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ABSTRACT As wind power is volatile and intermittent, an increase in the proportion of wind power
generation may affect the security of power systems. Accurate wind power generation and ramp forecasting
are crucial for reducing operating costs and maintaining the power balance. This study proposed an enhanced
performance evaluation metric for wind power ramp event forecasting, and analyzed the forecasting results
using this metric. Experimental ramp event forecasting was conducted on wind farms located in Jeju,
South Korea by employing an indirect forecasting method for wind power output forecasting. Considering
the evaluation of forecasting performance, the accuracy (ACC) was observed to be 0.86 for Case #1 and
0.90 for Case #2. The results highlight the advantages of the proposed metric over the widely used confusion
matrix for performance evaluation, which has more detailed and visually based analytical capabilities. The
simulation demonstrates that the proposed approach is poised to make a noteworthy contribution in the
advancement of tool development, enabling real-time curtailment forecasting and facilitating well-informed
decision-making in high wind power scenarios.

INDEX TERMS Performance evaluationmetric, power system security, ramp event forecasting, wind power.

I. INTRODUCTION
Owing to international cooperation to realize carbon neutral-
ity, the energy transition from fossil fuels to renewable energy
is accelerating, and the penetration of renewable sources into
the energy mix is gradually increasing. To meet the climate
target, the International Renewable Energy Agency (IRENA)
suggested that the total share of renewable energy should be
increased to approximately two-thirds of the total primary
energy supply by 2050, and that 60% or more of the total final
energy consumption should be covered by renewable energy
by each country [1]. According to the 5th EnergyMaster Plan
of South Korea, the target for renewable sources based on
power generation is set at 22.2% by 2034, of which wind
and solar will account for approximately 19% [2]. As the
proportion of renewable energy with intermittency and uncer-
tainty increases, imbalances in energy supply and demand
may occur when integrating power systems, and system reli-
ability and acceptability are key issues [3]. Wind resources
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are in the spotlight in the renewable energy sector because
of their large-scale power generation capacity and high space
utilization, and various studies are being conducted on the
power forecasting of long-to short-term wind power output
to ensure the security of the power system [4].
As system instability and curtailment owing to the real-

time injection of wind power occur, forecasting research on
wind fluctuations and ramp characteristics is required [5].
The ramp rate is an indicator of fluctuations, which means
a change in wind power output per unit time with direction;
the increase and decrease in wind power output are referred
to as up ramps and down ramps, respectively.

Ramp-related forecasting studies can be classified into
direct and indirect forecasting methods [6]. Direct meth-
ods forecast ramp information directly using the historical
ramp rate or event data. Indirect methods detect ramp events
based on the results of wind power output and wind speed
forecasting.

Furthermore, similar to wind power output forecast-
ing, ramp-event forecasting uses physical, statistical, and
machine learning approaches [7]. Physical approaches are
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implemented based on weather variables such as wind speed
and direction, using physical formulas [8]. A complex fore-
casting process, including mathematical calculations to deal
with meteorological and spatial information, is inevitable;
a Numerical Weather Prediction (NWP)-based study is a
typical example.

Statistical approaches correspond to methods for identify-
ing and forecasting the statistical relationships between ramp
events, power output, and other variables [9]. A statistical
model is suitable for quantifying the relationship between
variables when there is a certain pattern, and case studies are
performed using Monte Carlo [10] and Principal Component
Analysis (PCA) [11].
Machine learning approaches imitate the neural network

activity of the brain and derive forecasts by learning past
data [12]. In these approaches, the use of ramp forecast-
ing is increasing because the relationship between the input
variables (wind power output, ramp rate, etc.) are nonlinear,
or there is no constant pattern [13]. Furthermore, because the
wind power output is derived only by learning calculations,
errors owing to multiple forecasting can be reduced [14].
Han et al. performed wind power ramp event forecasting
using a Support Vector Machine (SVM), Long and Short-
TermMemory (LSTM) [15], Optimized Swinging Door algo-
rithm (OpSDA) [16], which are typical deep learning models.

TABLE 1. Method for ramp event forecasting.

The recent literature on ramp event prediction has been
compared, analyzed, and organized, as summarized in
Table 2. Initially, the utilization of NWP was dominant in
ramp event detection studies conducted until 2015, with a
limited time series model-based approach [4]. NWP models
are developed through numerical simulations of atmospheric
dynamics and various physical processes [17]. These models
begin with initial predictions based on analysis that capture
real-time atmospheric conditions using a three-dimensional
grid. However, spanning from 2017 to 2022, there has been
noticeable shift towards machine learning based forecasting
approach. For instance, Zhang et. al. performed ramp predic-
tion by improving the short-term wind power output predic-
tion performance as part of the Wind Forecast Improvement
Project [16]. To extract the characteristics of the ramp event,
ramp prediction in multiple spatial and temporary scales was

performed using the OpSDA algorithm. Cornejo-Bueno et al.
extensively explored machine learning regression techniques
such as Support Vector Regression (SVR) and Artificial
Neural Network (ANN), and performed ramp forecasting by
applying reanalysis data of weather variables [17]. Taylor
used autoregressive logit models to implement a model that
predicts the probability of ramp event generation for multiple
thresholds [18]. Y. Fujimoto et. al enhanced the accuracy of
ramp forecasting through subsystem for wind power forecast-
ing based on NWP and Swing Door Algorithm (SDA) [8].
Han et. al. successfully identifying ramp events by train-
ing time series data with Convolutional Neural Network
(CNN) and LSTM algorithms using wind power output data
and ramp feature as input [14]. Cornejo-Bueno et.al pre-
dicted the occurrence of ramp events through a hybrid model
that combines extreme learning machine (ELM) and SVM
algorithms [19], and Y. Zhao et. al employed a statistical
approach, specifically the Bayesian network, to detect ramp
events [20]. Furthermore, Okada et. al proposed a real-time
ramp prediction model integrating an optimal NWP model
with PCA model [21].
The contemporary literature emphasizes that ramp event

prediction through deep learning models or hybrid models
is dominant. In particular, OpSDA was used frequently, the
SDA is a data compression technique that employs the par-
allelogram rule to filter samples [14]. Furthermore, there
is an optimized version of the algorithm tailored for ramp
prediction and other forecasting tasks, known asOpSDA [16].
OpSDA has gained significant popularity for its application
in predicting ramp event of wind and solar power. The evalu-
ation mechanisms of ramp event encompass confusion matrix
and ACC, CSI, and POD that can be obtained through it. The
primary parameters defining ramp events, such as duration
and threshold, vary from the literature analysis, common
benchmark designates instances where wind power fluctua-
tions surpass 10-30% of installed capacity within a 6-hour
interval.

In this study, a short-term power generation forecasting
method using an LSTM model was proposed, which has
excellent performance in forecasting time-series data with
nonlinear characteristics, such as wind power output. After
learning the LSTM model using the output data of the Jeju
wind farm as the input, the wind power forecasting value for
the period of the test data was derived. Subsequently, based
on the error indicators for the forecasted andmeasured values,
the forecasting accuracy was identified, and the performance
of the forecasting model was verified. Thereafter, ramp-event
detection is derived by calculating the ramp rate based on
the output forecasting value. The proposed method for ramp
forecasting can be used in various ways to integrate power
systems by forecasting both wind power output and ramp
information. By reducing the operating cost of the power sys-
tem owing to the intermittent characteristics of wind power
generation and taking preemptive responses against sudden
power fluctuations, a power balance can be achieved through
more efficient power system operation.
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TABLE 2. Recent literatures of ramp event forecasting.

The remainder of this study is organized as follows:
Section II describes the methodology of LSTM-based wind
power output forecasting and ramp-event forecasting, and
Section III proposes a ramp-event forecasting modeling
method and process. Section IV presents the forecasting
results of a case study of a wind farm located on Jeju Island
and evaluates the performance of the model using existing
and advanced methods. Finally, section V concludes the
study.

II. PROPOSED PERFORMANCE VALIDATION METRIC
This section presents the methodology used in this research,
encompassing the sequential explanation of LSTM as a deep
learning model, definition of ramp events, and performance
evaluation metrics for ramp event forecasting. This section
discusses the confusion matrix, a well-established perfor-
mance evaluation metric for ramp-event forecasting, and pro-
vides detailed and in-depth information on heatmap-based
metrics.

A. LSTM (LONG AND SHORT-TERM MEMORY) MODEL
In this study, forecasting was implemented by utilizing the
LSTM model among ANN models with an excellent ability
to map the nonlinearity of wind resources. LSTM model is
a type of Recurrent Neural Network (RNN) model suitable
for modeling time series data [22]. An RNN model has the
advantage of reflecting the impact of historical data in fore-
casting; however, the longer the data, the less suitable it is
for long-term forecasting because of the gradient vanishing
problem [23]. The LSTM model complements the long-term
dependencies of the RNN model, is suitable for forecasting
that considers past and present data, and demonstrates excel-
lent performance [24].

FIGURE 1. Architecture of LSTM model.

TABLE 3. Mathematical equation of LSTM model.

As shown as Figure 1, LSTM model has an architec-
ture that sequentially passes through four gates, input, for-
get, update, and output gate to learn past data and derive
output values, and Table 3 shows themathematical expression
of each gate [25]. First, the input gate determineswhether new
information can be stored and is composed of it in charge
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of the input and c̃t in charge of the update. Next, the forget
gate is used to determine the storage of past information and
is determined by ft . The update gate updates the existing
information based on the values derived from the input gate
and update gate and stores the value in ct . Finally, the output
gate determines the final output value and is composed of
ot and ht .
The variables and symbols for the equations are as follows.

xt represents the input at time t and yt depicts the output at
time t . ht−1 is a variable that stores the hidden state at time
(t − 1). W corresponds to the weighted matrix, b represents
the bias variables, and each subscript has an initial gate name.
σ means a sigmoid functions and tanh is a hyperbolic tan-
gent. ⊙ is an arithmetic symbol representing the Hadamard
product.

B. RAMP EVENT DEFINITION
The ramp rate is the ratio of the change in wind power output
during the time interval (1t) [7], [16] and is expressed by
Equation (1). The magnitude of the ramp rate indicates that
the value is obtained by taking the absolute value of the
ramp rate; the larger the magnitude, the greater the change
in the output. The ramp rate has both positive and negative
directions. A positive sign represents increasing wind power
output, whereas a negative sign refers to decreasing wind
power output.

Ramp Rate = P (t + 1t) − P(t) (1)

A ramp event is defined as a very high fluctuation over
a short time and indicates that the ramp rate is greater than
or equal to Pthreshold [26]. The definition of the ramp rate is
usually based on its magnitude, duration, and direction [16].
In this study, a ramp event is defined in Table 4 and has the
following four parameters:

• Magnitude (P(t)): Variation in wind output at time t .
• Duration (1t): Time interval considered identifying a
ramp event.

• Direction (+/−): Increase (+) or decrease (−) in wind
power output.

• Threshold (Pthreshold ): Reference value to determine a
ramp event; Puthreshold and Pdthreshold refer to the thresh-
olds of up- and down-ramp events, respectively. Here,
Pthreshold is dependent on the installed capacity of the
wind farm and is calculated as a range spanning from
10% to 30% of the total installed capacity.

TABLE 4. The definition of ramp event.

C. PERFORMANCE VALIDATION METRIC FOR RAMP
EVENT DETECTION
1) CONFUSION MATRIX
The confusion matrix defined in Table 5 was used to demon-
strate the performance of the ramp-event forecasting. A con-
fusion matrix is suitable to show the relationship between
each case or variable when an event is classified as an
independent binary case or variable [27]. Hence, this study
enables the categorization of cases involving ramp events,
making the confusion matrix a suitable metric for illustrating
the outcomes.

TABLE 5. The component of confusion matrix.

‘‘True’’ means that the prediction and the measurement
match, and ‘‘False’’ represents that the prediction and the
measurement do not match. ‘‘Positive’’ indicates when the
ramp event is forecasted to occur, and ‘‘Negative’’ refers to
when the ramp event is forecasted to not occur. By combining
T or F and P or N according to whether the forecasting
and the actual measurement match, the forecasting result is
represented as a total of four cases: TP, FN, FP, and TN [28].

• True Positives or Hits (TP)
: Ramp event and ramp event occurrences were
forecasted.

• False Negatives or Misses (FN)
: A ramp event occurred but was not forecasted.

• False Positives or False Alarms (FP)
: A ramp event did not occur but was forecasted.

• True Negative (TN)
: Ramp event did not occur, and no ramp event was
forecasted.

TABLE 6. Evaluators for ramp event forecasting.

The evaluators can be derived by combining the compo-
nents of the confusion matrix and utilized for forecasting
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performance evaluation. Typical evaluators are summarized
in Table 6. ACC represents the proportion of correct forecast-
ing points among all events [14], and CSI refers to the fraction
of true positive events and all events except true negatives [4].
POD represents the rate of properly predicted ramp events
among the total ramp events [16], and FA represents the
percentage of actual ramp events among the forecasted ramp
events [29]. Using the above values, the ramp event detection
performance can be determined and compared.

2) PROPOSED PERFORMANCE EVALUATION METRIC
The proposed performance evaluation metric was presented
to examine the forecasting performance by considering the
direction of the ramp rate and the occurrence of ramp events.
As shown in Table 7, the confusion matrix could only
distinguish dichotomously whether a ramp event occurred;
however, in this study, the category was classified into four
categories: (1) up-ramp events, (2) up-ramp rates, (3) down-
ramp rates, and (4) down-ramp event as shown in Table 7.
The ‘‘Ramp Observation - True’’ in the confusion matrix is
divided into ‘‘up ramp event’’ and ‘‘down ramp event’’, and
the ‘‘Ramp Observation - False’’ is separated into ‘‘up ramp
rate’’ and ‘‘down ramp rate’’, as a result proposed metric is
specified by direction.

TABLE 7. The category of proposed performance evaluation metric for
ramp event forecasting.

The existing evaluation method, which is a confusion
matrix, has a 2 × 2 format, whereas the proposed method
has a 4 × 4 format, which has the advantage of being able
to distinguish in detail. The existing method represents only
four areas, but the proposed metric can display 16 areas. The
detailed area classification is shown in Figure 2 by subdivid-
ing the parts marked with the same color in the proposed
method. In addition, the number of points corresponding
to each area of the proposed method is described, and the
brightness is differentiated to facilitate visual comparison.
Moreover, visual elements are maximized using color gra-
dation techniques by displaying a large number representing
dark colors and a small number representing light colors.

The schematic analysis method of the proposed perfor-
mance evaluation metric is as follows: the darker the color of

the right-down diagonal (A, F, K, and P) and the lighter the
color of the right-up diagonal (D, G, J, and N), the better the
performance of the ramp rate and ramp event. This is because
the right-down diagonal represents the point at which the
forecasting is accurate, and the right-up diagonal represents
the opposite forecasting. The proposed matrix has symmetric
characteristics based on a diagonal, which makes it easy to
check the bias for the up and down directions.

FIGURE 2. Comparison of confusion matrix and proposed metric.

III. RAMP EVENT FORECASTING MODELING
The following section describes the forecasting models of
wind power and ramp events, including details of the input
data, theoretical background of each algorithm, and overall
process of ramp event predictions.

A. INPUT DATA DESCRIPTION
This study utilizes empirical data from wind farms in Jeju,
Korea. The characteristics of the wind power output data are
as follows:

• Output period: 2021.1.1 00:00:00 – 2021.12.31 23:45:00
• Data time interval: 15 min
• Installed capacity: 60 MW
• Average output: 21.7 MW
To compare the monthly variability in the wind power

output, fluctuations were evaluated according to the standard
deviation (SD) and interquartile range (IQR), which are rep-
resentative dispersion indicators. The larger the values of the
two indicators, the greater the output fluctuation. The two
values of each indicator were averaged monthly to deter-
mine the degree of output variability. Monthly rankings were
derived independently for SD and IQR, and the final rank
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of variability was calculated by assuming that the smaller
the sum of each rank, the greater the variance. As shown in
Table 8 and Figure 3, the output dispersion was the highest in
November and December and the lowest in July.

TABLE 8. Monthly variability analysis and ranking of wind farm data.

FIGURE 3. Variability analysis of wind power output.

The training and test sets for wind power output and ramp
event forecasting are presented in Table 9. Two cases were
considered: Case #1 was a low-volatility case that predicted
wind power in July, and Case #2 was a highly volatile case
that predicted wind power in December; the time points were
the same. The period of the test data for Cases #1 and #2
was set to July and December, and the period of the training
sets for each case was set to June and November, which
immediately preceded the test data period.

B. RAMP EVENT FORECASTING PROCESS
To forecast the ramp rate and wind power generation events,
the following three steps were performed, as shown in
Figure 4.

• Step 1: Wind power output data pre-processing
• Step 2: LSTM-based short-term wind-power output
forecasting

TABLE 9. Classification of data sets by case.

FIGURE 4. Wind power output and ramp forecasting process.

• Step 3: Wind power ramp rate and ramp-event
forecasting

1) DATA PRE-PROCESSING
Step 1 includes all processes for refining input values before
entering the forecasting model, such as input data prepro-
cessing and dataset splitting. The LSTM model-based wind
power output forecasting model uses wind power data in
15-minute time interval as input data. In this model, only
the output of wind power generation was set as the input
variable, except for weather variables such as wind speed,
humidity, and temperature. After the input data were catego-
rized into training and test sets, data preprocessing, such as
missing value processing, was performed. Because the model
forecasts the difference in wind output for the time interval
rather than directly forecasting wind power output, the time
series data of the output difference are utilized for training
and test data. Subsequently, because the magnitude of the
wind power output varied depending on the season, time, and
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wind generator, the data were normalized through min-max
scaling. Min-max normalization is a method of converting all
values from 0 to 1 by corresponding the minimum value of
each element to 0 and the maximum value to 1.

Algorithm 1 Data Pre-Processing
Software & tools:R program
Input: Training and test data of Wind Power Output Data

in Jeju Island’s Wind Farm (.csv)
Define training and test data
{Ptraining(t)} = P1,P2,P3, · · · ,Pn
{Ptest (t)} = Pn+1,Pn+2,Pn+3, · · · ,Pm

Define the difference of wind power output for time
interval
{Dtraining(t)} = D1,D2,D3, · · · ,Dn
{Dtest (t)} = Dn+1,Dn+2,Dn+3, · · · ,Dm

For data scaling do
Min-max normalization

Until i = m
Output: {Dtraining(t)},{Dtest (t)}

2) WIND POWER OUTPUT FORECASTING
After the data input is completed, Step 2 follows, and
Figure 5 shows the flow chart of the overall wind power
output forecasting. During the training stage of the LSTM
model, the LSTM-based forecasting model was implemented
using the Keras library in R. An LSTM-based forecast-
ing model performs optimization by repeating a process of
sequentially passing through input, forget, update, and output
gates. During the learning process of this model, optimiza-
tion was performed using an Adaptive Moment Estimation
(Adam) optimizer. TheAdamoptimizer is a general optimiza-
tion technique, an algorithm that combines the strengths of
Momentum and RMS Prop, and is most commonly used in
deep learning with techniques that improve both the direction
and size of learning. Consequently, the difference in the wind
power output for the time interval was obtained, and the final
wind power output was calculated as the sum of the difference
in the wind power output over the time interval and the output
15 min prior.

3) RAMP EVENT FORECASTING
Finally, in Step 3, based on the forecasting results of the wind
power output, the 2-hour ahead ramp rate is calculated. Ramp
events were detected and categorized based on their defi-
nition. Error verification was performed using a confusion
matrix, and the proposed metric used a heatmap to determine
the forecasting accuracy for the size, direction, and timing of
ramp events.

IV. SIMULATION RESULTS
This section analyzes the forecasting performance based on
the results of the 2-hour ahead ramp forecasting. An LSTM-
based model was implemented to forecast the wind power

Algorithm 2Wind Power Forecasting using LSTM Model
Software & tools:R program
Input: {Ptest (t)}, Dtraining(t)},{Dtest (t)}
LSTM Modeling and Forecasting

Model Training
For building model and forecastingDfi (i = n+1) do{

Dforecasted (t)
}

= Dfn+1,D
f
n+2,D

f
n+3, · · · ,Dfm

Inverse transform of {Dforecasted (t)}
Until i = m
For forecasting wind power output (i = n+ 1) do
Pfi+1 = Pi + Dfi+1{
Pforecasted (t)

}
= Pfn+1,P

f
n+2,P

f
n+3, · · · ,Pfm

Until i = m
Calculation of forecasting error (NMAE)

installed capacity = 60 (MW)
For calculating NMAE (i = n+ 1) do
Errori =

∣∣∣Pfi+1 − Pi+1

∣∣∣ ÷ installed capacity ×

100(%)
{NMAE} = Errorn+1,Errorn+2,Errorn+3, · · · ,

Errorm
Output:
(1)

{
Pforecasted

}
: Forecasted Wind Power Output (.xlsx)

(2) {NMAE}: NMAE for LSTM Forecasting Model

FIGURE 5. Flow chart of wind power output forecasting.

using empirical data from a wind farm in Jeju, Korea.
Consequently, an indirect method for forecasting the ramp
rate and ramp events was implemented by applying LSTM
wind power forecasts. Finally, a confusion matrix and
heatmap were utilized to verify the performance of the ramp-
event detection. This section describes the results of the wind
power and ramp event forecasting.
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Algorithm 3 Ramp rate and ramp event forecasting and
performance evaluation

Software & tools:Excel, Python
Input: {Ptest (t)},

{
Pforecasted (t)

}
(.xlsx)

For i = n+ 1 do
Actual ramp rate calculation
Ri = Pi+8 − Pi
{Rmeasured (t)} = Rn+1,Rn+2,Rn+3, · · · ,Rm

Forecasted ramp rate calculation
Rfi = Pfi+8 − Pfi{
Rforecasted (t)

}
= Rfn+1,R

f
n+2,R

f
n+3, · · · ,Rfm

Performance evaluation using confusion matrix
Distinguish TP, FN, FP, TN by criteria
Count the number of points corresponding to each
category

Performance evaluation using proposed matrix tool
Distinguish 16 categories by criteria
Count the number of points corresponding to each
category

Until i = m
Tabulate confusion matrix
Visualize the proposed metric

Output:
(1) confusion matrix (format: table)
(2) proposed tool (format: heatmap)

A. WIND POWER OUTPUT FORECASTING
This section presents the wind power output forecasting
results for Step 2 in Figure 5. Figures 6 and 7 show the
forecasting results for July and December, which are the test
data of Cases #1 and #2, respectively, as listed in Table 6,
where the solid blue line is the actual measurement value, and
the dotted red line is the forecasted value.

Figures 6 and 7 show the overall wind power output vari-
ability for the entire test dataset for each scenario. First,
in July, the average output was approximately 18 MW, low
output below 30 MW was dominant, and the overall trend
was stable. Moreover, in December, the average output was
approximately 30 MW, with a trend of repeating a low output
power of 10 MW and a high output power of 50 MW. July,
with low-power variability, and December, with high-power
variability, followed the overall pattern of the measured
values.

The histogram in Figure 8 displays the distribution of abso-
lute error of two scenarios. In the Case #1 (labeled as ‘‘July’’
and depicted in red), there is a noticeable concentration of
small forecasting errors, evident in both the bar and line
graphs. On the other hand, the Case #2 (labeled as ‘‘Decem-
ber’’ and depicted in blue) shows an increasing frequency of
occurrences as the forecasting error grows, beginning at an
absolute error of approximately 2 MW. To summarize, both
scenarios exhibit a predominant concentration of absolute
errors within the 0 to 2 MW range. However, the forecasting
for the July scenario (Case #1) appears to be superior.

FIGURE 6. Wind power output forecasting in July.

FIGURE 7. Wind power output forecasting in December.

FIGURE 8. Histogram of wind power output forecasting error.

To verify the performance of the proposed model, the
normalized mean absolute error (NMAE) was used to ana-
lyze the accuracy of wind power output forecasting. NMAE
is the normalized value of the mean absolute error (MAE)
and is suitable as an error indicator for datasets of different
scales. NMAE is expressed in Equation (2) by dividing the
percentage of MAE by the installed capacity [30].

NMAE(%) =
1
N

N∑
i=1

∣∣(Pforecasted)i − (Pmeasured )i
∣∣

Installed capacity
× 100

(2)
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The explanation for the variables in the NMAE formula
is as follows: N represents the total number of periods to
be forecast, where is the number of points of the test data.
Pforecasted represents the forecasted value, Pmeasured refers to
the measured value, and the installed capacity is the installed
wind power capacity of 60 MW.

This study forecasts the wind power output after 15 min,
and the NMAE for individual forecasting in each case is sum-
marized in Table 10. The forecast for July was 2.74% and that
for December was 2.98%. For additional forecasting accu-
racy analysis, the number of points at which the difference
between the actual and forecasted values exceeded 6 MW,
which is 10% of the installed capacity of the wind farm,
was investigated. In July (Case #1), there were 95 points
with a difference between the forecasted andmeasured values
of 6 MW or more for a total of 2,976 predicted points, and
96.81% of the total data showed an error of less than 6 MW.
In December (Case #2), 123 points had absolute errors of
over 6 MW, for a total of 2,976 points. Therefore, for all
the points in the test data, 95.87% exhibited an error of less
than 6 MW. The experimental results clearly indicate that
in Case #1, the NMAE was lower and the proportion of
the absolute error rate lower than 6 MW for wind power
forecasting was higher than that in Case #2. These findings
provide strong evidence that the predictions perform better
in July.

TABLE 10. 15-minute ahead wind power forecasting.

B. RAMP RATE AND RAMP EVENT FORECASTING
In this section, a ramp event is detected and compared with
a measured event using the forecasted wind power output
verified in the previous section. Based on the wind power
output value of 15 minutes, a 2-hour ahead ramp rate was
calculated, and a ramp event was detected.

According to previous studies, the duration of ramp event is
30 minutes to 6 hours, and the range of thresholds is 10-30%
in Table 2. In Table 4, the duration was set to 2 h, and the
threshold was set to 6 MW, which is 10% of the installed
capacity of a wind farm located on Jeju Island.

The results of ramp event forecasting after 2 h for each
case are shown in the confusion matrices in Tables 11 and 12.
In both scenarios, the total forecasting point was 2,968. For
December, the numbers of TP and TN were higher, totaling
2,657, compared to July’s counts of 2,549. In other words,
the proposed method accurately forecasts whether a ramp
event will occur in December. Larger values of ACC, CSI,

TABLE 11. Confusion matrix of 2-hour ahead ramp forecasting in July.

TABLE 12. Confusion matrix of 2-hour ahead ramp forecasting in
December.

TABLE 13. Evaluators of ramp forecasting of each case.

POD, and FA can be judged to be better; therefore, even
according to the evaluator’s calculation results summarized
in Table 13, the value of the evaluator in Case #2 is larger
than Case #1, so the ramp event forecasting for December
seems to be better.

Figures 9 and 10 show visualizations of the actual measure-
ments and forecasting values of the ramp rate for all points,
excluding true positives and true negatives in the confusion
matrix. In Figures 9 and 10, (a) shows the wind power output,
and (b) and (c) show that the forecasting results for the
ramp rate are positive and negative, respectively. In graphs
(b) and (c), green circles represent the measured ramp rate,
red marks represent the forecasted ramp rate, and the blue
dotted line indicates the threshold of the ramp event. There
is a limitation in that it is difficult to determine whether the
forecasting was successful on the graph. This study presents
a metric to subdivide the categories in the existing confusion
matrix and quantitatively and visually show the forecasting
results effectively.

C. PROPOSED PERFORMANCE EVALUATION TOOL FOR
RAMP EVENT FORECASTING
In this study, because the time points are forecasted for July
and December, the ramp event forecasting performance can
be compared using the proposed method without scaling.
If the time points differ, the forecasting results can be com-
pared by adjusting the timescale.
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FIGURE 9. The result of 2-hour ahead ramp rate for July.

FIGURE 10. The result of 2-hour ahead ramp rate for December.

Figures 11 and 12 show the results of ramp-event fore-
casting for each scenario using the proposed method.
The proposed metric distinguishes between the detection of
up-ramp and down-ramp events among true positives, which
indicates a forecasting ramp event. Figure 11 shows that
the forecasting result of July corresponding to Case #1 has
a lower frequency of detection of up-ramp and down-ramp
events than that of December, corresponding to Case #2.
Among the true negatives, July had many points at which
a ramp event did not occur, but the proportion of up ramp
rate was slightly high. In addition, false negatives and
false positives were divided into four categories in each,

FIGURE 11. Proposed ramp forecasting evaluation metric for july.

FIGURE 12. Proposed ramp forecasting evaluation metric for December.

and the number in all categories was higher in July, which
means relatively bad forecasting comparing to December.
In terms of color, the color of the right-down diagonal
is dark in December, which can be judged to have a
highly accurate prediction frequency. The color of the right-
down diagonal is relatively bright in July, and it seems
that there are many aggregations in areas other than the
diagonal.

V. CONCLUSION
In this study, short-term wind power output forecasting was
conducted based on an LSTM model, and a 2-hour ahead
ramp event detection method was proposed. This study
forecasted ramp events using an indirect method and com-
pared the forecasting results for each case using a confusion
matrix and representative evaluators. In addition, the fore-
casting results were analyzed using a performance evaluation
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metric that visualized the results in color while considering
the direction of the ramp rate and ramp events as well as
the detection of ramp events. In the case study based on
empirical data of wind farm located in Jeju Island, ramp
event detection was performed in July with the lowest output
volatility and December with the highest output volatility.
Based on the wind power output forecasting, NMAE-based
forecasting error for July (Case #1) was 2.74% and for
December (Case #2) was 2.98%. In ramp event forecast-
ing, the accurate detection of ramp events out of a total of
2,968 data points revealed 2,549 for Case #1 and 2,657 for
December Case #2. Notably, in the ramp event forecasting
assessment for Case #2, all evaluation metrics - ACC at 0.90,
CSI at 0.66, POD at 0.81, and FA at 0.77 - surpass those
of Case #1. Contrary to the wind power forecast, Case #2
exhibited a superior forecasting accuracy in detecting ramp
events.

The proposed ramp-event forecasting is a short-term fore-
casting method that can be applied to various time scales
and thresholds and can function as a method for wind power
generation resources to be flexible in the power market, such
as real-time curtailment and ancillary service. Specifically,
the frequency of curtailment is experiencing a rapid esca-
lation attributed to the sudden up-ramp event and transmis-
sion congestion in power systems with a high proportion of
renewable energy, as observed on Jeju Island. Therefore, it is
expected that the ramp event detection approach proposed
in this paper can be useful in the preemptive response of
curtailment. Furthermore, we expand the confusion matrix,
a simple performance evaluation method, and propose a new
performance evaluator using a heatmap, which is imple-
mented to make it more granular and visually recognizable
so that it can be appropriately used to compare various
time scales or forecasting models. The proposed method
will play a pivotal role to control the output variability of
wind resources in advance and support power system oper-
ators and power generation companies in making appropriate
decisions.

In the future, we will implement an analysis comparing
the forecasting performance of NWP and OpSDA models,
both of which are renowned for ramp event forecasting. For
the case study on Jeju Island, we will proceed by train-
ing and fine-tuning these models. Subsequently, we will
assess their performance using evaluation methods such as
a confusion matrix and a heatmap based metric that we
propose. Furthermore, we will utilize into the forecast spot
prices and penalties/incentives for wind power energy in real-
time renewable trading or auction markets. Consequently,
the final goal is to improve the performance of wind fore-
casting by identifying trends or characteristics by season
and time, conducting power flow analysis, and N-1 con-
tingency analysis using PSS/E with the forecasted value as
input. The main purpose of forecasting and power system
analysis is to detect the probability of outages and blackouts
and provide insight to enable an appropriate response in
advance.
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