
scenarios, the proposed RL-PCG agents increase the system’s
readiness for rapid adaptation to evolving disaster situations.
This adaptability is vital in training individuals to respond
effectively to a wide range of disaster scenarios that might
unfold unpredictably. The accelerated training of RL-PCG
agents encourages a more iterative approach to scenario
generation. With quicker feedback loops, it becomes feasible
to iteratively fine-tune and explore a broader spectrum
of disaster scenarios. This iterative process enhances the
training system’s adaptability to address a multitude of

disaster variants, ultimately enriching the diversity of
training experiences for users. Therefore, the efficiency
improvements observed in training RL-PCG agents bear
positive implications for the overall effectiveness of disaster
evacuation training in a virtual reality environment and
reinforce the potential of our system to prepare individuals for
a multitude of disaster scenarios efficiently and effectively.

VI. CONCLUSION AND FUTURE WORK
In this study, we introduced a system for training disas-
ter evacuation in a virtual reality environment. We used
Reinforcement Learning Procedural Content Generation
(RL-PCG) algorithms to make the training scenarios
dynamic. Our goal was to create an affordable and secure way
to prepare for disasters. We also designed a unique 3-layer
PCG architecture to make the disaster simulations in virtual
reality feel realistic. We made a working prototype of the
evacuation training simulation.

Our contributions materialized in the form of a practical,
realistic and dynamic training environment for disaster
evacuation scenarios. The RL-PCG agent outperformed other
RL agents in terms of lesser training time, lesser number of
steps and greater number of agents, with limited processor
capabilities.

In the future, we plan to extend our proposed system to
simulate other types of disasters such as floods, earthquakes,
and tornadoes. We also aim to explore deep reinforcement
algorithms, such as Soft Actor Critic (SAC), to see if they
improve the RL agents’ performance compared to the current
PPO algorithm. Additionally, we’re considering algorithms
that are specifically designed for multi-agent scenarios,
like MA-POCA, to see how they perform in cooperative
situations [35].

Furthermore, we plan to integrate our proposed system
with other immersive technologies such as augmented reality
andmixed reality to provide amore immersive and interactive
disaster training experience. We also plan to investigate
the use of natural language processing techniques to allow
users to interact with the training simulation through voice
commands.

Finally, we also plan to conduct a user evaluation study
in the future to test the effectiveness of our system in terms
of increasing disaster preparedness in individuals. We also
plan to collaborate with disaster management organizations
and emergency responders to test the effectiveness of
our proposed system in real-world disaster scenarios and
incorporate their feedback into future iterations of the system.

In summary, this study initiates a novel dimension in
disaster training, establishing a robust foundation for future
exploration, collaboration, and refinement.
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