
Received 18 August 2023, accepted 1 September 2023, date of publication 11 September 2023,
date of current version 14 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313598

Bug Localization Model in Source Code
Using Ontologies
ALISSON SOLITTO DA SILVA , ROGÉRIO EDUARDO GARCIA ,
AND LEONARDO CASTRO BOTEGA
Department of Mathematics and Computer Science, São Paulo State University (UNESP), Presidente Prudente, São Paulo 19060-900, Brazil

Corresponding authors: Alisson Solitto da Silva (alisson.solitto@unesp.br), Rogério Eduardo Garcia (rogerio.garcia@unesp.br), and
Leonardo Castro Botega (leonardo.botega@unesp.br)

This study was supported in part by the Coordination for the Improvement of Higher Education Personnel (Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior) - Brazil (CAPES).

ABSTRACT The bug location process aims to identify source code artifacts associated with reported
bugs. Manual bug location is burdensome for programmers who must reproduce and analyze the bug to
identify the defective artifact and perform necessary maintenance. Bug locating techniques classify and
identify project-specific source code artifacts, narrowing the search space. These techniques often use
machine learning methods, such as textual similarity, classification algorithms, and grouping of source
code files based on bug report data. This paper proposes a bug location model that leverages semantic
architectural knowledge through ontologies to infer new knowledge and retrieve information from bug
reports. Themodel’s performance is evaluated on six relevant open-source projects inCSharp (AutoMapper,
MsBuild, EfCore, AspNetCore, MQTTnet, and NLog). Experiments utilize the evaluation metrics Top N
Rank of Files (TNRF), Mean Reciprocal Rank (MRR), and Mean Average Precision (MAP). The results
demonstrate the significant efficacy of the proposed model. The model contributes to relieving the manual
burden on programmers and enhances bug localization accuracy and efficiency by integrating architectural
semantic knowledge represented through ontologies with machine learning. The evaluation results indicate
the potential of the proposed model for improving the bug-fixing process in software development.

INDEX TERMS Bug location, ontology, software engineering, software maintenance.

I. INTRODUCTION
Software development encompasses a range of methods,
techniques, and tools employed throughout the software life
cycle. Given the complexity and application domain, software
systems are constantly evolving. Continuous improvement,
corrective maintenance to address bugs in artifacts, and the
need to refactor source code are integral parts of the software
life cycle.

Despite adopting Software Engineering practices, bugs
may still arise in software systems. Bugs can manifest them-
selves at various stages, from the initial software conception
phase, requirements specification, diagrams, or use cases,
to the deployed system [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

Bug detection and localization are two critical phases in the
software development life-cycle that substantially contribute
to the final product’s quality and robustness. Although closely
related, these phases serve distinct functions and employ
different techniques and tools.

Bug detection is the initial process of identifying errors,
anomalies, or inconsistencies that may lead to incorrect or
unexpected behavior in the software. This stage involves
identifying syntax errors, logical mistakes, or coding standard
violations through automated testing, static code analysis,
or manual code review. The goal is to uncover issues during
development, preventing errors from permeating the released
software.

Following bug detection, the subsequent step is bug local-
ization. This phase is focused on identifying the specific
location or locations in the source code where the error
occurred. Bug localization can be achieved through stack

98542

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0001-9096-6068
https://orcid.org/0000-0003-1248-528X
https://orcid.org/0000-0003-1495-5935
https://orcid.org/0000-0001-9987-5584

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

tracing or algorithms correlating error reports with code
sections. This process often requires manual intervention,
as developers must decipher bug reports and pinpoint the
source code entities requiring modification [2].

Once the source code artifact housing the bug is identified,
a programmer performs the necessary maintenance [3]. The
primary challenge lies in recognizing the source code artifacts
associated with the defect report, often written in natural
language.

There are noteworthy studies in the field of bug detection,
such as [4], [5], and [6], but the focus of these works differs
from what we address in this article. It is crucial to emphasize
that bug localization and bug detection are distinct concepts
and tackle separate issues. While bug detection concentrates
on identifying the error, bug localization focuses on pinpoint-
ing the source code artifacts that originated the reported bug.

Bug Tracking Systems (BTS) provides tools to support
corrective maintenance activities, enabling the reporting
of inconsistencies discovered throughout the software life
cycle, even during its use [7]. BTS allows for storing and
managing bug reports, which describe situations where the
software behaves unexpectedly. Bug reports are crucial in
bug triage, as they contain valuable information for Software
Engineering [8].

The bug-locating process aims to identify candidate source
code artifacts related to the reported bug. This manual task
is costly for programmers responsible for identifying the
artifacts and performing the necessary maintenance. Various
methodologies have been adopted in bug location processes,
utilizingmachine learning techniques, textual similarity, clas-
sification algorithms, and grouping of source code files based
on data extracted from bug reports [9], [10], [11], [12],
[13], [14].

There are two primary state-of-the-art approaches to bug
location processes [12]. The first approach is based on simi-
larity, where bug reports and source code files are classified,
resulting in a set of source code files related to the bug
report based on their level of similarity. The second approach
leverages machine learning techniques and utilizes a set of
training artifacts, which consist of historical bug reports
and their respective faulty source code files. This approach
employs algorithms to classify and group documents based
on textual similarity, ultimately generating a scoring function
to determine candidate source code files for correction.

Existing bug localization methodologies predominantly
focus on the static analysis of source code files, often
overlooking the architectural and semantic structure of the
software. These methodologies employ Natural Language
Processing (NLP) to establish semantic similarities between
defect reports and source code artifacts. However, merely
identifying semantic similarities in this context falls short;
understanding the software’s semantic structure (architec-
ture) is imperative.

Frequently, a source code artifact may exhibit high sim-
ilarity to a defect report, but that individual artifact might

not address the issue adequately. The presumed source code
artifact could inherit from an abstract class or implement an
interface. Such interfaces or abstract classes may, in turn,
have other inheritances that are overlooked when employ-
ing similarity or classification techniques. Relying solely
on textual semantic similarity is insufficient to interpret the
architectural structure of the source code.

Static methods that treat bug reports as mere collections
of words often fail to grasp the architectural context of the
source code artifact and to harness the rich semantic informa-
tion embedded within bug reports. Domain knowledge and
the application of ontologies can significantly enhance the
bug localization process. Ontologies provide an integration
and interoperability layer, unifying representations across
domains within a semantic model [15].

When considering code semantics, NLP and machine
learning techniques can be harnessed to discern patterns,
intentions, and behaviors within the code. For instance, one
might identify analogous code snippets, anticipate defects,
or comprehend a module’s functionality based on its com-
ments and structure.

Within the source code context, an ontology can represent
entities within a software system (such as classes, methods,
variables, etc.) and their relationships (like inheritance, com-
position, method calls, etc.). That aids in understanding the
system’s design, architecture, and behavior.

While NLP is typically deployed on vast textual datasets
for information extraction or language comprehension,
ontologies cater to modeling specific domains. In these sce-
narios, ontologies proffer a formal and explicit structure to
portray semantics and are more apt for applications where
structure and relationships are paramount and necessitate
clear definitions.

Although NLP boasts robust techniques for language inter-
pretation, ontologies emerge as a superior tool for modeling
source code’s architecture and semantics. With its formal
structure and rich semantics, the ontological representation
offers a firm foundation for effective software system com-
prehension, maintenance, and evolution.

The formal nature of ontologies ensures clarity and preci-
sion in portraying a system’s architecture. They also facilitate
tracking dependencies and relationships within the code,
proving beneficial for tasks like maintenance and refactoring.
Additionally, ontologies promote a shared language suit-
able for integrating various systems or components, and by
explicitly modeling semantics, they pave the way for deep
comprehension and precise code interpretation, consequently
reducing ambiguities.

Domain knowledge and the application of ontologies can
contribute to advancing the bug location process. Ontologies
provide a layer of integration and interoperability, unifying
the representation of different domains within a semantic
model [15].

Despite the potential benefits, the literature reveals only
a limited number of models that employ ontologies in the

VOLUME 11, 2023 98543

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

bug location process. Some of the presented models lack
a comprehensive domain ontology. Papers by Kiefer et al.
[16], and Tran and Le [17] utilize ontologies to represent
the domain superficially. In other words, these ontologies
only provide a taxonomy of some aspects within the domain
without incorporating expressive rules and relationships.

Using ontologies in the bug location process contributes to
identifying source code files that may not be explicitly related
to the bug report. By employing ontologies, the semantic
expressiveness of the source code is enhanced, enabling the
inference of new knowledge.

This paper introduces a bug localization model that lever-
ages ontologies to formally represent the domain knowledge
of the object-oriented programming paradigm in a semantic
structure. We aim to enhance the inference of new knowledge
and retrieve information from bug reports by utilizing the
architectural representation of source code artifacts within the
ontology.

This paper proposes a bug localization model that uti-
lizes ontologies to formally represent the domain knowledge
associated with the object-oriented programming paradigm
within a semantic framework. Furthermore, most research
in this context predominantly focuses on projects coded in
Java for bug extraction and localization. A review of related
work reveals a noticeable tool gap catering to languages
other than Java. Our proposal addresses this void and aims to
advance these tools by incorporating another high-level lan-
guage, C Sharp (C#), underscoring the presence of significant
open-source projects within this community.

We aim to enhance the inference of new insights and the
retrieval of information from bug reports by leveraging the
architectural representation of source code artifacts within
the ontology.

The paper is organized as follows: Section II provides the
theoretical foundation of the concepts necessary for devel-
oping this work. Related works and discussions about this
proposal are presented in Section III. Section IV outlines
the research proposal and the methodology employed for the
project. The experiments conducted and the results obtained
with this approach are presented in Section V. Finally,
Section VI concludes the paper by summarizing the findings
and discussing future work.

II. BACKGROUND
This section presents the background relevant to the devel-
opment of this work, providing the theoretical basis of the
relationship between using ontologies and the Software Engi-
neering area.

A. ONTOLOGIES AND SOFTWARE MAINTENANCE
The design and use of ontologies are central technologies
for creating applications that support and manipulate intelli-
gent information. Ontologies also facilitate solving problems
related to technological applications that employ databases
as a formal representation of knowledge. Using ontologies to
represent domain knowledge can be applied throughout the

Software Engineering life cycle [18]. Reference [19] com-
plements this perspective by explaining that computational
ontologies serve as a mechanism for formally modeling the
structure of a system, capturing the relevant entities and
relationships within a given domain.

Difficulties arise when knowledge is not formally rep-
resented using ontologies. For instance, the fundamental
premises in databases are implicit, preventing the reuse and
sharing of embodied knowledge. There is a lack of a generic
model that allows the construction of databases by reusing an
existing knowledge model. Lastly, no technology facilitates
the quick extension of databases, enabling the combination
of knowledge from complementary domains with the appli-
cation domain [20].
During the software maintenance process, different types

of information are listed without an explicit connection [21].
When software detects a defect, it is reported in a bug
tracking system (BTS), initiating its life cycle until it is
resolved. Throughout this cycle, the defect undergoes an
exhaustive process of discussion and analysis. Developers
need to understand the source code areas affected by the
defect. This interaction process typically involves search-
ing for content in forums, software artifacts, and system
specifications to understand the evolution history of a spe-
cific component and resolve the reported occurrence. In this
scenario, ontologies provide a layer of integration and inter-
operability for data from different sources, unified in a
semantic model. In addition to giving semantic expressive-
ness to the data, ontologies allow for the inference of new
knowledge not explicitly described in the reported defect
report [15].

Understanding the application domain, technologies, test-
ing procedures, and requirements is necessary when devel-
oping software. However, much of this knowledge is not
formally documented, making it challenging to compre-
hend the system being maintained [22] fully. Ontologies can
provide several benefits in inferring new knowledge and effi-
ciently retrieving information, facilitating the assessment of
expertise relevant to the application context.

Using ontologies in Software Engineering holds the poten-
tial for advancing software construction processes. The
utilization of ontologies in Software Engineering can be
categorized into two scenarios. The first scenario involves
using ontologies at runtime and development time. The sec-
ond scenario analyzes the domain problem the software
aims to solve, classifying it into infrastructure and software
aspects [15].

• Ontology-driven development (ODD): This approach
employs ontologies at development time to describe the
domain problem. The primary example is ontological
languages such as RDF (Resource Description Frame-
work) and OWL (Web Ontology Language), which
enable automatic validation and verification, reduc-
ing language ambiguity. Tools based on UML can be
extended to support the creation of domain vocabulary
and ontologies.

98544 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

• Ontology-enabledDevelopment (OED): This category
is also used at development time but focuses on sup-
porting tasks performed by software developers, such
as component research, component reuse, and software
maintenance.

• Ontology-based architectures (OBA): OBA-based
architectures utilize ontologies as a primary artifact,
constituting the application’s core logic and business
rules.
Ontology-enabled architectures (OEA): In this archi-
tectural scenario, ontologies are applied to support the
infrastructure of a software system by adding a semantic
layer over the existing syntactic layer. That is: it enables
semantic information retrieval and the description of
services based on a formal semantic vocabulary.

Incorporating ontologies into the Software Engineering
field makes enhancing various aspects of software develop-
ment and maintenance processes possible. Using ontologies
facilitates the formal representation of knowledge, enables
data integration from diverse sources, and supports the infer-
ence of new knowledge. Furthermore, ontologies provide a
semantic layer that enhances information retrieval and assists
in understanding and managing complex software systems.

B. RECOGNITION OF NAMED ENTITIES
The process of identifying and classifying proper names
found in a sentence is called Named Entity Recognition
(NER). NER involves determining the entities (proper names)
in a text and categorizing them based on their type. The
most common types identified in the NER process are person,
place, and organization. Additionally, NER can be extended
to identify other types of entities, such as dates, temporal data,
numerical expressions, and domain-specific entities [23].
NER plays a crucial role in understanding natural lan-

guage. Unlike grammatical class markup, NER assigns labels
to text entities using information stored in structured knowl-
edge sources. Machine learning techniques can be employed
in this process, where models are created and trained to
identify and categorize entities based on the specific domain
of interest. Alternatively, heuristics in regular expressions can
be used [24].

According to [25], Named Entity Recognition can be
broadly divided into two categories:

• Generic: In this scenario, entities corresponding to the
names of people, organizations, places, values, dates,
and emails are recognized.

• Specific: Specific recognition identifies entities belong-
ing to a particular domain, such as protein names and car
brands.

There are three primary methodologies for entity recogni-
tion in these scenarios, each with varying accuracy based on
the recognition objective within a generic or specific domain.

According to [26] and [25], the following approaches are
commonly used for named entity recognition:

1) Rule-based recognition: This approach relies on a set of
rules and patterns manually created by domain experts.

It leverages syntactic, linguistic, and domain-specific
knowledge.

2) Machine learning approaches: Machine learning-based
approaches do not require dictionaries or rule sets to
annotate entities in a text. These approaches primarily
utilize models such as Support Vector Machine (SVM),
Hidden Markov Model (HMM), and Conditional Ran-
dom Fields (CRF) and can employ supervised and
unsupervised learning techniques.

3) Dictionary of entities: This approach involves main-
taining a list of named entities corresponding to the
specific domain. It requires a comprehensive under-
standing of the domain to ensure all possible entities
are included in the dictionary.

III. RELATED WORKS
Considering the proposal of this paper, which suggests a bug
location model utilizing semantic knowledge from the source
code domain and employing entity recognition techniques to
retrieve information from bug reports, relevant works that
contribute to the development of the model have been ana-
lyzed and proposed.

In this section, we present papers related to the bug location
process and the utilization of ontologies to model the source
code. Furthermore, we compare related works and identify
existing gaps.

The related works are categorized based on their primary
subjects: software maintenance with ontology support, gener-
ation of source code ontologies, and the bug location process.

A. SOFTWARE MAINTENANCE WITH THE SUPPORT OF
ONTOLOGIES
In the work of Witte et al. [27], some of the problems related
to software maintenance are addressed: identifying security
vulnerabilities in the source code, establishing a connection
between artifacts by integrating information from documen-
tation and source code and understanding the architectural
structure of the project by identifying key components and
properties. Semantic Web technologies provide a unified
representation for exploring, querying, and understanding
related artifacts. The authors present a formal ontological
representation of the source code and documentation arti-
facts and an automatic population of these two ontologies
through source code analysis and text mining. The software
ontology comprises two ontologies representing the source
code and software documents. The source code ontology
formally specifies the key concepts of the object-oriented
programming paradigm using the Java language. The ontol-
ogy population is based on JDT, a source code analyzer
provided by Eclipse. The semantic infrastructure comprises
Semantic Web technologies (RDF/OWL) and Racer (used as
an inference engine).

Tran and Le [17] present a defect search system that utilizes
ontologies to annotate defect report data semantically. This
work aims to explore defect reports available in a peer-to-peer
(P2P) network, discover similar defects in this environment,

VOLUME 11, 2023 98545

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

TABLE 1. Comparison of the main characteristics of related works.

and unify various defect reports from different systems into a
single database. The authors employ SemanticWeb technolo-
gies and studies in distributed systems to perform searches
in P2P networks using SPARQL queries. For defect classi-
fication, they consider the properties of defect reports that
can be directly extracted for package dependency analysis,
classification, and identification of components related to the
reported defect. The defect classification takes into account
not only the properties already described in the defect report
but also keywords or groups of keywords using the term fre-
quency (TF) method that measures the occurrence frequency
of terms in the document and the inverse document frequency
(IDF) that measures the importance of a term.

B. SOURCE CODE ONTOLOGY GENERATION
In their work, EkramiFard and Kahani [28] aim to utilize
Semantic Web technologies for detecting security vulnerabil-
ities in source code by converting security flaw patterns into
semantic queries using SPARQL. Their semantic generator
processes solutions written in the Java language, consisting
of an analyzer that retrieves the source code and generates a
syntax tree to produce RDF triples, along with an information
retrieval module (SPARQL).

Atzeni andAtzori [29] present an ontology for representing
source code in the Java language. The ontology genera-
tion process involves analyzing and downloading all project
dependencies, generating a syntax tree of the source code
using the Spoon library, and serializing the code into RDF
triples.

Ganapathy and Sagayara [31] focus on extracting metadata
from source code to facilitate component reuse in other soft-
ware projects. The authors propose a framework that extracts
metadata from Java programs using the QDox library and
stores the metadata in an ontology using the Apache Jena
Fuseki ontology repository [32].
In a similar vein to work by Atzeni and Atzori [29],

Aguiar et al. [30] aimed to develop a reference ontology
for representing the object-oriented programming (OOP)
paradigm in the context of polyglot programming. In a more
recent work [33], the authors present a semantic generator for

projects written in Java and Python, validating the ontology
instance with code smell detection.

C. BUG LOCATION PROCESS
Gharibi et al. [9] propose a defect localization approach con-
sidering various properties extracted from the defect report
and source code files, along with the relationships of the
altered artifacts based on the defect report history. In this
project, the authors consider using information retrieval tech-
niques and text categorization to improve the efficiency of the
defect localization process. The analysis and pre-processing
of defect reports involve five steps: token matching, VSM
similarity, stack tracing, semantic similarity, and corrected
defect report history. Each step generates a score for the
source code artifact. Finally, these scores are combined to
obtain a final ranking, ordering the relevant source code
files concerning each reported defect. After processing the
extracted properties from the defect report and the modifica-
tion history of the source code artifacts, a score is assigned to
each identified artifact, and a final classification is performed.
The final classification orders the relevant source code files
concerning each reported defect.

Swe and Oo [10] present a defect localization model that
differs from approaches that use source code artifacts as
units, which can often introduce a lot of noise in the scoring
classification when the file has many lines of code. Thus, the
proposed model considers using structural information from
the defect report to analyze its similarity with source code
artifacts and stack traces. The ranking calculation assumes
the similarity of each extracted property from the source code
(class name, method, and variables), assigning scores using
cosine similarity. Defect reports are also scored based on their
similarity, and finally, the stack trace score is assigned. The
classification of potential candidate artifacts for modification
is performed by combining all three scores.

D. ANALYSIS OF WORK RELATED TO THE PROPOSAL
The main characteristics of the related works are listed in
Table 1. In most projects, ontologies are used for the seman-
tic representation of artifacts and the semantic modeling
of the source code. Despite most related works benefiting

98546 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

FIGURE 1. Model architecture for bug location.

from ontologies, the defect localization processes do not take
advantage of semantic modeling.

In this scenario, the related works have contributed to
identifying research gaps in defect localization models and
techniques from other works that, when used together, can
benefit these models.

IV. APPROACH
This section introduces a model for bug localization using the
semantic domain knowledge of the source code. The aim is
to automatically identify source code files that are candidates
for modification based on the reported bug.

Unlike bug detection techniques, which aim to identify
errors, anomalies, or inconsistencies in the code that might
lead to incorrect or unexpected software behavior, such
as syntax errors, logical mistakes, or violations of recom-
mended coding standards, this model focuses on the next
stage.

Once a bug has been detected and reported (typically by
users, testers, or automated systems), bug localization is the
next step. This process involves pinpointing the specific loca-
tion or locations of artifacts within the source code where the
bug occurred.

This paper proposes a model for bug localization using
semantic knowledge formalized in an ontology and supported
by entity recognition. In the proposed approach, the seman-
tic representation of the source code within an ontology is
employed to consider the source code’s architectural and
semantic structure, not merely the semantics related to terms
identified in the code. This concept holds extreme relevance
for identifying artifacts related to the candidates associated
with the reported bug.

Figure 1 illustrates the high-level architecture of the model
proposed in this paper. The model aims to automate the
bug localization process, leveraging semantic web tools and
techniques that have not been extensively explored in this
research area. The model is comprised of four modules:

This model aims to automate the bug localization process
by leveraging Semantic Web tools and techniques that have
yet to be extensively explored in this research area. Themodel
consists of four modules:

FIGURE 2. Source code semantic domain generator module.

A. OWL-SHARP: SOURCE CODE SEMANTIC GENERATOR
The source code semantic generator [34] module converts
source code written in the C Sharp (C#) language, follow-
ing the object-oriented programming paradigm. Its objective
within the bug localization model is to utilize ontological
modeling to consider the semantics of project entities such
as classes, methods, variables, and projects. The entities are
extracted from the source code using the Roslyn compiler
libraries [35], the official C Sharp language compiler. The
architecture of this module is presented in Figure 2.

The ontology used to represent the source code semantics
of the object-oriented programming paradigm was obtained
from work by Aguiar et al. [30]. This ontology represents
the semantic entities of a project at compile time and can
be applied to any source code project developed using the
object-oriented programming paradigm.

For this project, some modifications were made to the
ontology to detail the semantics and relationships of certain
entities identified during development, which are specific
to the C Sharp language. The following entities have been
added:

• Solution: Represents a solution that contains multiple
application programs.

• Program: Represents the program to which a physical
source code file belongs.

• File: Represents the physical file where the source code
of a specific application module is stored.

• Mutator_Method: Represents a method that provides an
interface between an object’s internal data and the exter-
nal world. It allows access to private instance variables
of an object, also known as class properties, in C Sharp.

The source code semantic domain generator begins by
retrieving all the project files from the GitHub repository and
storing them in a system directory. The generator receives the
file path of the solution in the system directory. It loads its
projects, ‘‘.cs’’ extension files, and the necessary dependen-
cies using the MsBuild library [36]. It is possible to load one
or more solutions, projects, or files for analysis in this step.

VOLUME 11, 2023 98547

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

Listing 1. Validate method from AutoMapper project.

Upon loading the project, the compilation process starts
using the MsBuild library, which validates dependencies and
compiles the solutions, projects, or files.

After the compilation, the source code’s abstract syntax
tree (AST) structure is obtained for analysis. The C Sharp
Roslyn compiler features extract the AST from each ‘‘.cs’’
file.

The Figure 3 presents the AST generated for the ‘‘Vali-
date’’ method declaration, shown in code snippet 1 of the
AutoMapper project. In Figure 3, the blue elements represent
the syntax construction nodes, such as declarations, oper-
ators, expressions, etc. The green elements are the tokens
that include identifiers, keywords, and special characters. The
white or gray elements represent additional information about
the node, such as spaces, end-of-line characters, line breaks,
etc.

Next, the generator traverses all the AST elements to
extract semantic information about objects, such as names-
paces, entity names, types, accessibility levels, andmodifiers.
The Roslyn compiler libraries, specifically the Semantic API,
are used for this semantic analysis. The Semantic API allows
examination of the AST structure and retrieval of information
such as variable types, considering dependencies on assem-
blies, imports, or namespaces.

The RDF serialization process begins after the semantic
analysis of the AST elements. This process aims to convert
the extracted relationships from the source code into triples
(Resource, Predicate, Object) in RDF format, following the
rules described in the ontology. The resource and object
represent source code entities, while the predicate represents
the relationship defined in the ontological model.

The triples are instantiated in the ontology after serializing
the source code into RDF triples. This step involves persisting
the generated RDF triples from the previous step, following
the rules defined in the ontology. Finally, the semantic domain
generator of the source code stores the instantiated ontology
in the Apache Jena Fuseki ontology repository [32], enabling
querying in the subsequent stages of the model. Figure 4
presents a portion of the instance of the method declaration
from the code snippet 1 in the AutoMapper project in the
ontology.

B. KNOWLEDGE BASE GENERATOR
The knowledge base generator module aims to create a
knowledge base comprising domain concepts extracted from

the source code ontology and their corresponding patterns.
Figure 5 presents the architecture of this module.
During the domain concept extraction phase, the source

code ontology generated in the semantic domain genera-
tor module is loaded. The domain concepts are identified
as classes, methods, variables, and attributes. After retriev-
ing the terms, the concepts are decomposed according to
the C Sharp language’s common standards and coding
conventions [37].

The widely used naming standards for entities include Pas-
calCase, CamelCase, and snake_case. The decomposition
process identifies the writing convention of the concept and
performs the term decomposition accordingly. For example,
the concept ‘‘MemberAccessQueryMapperVisitor’’ of class
type extracted from the AutoMapper project is decomposed
into the pattern ‘‘Member Access Query Mapper Visitor.’’
The knowledge base is not limited to concept decomposi-
tion; the original and decomposed terms are combined after
decomposition.

Following the decomposition and combination processes
for ontology concepts, the lemmatization process is applied
to each decomposed and combined token from the previous
step. This step groups different inflected forms of a word and
transforms them into their root form. For instance, ‘‘running’’
and ‘‘runs’’ are transformed into ‘‘run,’’ their root form.

After completing the decomposition, combination, and
lemmatization steps, the domain concepts extracted from
the source code ontology and their respective patterns are
persisted in a knowledge base to support the next entity
recognition step. The json code in Listing 2 presents terms
for the concept ‘‘MemberAccessQueryMapperVisitor’’ after
processing through all the stages of this module.

C. ENTITY RECOGNITION
The entity recognition process begins by loading bugs for
analysis and concept labeling. Bugs are extracted by catego-
rizing issues in the project repository on the GitHub platform.
Figure 6 presents the architecture of this module.
Bug reports are obtained by retrieving all pull requests and

identifying issues categorized as bugs linked to the repository.
The text of the pull request record is then analyzed to deter-
mine which issue it addresses. This analysis creates a dataset
that includes the pull request data, the issues labeled as bugs
related to the pull request, and the files modified to fix the
bug.

When retrieving issues labeled as ‘‘bugs’’ from the repos-
itory, several steps related to natural language processing are
performed to prepare the extracted data for entity recognition.

Certain steps are carried out during the analysis and
pre-processing stage before the entity recognition process
begins. The pre-processing focuses on the title and descrip-
tion of the bug report. The pre-processing steps include the
following:

• Sentence segmentation: The text is divided into sen-
tences and segmented at the end of each sentence,
indicated by periods.

98548 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

Listing 2. Concept generated in the knowledge base.

FIGURE 3. AST related to the declaration of the Validate method in the AutoMapper project.

• Word tokenization: This step involves separating the
phrases into words or tokens. Typically, spaces are used
as separators.

• Stemming: After tokenization, the terms are normalized
by reducing words to their basic or root form. Stemming
can produce root words that have no meaning.

• Lemmatization: This step groups different inflected
forms of words, known as lemmas, together. The main
difference between stemming and lemmatization is
that lemmatization produces root words with semantic
meaning.

• Identification of stop words: Irrelevant words, charac-
ters, and empty words are removed to obtain the tokens
and their derivations.

The entity recognition process begins once the title and
description of the bug reports have been pre-processed. Entity
recognition involves labeling the concepts extracted from the
bug report based on the knowledge base generated from the
domain concepts extracted from the source code ontology.

In the bug location model proposed in this work, the
domain knowledge of the source code and its evolution
are controlled. As a result, the domain entities are fully

VOLUME 11, 2023 98549

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

FIGURE 4. Instance in the ontology related to the declaration of the
method ‘‘Validate’’ in the AutoMapper project.

FIGURE 5. Knowledge base generator module.

FIGURE 6. Entity recognition module.

known. Using a domain-controlled model makes employing
a knowledge base and a rule-based matching mechanism for
entity recognition possible, eliminating the need for advanced
machine-learning techniques that rely on standard recog-
nition. Furthermore, this approach requires a manageable

amount of data for learning. In Figure 7, a snippet of the
defect report is shown along with its corresponding annota-
tion in Figure 8.

In Figure 8, the concepts identified by the entity recog-
nition process are highlighted according to the domain
knowledge present in the source code ontology of the project.
The highlighted concepts are accompanied by their corre-
sponding identifier in the ontology.

During this process, annotations of ambiguous entities may
occur. The disambiguation of labeled concepts is performed
in the semantic classification module. All entity annotations
made in the defect report are considered in the semantic clas-
sification module of artifacts. Thus, the context in the other
annotated entities is analyzed, and the term is disambiguated
accordingly.

The semantic similarity component complements entity
recognition by assessing the similarity of tokens with the
patterns generated in the knowledge base of terms extracted
from the source code ontology. Evaluating the similarity level
is crucial for filtering out noise in the entity recognition
process and identifying entities expressed in natural language
within the bug report.

To measure the semantic similarity of labeled terms,
the GloVe model incorporates words and vector repre-
sentations [38]. The GloVe model employs unsupervised
learning to generate word vectors by training on word-
word co-occurrence matrices and using matrix factorization
techniques.

For this step, the GloVe model is pre-trained with
300-dimensional vectors using the Common Crawl knowl-
edge base [39]. As the vectors are pre-trained, the similarity is
only checked for decomposed concept patterns that generate
a token in natural language. Exact concepts in the domain do
not require a similarity check.

The semantic similarity assessment for tokens recognized
in the bug report considers only tokens with a similarity
level greater than or equal to 80% based on the knowledge
base’s patterns. This threshold is determined empirically by
analyzing and evaluating the labeled concepts in the projects.

D. SEMANTIC CLASSIFICATION OF ARTIFACTS
Once the source code domain concepts have been located
in the bug report, artifacts are identified and ranked. Before
the final classification of artifacts, an ontological process
is carried out to understand the relationships between the
recognized concepts.

The first step in generating the ontology is to group the
concepts based on the artifact they belong to. Once the arti-
facts are grouped, an ontology is generated for each artifact.
This process considers the identified concepts, the level of
semantic similarity assessment, and the semantic relation-
ships defined in the source code’s domain ontology.

Once the ontologies for each artifact have been gener-
ated, analytical methods are applied to classify each ontology
based on its representativeness concerning the concepts

98550 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

FIGURE 7. Snippet of a defect report.

FIGURE 8. Example of entity recognition.

identified in the bug report. These metrics evaluate various
aspects of representation within each ontology and determine
their ranking based on the resulting values of all ontologies
[40]. The architecture of this module is presented in Figure 9.

The first metric considered is the Class Match Measure
(CMM). The CMM metric assesses the coverage of the

ontology about the concepts identified in the bug report,
searching for entities in the ontology that correspond to the
identified concepts [40]. For each concept identified in the
ontology, the semantic similarity level determines whether
the ontology entity corresponds to an identical or partial
concept. The data used in equations 1, 2, 3, 4, and 5 are the

VOLUME 11, 2023 98551

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

FIGURE 9. Semantic classification of artifacts module.

ontology (o), class (c), and ontology class set (C[o]).

E(o) =

∑
c∈C[o]

SE(c) (1)

SE(c) =

{ 1 : ifsimilarityc = 1.0

0 : ifsimilarityc < 1.0
(2)

P(o) =

∑
c∈C[o]

SP(c) (3)

SP(c) =

{ 1 : ifsimilarity0.8 ≥ c < 1.0

0 : ifsimilarityc < 0.8
(4)

CMM (o) = αE(o) + βP(o) (5)

For identical concepts, a semantic similarity level of 1 is
considered. Concepts classified as partial have a similarity
level between 0.8 and 0.9.

The values of α and β are assigned 0.6 and 0.4, respec-
tively, to weigh the importance of exact or partial terms.
These values are determined based on the study conducted
by [40], favoring the precision of terms for calculating the
CMM metric.

The next metric is the Density Measure (DEM) metric.
The density metric assesses the level of detail in rep-
resenting an identified concept. It also considers related
entities, such as attributes and variables, when determin-
ing a class-type entity. The density measurement aims to
evaluate the representative density and the level of detail
of the ontology knowledge. This metric is adapted from

the DEM metric for the current project’s usage scenario
[40]. The data used in equations 6 and 7 are the ontology
(o), class (c), wi weights, and S = {S1, S2, S3, S4} =

{class[o],methods[o], attributes[o], variables[o]}.

dem(c) =

4∑
i=1

wi|Si| (6)

DEM (o) =

∑n
i=1 dem(c)

E(o) + P(o)
(7)

The third metric aims to assess the weight of the ontology
using the Weight Measure (WEM) without considering the
relations with the previous metric (DEM). The WEM cal-
culation is based on the DEM metric [40]. The data used
in equations 8 and 9 are the ontology (o), class (c), wi
weights, and ontology entity types S = {S1, S2, S3, S4} =

{class[o],methods[o], attributes[o], variables[o]}.

wem(c) =

4∑
i=1

wi|Si| (8)

WEM (o) =

n∑
i=1

wem(c) (9)

Finally, the total score is calculated after calculating the
CMM, DEM, and WEMmetrics for the ontologies generated
from identifying concepts in the bug report and the group-
ing of artifacts. The score is computed by considering all
the values from the previous metrics and their respective
weights, which are defined empirically. The ranking of the
ontologies is determined to classify the relevant artifacts
based on the concepts identified in the bug report. The data
used in equation 10 include the set of ontologies (O), the
specific ontology (o), wi weights, and the results obtained
from the previous metrics M = {M [1],M [2],M [3]} =

{CMM ,DEM ,WEM}.

Score(o ∈ O) =

3∑
i=1

wi
M [i]

max1≤j≤|O|M [j]
(10)

V. EXPERIMENTS AND RESULTS
This section evaluates the performance of the developed
model, providing details about the dataset used for validation,
themetrics employed tomeasure performance, and the results
obtained through model execution. The evaluation metrics
used are based on Information Retrieval, as described in the
following subsections.

A. DATASET
To assess the proposed approach in this paper, we constructed
a dataset comprising bug reports from various open-source
projects available on GitHub. This bug report suite comprises
over 650 bug reports from 6 different projects. Defect reports
are obtained from the project repositories available onGitHub
and include reports from various users. Figure 10 illustrates
the architecture specifically designed to automate the batch
data acquisition process for conducting the experiment.

98552 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

FIGURE 10. Solution for obtaining the dataset for the experiment.

The dataset encompasses bug reports extracted from
diverse open-source projects by utilizing issue categoriza-
tion within the project repositories on the GitHub platform.
To obtain bug reports, we used the GitHub API to retrieve all
pull requests and issues categorized as ‘‘bugs’’ linked to the
respective repositories. After recovering the set of issues and
pull requests, a heuristic was employed to analyze the text
of the pull request records and identify the related issue that
each pull request resolves. This process resulted in creating a
dataset containing pull request data, issues labeled with bugs
related to the pull requests, and the modified files that address
the bugs.

The dataset does not include any filters and is thus rep-
resentative of bug reports, encompassing various forms of
user-inputted information, such as open-text descriptions,
images, source code snippets, stack traces, etc.

Some pull requests and bug reports contain changes and
fixes related to multiple bugs. Developers sometimes bun-
dle fixes for several issues together to save time and effort.
It is essential to clarify that the model is limited to locating
and classifying the artifacts connected with the bug report’s
description. If the bug report is related to more than one
artifact, these artifacts will be considered as originating from
that specific bug report.

The following projects were considered in the dataset gen-
eration to evaluate the proposed approach. Only files with the
‘‘.cs’’ extension modified in the bug reports were considered.
Reports containing test project files and files not present in
the source code domain ontology were excluded from the
dataset.

• AutoMapper: AutoMapper is a library designed to
address object mapping challenges [41].

• MsBuild: The Microsoft Build Engine, commonly
known as MSBuild, is a platform for building appli-
cations. It utilizes an XML schema for project files to
control the software build process [36].

• EfCore: EF Core is an object database mapper (ORM)
for .NET. It supports LINQ queries, change tracking,
updates, and schema migrations [42].

• AspNetCore: ASP.NET Core is an open-source, cross-
platform framework for developing modern cloud-based
internet-connected applications, including web apps,
IoT apps, and backends [43].

• MQTTnet: MQTTnet is a high-performance .NET
library for MQTT-based communication. It provides an
MQTT client and anMQTT server (broker) that supports
MQTT protocol up to version 5 [44].

• NLog: NLog is a logging platform for .NET offering
advanced log management and routing capabilities [45].

B. EVALUATION METRICS
Three evaluation metrics are considered for assessing the
performance of the bug location model and ranking the list of
candidate artifacts for each bug report. Higher values indicate
better performance.

• Top N Rank of Files (TNRF): This metric evaluates
the position of the candidate artifact in the bug report
correction. Files are sorted based on their position in
the returned list of artifacts, considering N positions
(N = 1, 5, 10). For each bug report, if the top N artifacts
include at least one file related to the bug fix, the artifact
is considered to be located [9].

• Mean Reciprocal Rank (MRR): This metric measures
the overall effectiveness of retrieving candidate artifacts
from a set of bug reports. The metric calculates the
reciprocal rank of the first relevant candidate artifact for
the bug fix in each bug report [46].

MRR =
1

|BR|

|BR|∑
i=1

1
firsti

(11)

• Mean Average Precision (MAP): The average precision
metric is a calculation used in information retrieval to
evaluate the performance of all candidate files relevant
to the bug report. In the bug location process, more than
one artifact may be relevant for fixing the bug, so this
metric considers all candidate artifacts pertinent to the
bug report [47].

MAP =

|BR|∑
i=1

AvgP(i)
|BR|

(12)

AvgP =

∑
k∈SPrec@k

m
(13)

Prec@k =
relevant_artifact_in_position_k

k
(14)

C. EXPERIMENTAL RESULTS
In the initial evaluation, we also examined the metrics of
the semantic domain generator module of the source code.
Table 2 presents the metrics obtained when processing the
project source code in the dataset used for the experiment.
The ontologies were generated considering only files with
the ‘‘.cs’’ extension and excluding files related to testing
projects.

For all projects retrieved from GitHub, the source code
semantic domain generator module successfully processed
all project files and completed the processing of all classes,
methods, attributes, parameters, inheritance, etc., extracted

VOLUME 11, 2023 98553

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

TABLE 2. Source code semantic domain generator metrics.

FIGURE 11. Performance TNRF.

from the Abstract Syntax Tree (AST) and present in the
source code artifacts.

The time metrics in Table 2 are expressed in seconds.
The number of triples represents the semantic relationships
in each project and includes all relationships present in the
source code, not just classes and methods.

We evaluated the quality of the artifact list concerning the
reported bugs. For this purpose, we used the same projects
applied to the processing of the semantic domain generator
module of the source code, as listed in Table 2.

In Table 3, the results of the metrics described in
Section V-B are presented. For the TNRF metric, it can be
observed that although the TOP@1 classification obtains an
average percentage of approximately 20% for the six projects
in the experiment, the TOP@5 and TOP@10 classifications
achieved excellent results in identifying candidate artifacts
related to the reported defects. It is worth noting that the
defect reports used in the experiment were not filtered or
classified for the investigation, meaning they were considered
in their original form as described in real project scenarios.
The defect reports on GitHub can contain images, code snip-
pets, stack traces, or any other element, as the text on the
GitHub platform is free-form. Figure 11 provides an overview
of the results for each project for the TOP@1, TOP@5, and
TOP@10 metrics. Figure 12 presents an overview of the
MRR and MAP metrics results.

FIGURE 12. Performance MRR and MAP.

The MQTTnet project has 13 defect reports in its dataset
for the experiment. Despite having a low number of defect
reports, the project was included in the investigation to ana-
lyze the influence of the MRR and MAP metrics for the
relevant files found in the first position.

The MRR and MAP metrics consider the position in rank-
ing candidate artifacts in their formulas. Therefore, the results
of MRR and MAP are also influenced by the TOP@1 TNRF
metric. This relevance of the TOP@1 classification can be
observed in the MQTTnet project, where the percentages of
the TOP@5 and TOP@10 classifications are higher than the
TOP@1. Still, the values of MRR and MAP are higher when
compared to the other projects.

Despite the importance of the TOP@1 metric, some sit-
uations may need to be revised to analyze results when
considering only the TOP@1 metric as a relevant evaluation
for the experiment. For example, when a defect report fix
involves changes in three different source code artifacts, one
of the artifacts is found in the first position during the clas-
sification process. In contrast, the others are ranked near or
beyond the TOP@10. In this case, theMRR andMAPmetrics
may show a higher result than in an example where the three
modified source code artifacts are found in the 3rd, 4th, and
5th positions.

98554 VOLUME 11, 2023

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

TABLE 3. Identification and classification performance of candidate artifacts.

The MRR and MAP metrics are relevant. However, in the
analysis of the experiments, we can see that the TOP@5 and
TOP@10 metrics achieved significant results for the classi-
fication process of candidate artifacts for modification. The
MsBuild and AspnetCore projects show substantial results
in the TOP@5 and TOP@10 metrics. Both projects serve as
bases for application development and have implementations
that utilize advanced language features, making it challenging
to identify candidate artifacts for defect reports.

D. LIMITATIONS
A limitation of this experiment is the need to compare the pro-
posed technique and existing techniques for bug localization.
This point is necessary to clarify the unique context of this
research. The technique introduced in this paper is the first
in the state-of-the-art to engage with open-source projects
developed in C Sharp. In contrast, existing approaches pre-
dominantly focus on projects developed in Java.

Research works [28], [29], [31], [33] have showcased tools
for the semantic generation of source code for projects coded
solely in the Java programming language. As a result, the
contribution has remained restricted, and using ontologies to
support Software Engineering needs more tools for extracting
metadata from source code in other high-level programming
languages. The semantic source code domain generator pre-
sented in the bug localization methodology of this paper also
contributes to the evolution of semantic code generation tools,
opening a new horizon for projects coded in the C Sharp
language.

This divergence in programming languages presents sub-
stantial challenges for a direct comparison. The underlying
structure and architectural principles between C Sharp and
Java and the particular projects utilized further complicate the
matter. For these reasons, conducting a direct and meaningful
comparison would necessitate overcoming significant barri-
ers related to the alignment and normalization of the datasets
and criteria between the two programming languages. That
could lead to inconclusive or misleading results.

Moreover, the unique application of C Sharp in this
research fills a gap in the existing literature, offering fresh
insights and possibilities within the field of bug localiza-
tion. The absence of a direct comparison with Java-based
techniques should not detract from the contributions of this
work but rather highlight the novelty and potential for further
exploration and comparison in future studies.

VI. CONCLUDING REMARKS AND FUTURE WORK
The ontology plays a crucial role in the bug localization
model proposed in this paper. Bug localization using ontolo-
gies facilitates interoperability, standardization, organization,
and reuse of domain information extracted from the applica-
tion source code.

Using an ontology to consider the architectural and seman-
tic structure of the source code is important for capturing
artifacts not identified in the defect report. These artifacts
in projects can include class inheritance, interfaces, methods
that modify a virtual implementation, and inherited property
elements.

In addition to discovering artifacts not identified in the
defect report, the semantic structure of the source code
enables the disambiguation of terms by analyzing the context
of other annotated entities.

Leveraging ontologies in the bug localization process
makes it possible to perform entity recognition without rely-
ing on deep machine learning algorithms.

The development of this work is expected to contribute
to the advancement of the defect localization process by
employing an ontology to semantically represent the source
code domain, thereby enabling the exploration of new
approaches for the semantic representation and identification
of concepts from the source code domain in defect reports.
This model can benefit The corrective maintenance process
as it automates the search for source code artifacts that are
potential candidates for bug fixes by narrowing down the
search space within the project’s source code.

All research in this scenario uses projects coded in
Java to extract and validate semantic code generators. The
lack of tools that work with languages other than Java is
evident in all the related works. Our proposal also con-
tributes to the evolution of these tools by adding another
high-level language (C Sharp), highlighting the existence
of important open-source source code projects in this
community.

While the lack of direct comparison with existing
Java-based techniques might be perceived as a limitation, it is
a deliberate choice rooted in the distinct nature of the research
subject. The findings and contributions of this study stand
as an independent advancement in the field, paving the way
for subsequent investigations that leverage this foundation to
craft more comprehensive comparative analyses.

For future work, the proposed bug localization model,
which incorporates entity recognition and ontologies, can be

VOLUME 11, 2023 98555

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

enhanced by incorporating additional data inputs for infor-
mation retrieval. Including the analysis of similar bugs as
a parameter in the model can help identify which artifacts
were affected in the version history of the source code. This
approach can improve the accuracy of candidate source code
artifacts and their ranking positions.

Moreover, the support of ontologies in generating the
semantic domain of the source code also opens avenues for
research in areas such as code smells detection, design pattern
localization, component reuse, and vulnerability identifica-
tion. Additionally, it enables the inference of new knowledge
from the source code domain.

REFERENCES
[1] M. Delamaro, M. Jino, and J. Maldonado, Introduction to Software Testing

(Introdução ao Teste de Software). Brasília, Brasil: Elsevier, 2013.
[2] S. Gujral, G. Sharma, S. Sharma, and Diksha, ‘‘Classifying bug severity

using dictionary based approach,’’ in Proc. Int. Conf. Futuristic Trends
Comput. Anal. Knowl. Manage. (ABLAZE), Feb. 2015, pp. 599–602.

[3] G. Jeong, S. Kim, and T. Zimmermann, ‘‘Improving bug triage with bug
tossing graphs,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng., Aug. 2009, pp. 111–120.

[4] J. Winkler, A. Agarwal, C. Tung, D. R. Ugalde, Y. J. Jung, and J. C. Davis,
‘‘A replication of ’deepbugs: A learning approach to name-based bug
detection,’’’ in Proc. 29th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2021, p. 1604.

[5] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, ‘‘Bugram: Bug
detection with n-gram language models,’’ in Proc. 31st IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Sep. 2016, pp. 708–719.

[6] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, ‘‘Improv-
ing bug detection via context-based code representation learning and
attention-based neural networks,’’ ACM Program. Lang., vol. 3, pp. 1–30,
Oct. 2019.

[7] T. Zhang and B. Lee, ‘‘A bug rule based technique with feedback for clas-
sifying bug reports,’’ in Proc. IEEE 11th Int. Conf. Comput. Inf. Technol.,
Aug. 2011, pp. 336–343.

[8] M. F. Zibran, ‘‘On the effectiveness of labeled latent Dirichlet allocation in
automatic bug-report categorization,’’ in Proc. IEEE/ACM 38th Int. Conf.
Softw. Eng. Companion (ICSE-C), May 2016, pp. 713–715.

[9] R. Gharibi, A. H. Rasekh, M. H. Sadreddini, and S. M. Fakhrahmad,
‘‘Leveraging textual properties of bug reports to localize relevant
source files,’’ Inf. Process. Manage., vol. 54, no. 6, pp. 1058–1076,
Nov. 2018.

[10] K. E. E. Swe and H. M. Oo, ‘‘Bug localization approach using source code
structure with different structure fields,’’ in Proc. IEEE 16th Int. Conf.
Softw. Eng. Res., Manage. Appl. (SERA), Jun. 2018, pp. 159–164.

[11] D. Chen, B. Li, C. Zhou, and X. Zhu, ‘‘Automatically identifying bug
entities and relations for bug analysis,’’ in Proc. IEEE 1st Int. Workshop
Intell. Bug Fixing (IBF), Feb. 2019, pp. 39–43.

[12] P. Loyola, K. Gajananan, and F. Satoh, ‘‘Bug localization by learning to
rank and represent bug inducing changes,’’ in Proc. 27th ACM Int. Conf.
Inf. Knowl. Manage., Oct. 2018, pp. 657–665.

[13] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
May 2017, pp. 218–229.

[14] M. M. Rahman and C. K. Roy, ‘‘Improving IR-based bug localization with
context-aware query reformulation,’’ inProc. 26th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018, pp. 621–632.

[15] H.-J. Happel and S. Seedorf, ‘‘Applications of ontologies in software engi-
neering,’’ in Proc. Workshop Sematic Web Enabled Softw. Eng. (SWESE)
(ISWC), 2006, pp. 5–9.

[16] C. Kiefer, A. Bernstein, and J. Tappolet, ‘‘Analyzing software with
iSPARQL,’’ in Proc. Int. Workshop Semantic Web Enabled So Ware Eng.
(SWESE), 2007, pp. 1–15.

[17] H. M. Tran and S. T. Le, ‘‘Software bug ontology supporting semantic
bug search on peer-to-peer networks,’’ New Gener. Comput., vol. 32, no. 2,
pp. 145–162, Apr. 2014.

[18] M. Uschold and M. Gruninger, ‘‘Ontologies: Principles, methods and
applications,’’ Knowl. Eng. Rev., vol. 11, no. 2, pp. 93–136, Jun. 1996.

[19] N. Guarino, D. Oberle, and S. Staab, ‘‘What is an ontology?’’ inHandbook
Ontologies. Berlin, Germany: Springer, 2009, pp. 1–17.

[20] S. Isotani and I. I. Bittencourt, Dados Abertos Conectados: Em busca da
Web do Conhecimento. Brasília, Brasil: Novatec Editora, 2015.

[21] R. d. A. Falbo and G. H. Travassos, ‘‘A integração de conhecimento em um
amblente de desenvolvimento de software,’’ inProc. II Congreso Argentino
de Ciencias de la Computación, 1996, pp. 328–329.

[22] D. Gasevic, N. Kaviani, and M. Milanović, ‘‘Ontologies and software
engineering,’’ in Handbook on Ontologies, S. Staab and R. Studer, Eds.
Berlin, Germany: Springer, May 2009, pp. 593–615, doi: 10.1007/978-3-
540-92673-3_27.

[23] V. Keselj, Speech and Language Processing, D. Jurafsky and J. H. Martin,
Eds. Stanford, CA, USA: Stanford Univ. Univ. Colorado at Boulder, 2009.

[24] W. Khan, A. Daud, J. A. Nasir, and T. Amjad, ‘‘A survey on the state-of-
the-art machine learning models in the context of NLP,’’ Kuwait J. Sci.,
vol. 43, no. 4, pp. 98–100, 2016.

[25] G. K. Palshikar, ‘‘Techniques for named entity recognition: A survey,’’ in
Bioinformatics: Concepts, Methodologies, Tools, and Applications. Her-
shey, PA, USA: IGI Global, 2013, pp. 400–426.

[26] H.-J. Song, B.-C. Jo, C.-Y. Park, J.-D. Kim, and Y.-S. Kim, ‘‘Comparison
of named entity recognition methodologies in biomedical documents,’’
Biomed. Eng. OnLine, vol. 17, no. S2, pp. 1–14, Nov. 2018.

[27] R. Witte, Y. Zhang, and J. Rilling, ‘‘Empowering software maintainers
with semantic web technologies,’’ in Proc. Eur. Semantic Web Conf.Cham,
Switzerland: Springer, 2007, pp. 37–52.

[28] A. EkramiFard and M. Kahani, ‘‘Providing a source code security analysis
model using semantic Web techniques,’’ in Proc. Int. Congr. Technol.,
Commun. Knowl. (ICTCK), Nov. 2015, pp. 33–37.

[29] M. Atzeni and M. Atzori, ‘‘CodeOntology: RDF-ization of source code,’’
in Proc. Int. Semantic Web Conf. Cham, Switzerland: Springer, 2017,
pp. 20–28.

[30] C. Z. d. Aguiar, R. d. Almeida Falbo, and V. E. S. Souza, ‘‘OOC-O: A ref-
erence ontology on object-oriented code,’’ in Proc. Int. Conf. Conceptual
Modeling. Cham, Switzerland: Springer, 2019, pp. 13–27.

[31] G. Ganapathy and S. Sagayaraj, ‘‘To generate the ontology from Java
source code,’’ Int. J. Adv. Comput. Sci. Appl., vol. 2, no. 2, p. 146, 2011.

[32] A. Jena. (2021). Apache Jena Fuseki. Accessed: May 9, 2021. [Online].
Available: https://jena.apache.org/documentation/fuseki2/

[33] C. Z. D. Aguiar, F. Zanetti, and V. E. S. Souza, ‘‘Source code interoperabil-
ity based on ontology,’’ in Proc. 17th Brazilian Symp. Inf. Syst., Jun. 2021,
pp. 1–8.

[34] A. S. Da Silva, R. E. Garcia, and L. C. Botega, ‘‘OWL-sharp: Source code
semantic generator,’’ inProc. 18th Iberian Conf. Inf. Syst. Technol. (CISTI),
Jun. 2023, pp. 1–6.

[35] Microsoft. (2021). Roslyn. Accessed: May 9, 2021. [Online]. Available:
https://github.com/dotnet/roslyn

[36] Microsoft. (2022). Msbuild. Accessed: May 2, 2022. [Online]. Available:
https://github.com/dotnet/msbuild

[37] Microsoft. (2022). Csharp Coding Conventions. Accessed: May 2, 2022.
[Online]. Available: https://docs.microsoft.com/pt-br/dotnet/csharp/
fundamentals/coding-style/coding-conventions#naming-conventions

[38] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[39] GloVe. (2022). Common Crawl. Accessed: May 2, 2022. [Online]. Avail-
able: https://nlp.stanford.edu/projects/glove/

[40] H. Alani, C. Brewster, and N. Shadbolt, ‘‘Ranking ontologies with aktiver-
ank,’’ in Proc. Int. Semantic Web Conf.Cham, Switzerland: Springer, 2006,
pp. 1–15.

[41] AutoMapper. (2022). Automapper. Accessed: May 2, 2022. [Online].
Available: https://github.com/AutoMapper/AutoMapper

[42] Microsoft. (2022). Efcore. Accessed: May 2, 2022. [Online]. Available:
https://github.com/dotnet/efcore

[43] Microsoft. (2022). Aspnetcore. Accessed: May 2, 2022. https://github.
com/dotnet/aspnetcore

[44] Microsoft. (2022). Mqttnet. Accessed: May 2, 2022. [Online]. Available:
https://github.com/dotnet/MQTTnet

[45] NLog. (2022). Nlog. Accessed: May 2, 2022. [Online]. Available:
https://github.com/NLog/NLog

[46] E. M. Voorhees, ‘‘The TREC question answering track,’’ Natural Lang.
Eng., vol. 7, no. 4, pp. 361–378, Dec. 2001.

[47] C. D. Manning, P. Raghavan, and H. Schütze, ‘‘Introduction to information
retrieval,’’ Natural Lang. Eng., vol. 16, no. 1, pp. 100–103, 2010.

98556 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-540-92673-3_27
http://dx.doi.org/10.1007/978-3-540-92673-3_27

A. S. D. Silva et al.: Bug Localization Model in Source Code Using Ontologies

ALISSON SOLITTO DA SILVA received the B.S.
degree in computer science and the degree in
information technology management from Eurí-
pedes de Marília University Center (UNIVEM),
in 2018 and 2019, respectively, and the M.S.
degree in computer science from the Postgraduate
Program, São Paulo State University ‘‘Júlio de
Mesquita Filho,’’ in 2022.

In 2020, he was a Professor with the Computer
Science Program and specialization courses with

UNIVEM. He is currently a Software Architect, designing solutions for
companies in the financial sector and leading development teams to adhere
to best software development practices. His research interests include soft-
ware architecture, design patterns, frameworks, software maintenance, and
software engineering.

ROGÉRIO EDUARDO GARCIA received the B.S.
degree in computer science and theM.S. and Ph.D.
degrees in computer science and computational
mathematics from the Institute of Mathematical
and Computing Sciences, University of São Paulo
(ICMC-USP), São Carlos Campus, São Paulo, in
1998 and 2006.

From 2012 to 2013, he was visiting The Uni-
versity of Alabama. He is currently an Associate
Professor with the Department of Mathematical

and Computer Science, Faculty of Science and Technology, São Paulo
State University, Presidente Prudente Campus, where he was initiated as
an Assistant Professor, in 2006. He is the author of 17 chapters of books
and more than 100 articles. His research interests include program under-
standing, change impact analyses, software visualization, maintenance, and
engineering.

LEONARDO CASTRO BOTEGA received the
Ph.D. degree in computer science from the Com-
puter Department, Federal University of São Car-
los (UFSCar), São Carlos Campus, São Paulo,
Brazil, in 2016. From 2017 to 2018, he was a Post-
doctoral Fellow with the University of São Paulo
(ICMC-USP), São Carlos Campus, São Paulo.
He has been a Professor of computer science and
information science, since 2008. He is currently
an Advisor and a Researcher of the Graduate

Programs on Computer Science and Information Sciences, São Paulo
State University. His research interests include critical data science, seman-
tics, and data-driven decision-making. He is the author of more than
100 articles on these subjects.

VOLUME 11, 2023 98557

