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ABSTRACT A Multi-Channel Stethograph System (STG system) was designed and developed as an
electronic auscultation system for recording heart, lung, and trachea sounds non-invasively through an
acoustic sensor array. The STG system consists of 16 acoustic sensors, a signal conditioning board, and
a data logger (data acquisition, wireless transmission, sound visualization). The STG system captures breath
with any adventitious sound event in 16 locations simultaneously to maximize the information of the specific
sound event (for example, detection of the origin of mother adventitious sound and extracting its features),
when compared with a single-channel stethoscope. This system can be an efficient tool to aid doctors or
physicians in analyzing the adventitious sound from respiration diseases. However, it still requires the need
for an experienced doctor or physician in the diagnosis and validation of adventitious sound. This paper
presents a computerized method with an intelligent algorithm for detecting various adventitious sounds
that are the key characteristics of cardiopulmonary diseases (CD) and assists the doctor/physician in the
continuous diagnosis of lungs, which potentially can be beneficial during the COVID-19 progression. The
proposed algorithmwas able to detect breath patterns using trachea sound; location of themother adventitious
event using lung sounds (14 channels); determine the type of adventitious sound by correlating lung sound
with trachea sound. The algorithm consists of breath pattern detection, candidate audio selection, breath
pattern extraction, and adventitious sound detection. Digital signal processing techniques such as filtering,
windowing, enveloping, discrete Fourier transform, and thresholds were used for identifying and classifying
the inhalation and exhalation patterns in the lung sound in an independent (automatic) and intelligent way.
The auscultation diagnosis algorithm can identify and distinguish discontinuous adventitious sounds which
include wheeze, rhonchi, wheeze & rhonchi, and squawk, with an accuracy of 96.9%, 95.3%, 90%, and
100%. The algorithm was able to fully utilize the advantage of the multichannel system to simultaneously
detect breath patterns, types of adventitious sound, and the location of the mother adventitious event that
other algorithms cannot achieve. It has the potential to aid doctors/physicians in the early detection and
monitoring of any lung disorders by providing objective evidence on adventitious sounds.

INDEX TERMS Stethograph systems, algorithm, coronavirus, acoustic sensors, intelligent, adventitious
sounds, lung disorders, wheeze, rhonchi, squawk.
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I. INTRODUCTION
During the COVID-19 pandemic, the Global Initiative for
Chronic Obstructive Pulmonary Disease (COPD) recognizes
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the necessity of developing innovative and remote approaches
to interact with COPD patients [1], [2], [3]. COVID-19
involves a series of acute and atypical respiratory issues that
particularly impact adults and elderly people with under-
lying medical conditions. Previous studies have reported
that COVID-19, unlike other respiratory illnesses, can cause
lasting lung damage with severe illness, and a lack of tar-
geted therapy remains a challenge. The virus can induce
lung complications (cardiopulmonary diseases (CD)) such as
pneumonia, COPD, and asthma, identifiable by listening to
abnormal lung sounds such as wheeze, rhonchi, squawks, and
crackles, resulting from difficulty in breathing and abnormal
heart rhythms [3]. These CDs pose significant health and
financial burdens in the United States each year [4]. Further,
the number of CD patients has increased due to COVID-19.
As per the data from 555 US medical centers, a total of
192,550 adults have been hospitalized with COVID-19, and
55,593 of them (28.9%) required ICU admission. In addition,
people with pre-existing respiratory disease had a modestly
increased risk of severe COVID-19. As a result, detecting
and monitoring respiratory diseases have become extremely
important, especially for those infected with COVID-19 who
are more susceptible to developing respiratory illnesses.

Respiration monitoring has been a critical process in iden-
tifying adventitious sounds and diagnosing lung disorders.
Continuous respiration monitoring is crucial to understand
the lung condition during COVID-19 progression or the
severity of the CDs for patients either in ICU or regular
wards or at-home treatment. However, currently, there is no
equipment available for continuous monitoring of lung con-
dition while providing the details of adventitious sound such
as its location, amplitude, and frequency. Stethoscopes have
been used mostly by physicians to obtain adventitious sound
information and aid in the diagnosis of pulmonary disorders,
since the invention of the stethoscope by Laennec in 1816 [5],
[6], [7]. The audio obtained from the stethoscopes plays a
significant role in providing vital information about the heart,
lungs, and trachea (HLT) conditions [8], [9], [10], [11]. But
the acoustic information obtained from stethoscopes is often
not reliable due to weak lung sound combined with environ-
mental noise. Moreover, it has been a difficult task to extract
abnormal or disease-identifying features from the acoustic
information to diagnose CDs [12]. In recent years, electronic
auscultation recording of HLT audio and the analysis of
HLT audio after transferring the acquired signal to a com-
puter has been considered to be a reliable, non-invasive, and
inexpensive technique to diagnose lung condition [13], [14].
Even though an electronic auscultation recording system is
an efficient tool to aid doctors or physicians in analyzing
the HLT sound, it does not have the capability to automat-
ically identify the characteristic features of the adventitious
sounds and still requires the need for an experienced doctor
or physician in the diagnosis and validation of adventitious
sound in the lung. Some of the sophisticated hospitals are
equipped with advanced equipment such as computerized

tomography (CT) scans and X-ray machines to diagnose lung
conditions. However, these equipment exposes the patient
to very high dosages of radiation and increases the risk of
developing cancer [15]. Moreover, due to the COVID-19
pandemic, there has been a significant gap in the availabil-
ity of these devices, doctors/physicians, and the number of
patients who require them [5], [6], [16], [17]. To cover this
gap/disparity, there is a need to develop and employ more
accessible at-home devices using novel technology capable of
monitoring the lung conditionwhich can be extremely helpful
for patients.

Many research works in the literature have used a single
digital stethoscope with algorithms in performing ausculta-
tion and interpretation of lung sounds to diagnose CDs. The
techniques used in the development of algorithms generally
consist of time-domain analysis, frequency-domain analysis,
and combined time-frequency analysis. These works often
use database repositories consisting of processed and fil-
tered audio sets with a high signal-to-noise ratio and strong
adventitious sounds [12], [18], [19], [20], [21], [22], [23],
[24], [25], [26]. However, these audio sets do not reflect
the actual lung audio and the reported algorithms are not
feasible for processing raw lung audio in a real-time envi-
ronment. Also, these algorithms have limited functionality,
for example, detection of only one type of adventitious sound
capability (simultaneous multiple adventitious sound detec-
tion study remains unexplored). They also do not provide any
information on the timing of each breathing phase (inhalation
and exhalation) which is crucial in the identification of the
timing of adventitious sounds. To address this, algorithms
developed using signal processing methods were proposed
in the past years to identify breathing phases directly from
lung sound recordings [27]. However, these methods were
heavily dependent on the clarity and amplitude of the lung
sound, but they are not applicable to subjects with respiratory
diseases in a real-time environment, since the breathing pat-
terns are known to change during the presence of respiratory
diseases [12]. In addition, some researchers developed four
and eight-channel digital stethoscope systems, however, these
systems process the entire data from all the stethoscopes
instead of extracting the required information and discarding
the unnecessary data [28], [29], [30], [31]. This increases the
processing time and complexity of the algorithm resulting in
low efficiency and less accuracy. In addition, the probability
of recording/capturing the strongest and most appropriately
located adventitious sound (later referred to as the mother
sensor) is less with these systems.

In this work, a MATLAB-based auscultation diagnosis
algorithm was developed to analyze and identify the adven-
titious sounds from the recorded heart, lung, and trachea
(HLT) audios (16 audios acquired by 16 acoustic sensors) of
a Multi-Channel Stethograph System. The algorithm consists
of breath pattern detection, candidate audio selection, breath
pattern extraction, and adventitious sound detection which
is novel when compared to other reported works [28], [29],
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[30], [31]. It was developed using digital signal processing
techniques such as filtering, windowing, enveloping, and
discrete Fourier transform (DFT), and thresholds were used
for identifying and classifying the inhalation and exhalation
patterns in the lung sound. The algorithm has the capa-
bility to provide information on the location/origin of the
mother adventitious event and, can identify and distinguish
discontinuous adventitious sounds which include wheeze,
rhonchi, wheeze & rhonchi, and squawk, simultaneously.
This algorithm acquires the adventitious sound information
more objectively in an independent (automatic) and intelli-
gent way and process it with greater accuracy, and provides
the status of the lung condition and assists the doctor/
physician in the treatment.

II. METHODS
A. CLASSIFICATION OF ADVENTITIOUS SOUNDS
Respiratory sounds can be divided into normal and adven-
titious/abnormal categories according to their acoustic
properties. Normal sounds include the sounds generated
by breathing in a healthy and properly functioning lungs,
airways and trachea. Adventitious sounds are the noise gen-
erated during the respiration of the improper functioning
lungs, and it is divided into continuous and discontinuous
adventitious sounds depending on their duration and mech-
anism [4], [5], [6], [7], [8]. Continuous adventitious sounds
have a time duration >50 ms and are further subdivided
into wheeze, rhonchi, and squawk, the common adventitious
sounds found in multiple CDs. Discontinuous adventitious
sounds have a time duration<50ms and are divided into fine,
medium, and coarse crackles. CDs can be identified by mon-
itoring continuous adventitious sounds from the HLT of the
patients [32]. The scope of this paper focuses on developing
and implementing an algorithm to detect continuous adven-
titious sounds since algorithms for detecting discontinuous
adventitious sounds have been well-developed by previous
researchers [16], [33], [34], [35], [36], [37], [38], [39], [40].
In addition, continuous adventitious sounds require both time
and frequency domains for recognizing the patterns (which is
difficult and complex), whereas discontinuous adventitious
sounds require only time domain analysis.

Wheeze is a high-pitched coarse sound that is often gen-
erated when the air passes through inflamed lung airways
during respiration. Wheeze has a time duration of >250 ms
and a frequency above 300 Hz [33], [34], [35], [36]. The most
common cause of recurrent wheezing is asthma and COPD
(mostly in exhalation) [33], [34]. Figure 1(a) shows the
example of the spectrogram of the lung sound with wheeze.
Rhonchi is a low-pitched rattling sound generated due to
obstruction or secretions in the narrower airways of the lung.
Rhonchi also has a time duration >250 ms and a frequency
between 150 to 250 Hz [16], [36], [37], [38], [39]. Typically,
it appears in patients with asthma, COPD, bronchiectasis,
pneumonia, chronic bronchitis, and cystic fibrosis [37], [38].
Figure 1(b) shows the example of the spectrogram of the lung

sound with rhonchi. Squawk is a short sound which is other-
wise called as a short inspiratory wheeze generated when the
air passes through fluid in the air sacs [40]. Squawk has a
pattern with a time duration of 50 to 100 ms and a frequency
between 200 to 800 Hz and is commonly associated with
pneumonia and pulmonary fibrosis disorder (Fig. 1(c)) [40].

B. MULTI-CHANNEL STETHOGRAPH SYSTEM
A Multi-Channel Stethograph System (STG system) was
designed and developed as an electronic auscultation system
for recording heart, lung, and trachea (HLT) sounds non-
invasively through a set of 16 acoustic sensors as mentioned
in our previous work (Fig. 2(a)) [41], [42]. Among the
16 acoustic sensors, 14 were incorporated into a foam pad
to cover the maximum size of the lung (to capture the origin
adventitious sound accurately), and two were placed directly
on the heart and trachea, to acquire sounds simultaneously
from the lungs, heart, and trachea. The sounds acquired
from the 16 acoustic sensors are sent to a custom-designed
16-channel signal conditioning PCB for filtering and ampli-
fication of the 16 acoustic signals. A National Instruments
(NI) 9205 data acquisition device (DAQ) consists of an A/D
converter as well as a digital multiplexer. The DAQ was used
to convert the analog acoustic signals to digital and acquire
and transmit the data wirelessly from the 16-channel PCB to a
Wi-Fi-enabled device such as a PC/tablet. A LabVIEW-based
software application was developed on the Wi-Fi-enabled
PC/tablet to record the digital sound signal from the DAQ.

The foam pad with 14 acoustic sensors will be placed
behind the back of patients and 2 acoustic sensors will be
placed directly on the heart and trachea to acquire sounds
simultaneously from the heart and trachea. The HLT sounds
of a patient will be recorded for a time duration of 20 seconds
and the processed signals (from 16 acoustic sensors) will
be saved as an audio set using the LabVIEW program on a
Wi-Fi-enabled device. Therefore, one audio set consists of
16 HLT audios where each audio corresponds to 20 seconds
of sound data with a sampling rate of 8000.

C. AUSCULTATION DIAGNOSIS ALGORITHM
For algorithm development, testing, and validation, a total of
440 audio sets of HLT sounds were recorded from verified
patients by Stethographics Inc (Note: each audio set includes
16 audios (14 audio for lung sound, 1 audio for heart sound
and 1 audio for trachea sound).

The methodology/workflow for the detection of adventi-
tious sounds that are critical in diagnosing CCDs is shown
in Fig. 2(b). The algorithm detects and analyzes continu-
ous adventitious sounds that include wheeze, rhonchi, and
squawk in the lungs usingMATLAB. The proposed algorithm
consists of 4 stages. The first stage is identifying the location
of inhalation and exhalation from trachea audio based on the
thresholds and criteria set in the time domain. The next stage
is the candidate audio selection (determining the audio with
the highest amplitude calculated based on the RMS value
from 14 lung audios) among the 14 lung audios. In the third
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FIGURE 1. Spectrograms showing different adventitious sounds: (a) wheeze, (b) rhonchi and, (c) squawk.

FIGURE 2. (a) Multi-Channel Stethograph System, (b) algorithm procedure.

stage, extract the inhalation and exhalation data from the
candidate audio (for the data processing in the next stage)
based on the timing of the inhalation and exhalation in tra-
chea audio and disregard the rest of the data in the lung
audio for relatively faster and accurate processing of data
when compared to processing of complete lung audio. The
last stage is the data processing of lung audio for identify-
ing/detecting the continuous adventitious sounds. The major
technique employed for the analysis of the lung sound is
based on digital signal processing techniques including finite
impulse response (FIR) filter, common filter, DFT, hamming
window, rectangular window, threshold-crossing, and peak
detection. Also, the other techniques that were used in detect-
ing adventitious sounds include linear systems, state-space,
multivariate statistics, estimation theory, and nearest neigh-
bor. This methodology employs several of these techniques to
detect wheeze, rhonchi, and squawk from the extracted lung
audio.

III. RESULTS
A. INHALATION AND EXHALATION DETECTION (STAGE 1)
Typically, adventitious sound events only occur during the
inhalation and exhalation events of the lung [17], [37]. Thus,
the sound data from the events of inhalation and exhalation

is very significant and must be extracted while the rest of
the data in the lung audio is discarded. This data reduction
process increases the speed and efficiency of the algorithm
in analyzing and detecting/capturing essential adventitious
sounds. The researchers have been attempting to identify
and extract inhalation and exhalation data only from lung
sounds [28], [29], [30], [31]. However, lung sound is a
low-pitch, low-amplitude signal combined with muscle and
cardiovascular noises resulting often in a low signal-to-noise
ratio. Therefore, detection of the respiration cycle and iden-
tifying inhalation and exhalation is very challenging and
inaccurate. In contrast to lung sound, the trachea sound is
relatively clear with high amplitude (louder) and better SNR
since the adventitious sounds originate in the lungs [43].
This facilitates easy identification of inhalation and exha-
lation events using the trachea sound. Since, the recording
of lung and trachea sounds occurs simultaneously and for
the same duration, the inhalation and exhalation data of the
lung sounds can be identified and extracted based on the
timing information of the inhalation and exhalation event in
the trachea sound. The block diagram of respiration/breath
pattern detection from trachea sound is shown in Fig. 3. The
algorithm consists of pre-processing, signal transformation,
feature extraction, and classification.
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FIGURE 3. Algorithm procedure for inspiration & expiration detection.

Pre-Processing: The pre-processing of the trachea sound
data includes the filtering using a band-pass Butterworth filter
(100 - 600 Hz) applied forward on the signal segments and
then backward to allow zero time and phase delay [refer-
ence filtfilt from MATLAB] while eliminating out of band
(non-informative signal) noise.

Signal Transformation: This step aims to create a clear
trace of breath pattern to limit the influence of impulse noise
and data size. It is implemented by segmentation and enve-
lope techniques using a hamming window (Eq. 1 and 2) with
size 400 (at 8000 samples per second) and 50% overlapping,
applied to the absolute value of the trachea signal. This results
in the conversion of the signal to a smooth curve in time
waveform.

w (x) = 0.54 − 0.46 cos (2π)
x
N

, 0 ≤ x ≤ N . (1)

t (n) =
1
N

∑N−1

i=0
w (i) · |h (n± i) | (2)

where N is the length of the window, w(x) is the coefficient of
a Hamming window, h(x) is the amplitude of trachea sound
and t(n) is the amplitude of the signal after transformation.

Feature extraction and classification: Feature detectionwas
described in detail in our work [42]. In short, the smooth
curve of the trachea signal was then analyzed by using a com-
bination of threshold, zero-cross, and peak detection. With
respiration estimation, respiration sound classification, and
classification refinement, duration and location of inhalation
and exhalation can be performed.

B. CANDIDATE AUDIO SELECTION (STAGE 2)
Any adventitious sound event can be detected by at least one
of the 14 acoustic sensors located on the chest that covers
the maximum area of the lungs. The acoustic sensor close
to the origin of the adventitious sound will have the highest
signal amplitude and is called the mother adventitious sound
which provides information on the location of the infection
area/disease. The audio of the adventitious sound can also be
recorded by the other nearby acoustic sensors, however, the
amplitude of the adventitious sound reduces, depending on

the location and distance of the acoustic sensor from the ori-
gin of the adventitious sound. The adventitious sounds with
reduced amplitudes recorded by other acoustic sensors away
from the origin are called daughter adventitious sounds [44].
Figure 4(a), (b), and (c) shows the location of each acoustic
sensor placed on the body and their corresponding sound
waveforms in the time domain, respectively. A Root Mean
Square (RMS) computation is applied to the lung sounds for
calculating the average amplitude as it is a useful method
when the random noise-related input variables in the data
are negative and positive, especially for sinusoids. The signal
with the highest RMS represents the mother adventitious
audio signal. Equation 3 shows the calculation of the average
magnitude based on the signal energy (E, unit - amplitude):

E =

√√√√ 1
N

N∑
1

(x[t])2 (3)

where N is the total number of samples, x[t] is the amplitude
at time sample t. Detection of the mother adventitious/the
location of the disease can be identified using the location of
the sensor (that provided the signal with the highest RMS)
placed over the chest (Fig. 5(a)). Also, for accuracy and
efficiency purposes, instead of analyzing all the lung audios
(14 audios), the audio signal with mother adventitious has
been selected for detecting the adventitious sound event and
is termed as a ‘‘candidate audio signal’’. Only the candidate
audio signal was used for further analysis in this paper.

C. BREATH PATTERN EXTRACTION (STAGE 3)
Breath pattern extraction is a pre-processing stage for
adventitious sound detection, it detects, filters, and formats
segments of the audio signal to enhance the signal quality
and data processing efficiency. In the detection step, a linear
phase impulse response of a digital bandpass filter with cutoff
frequencies of 50 Hz and 800 Hz with zero phase was used
to allow the desired frequency components (between 50 to
800 while it filters the white noise and unwanted signals
from the audio [44], [45]. In the segment formatting step,
the breath pattern (inhalation and exhalation) is identified
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FIGURE 4. (a) Location of the acoustic sensor array, (b) Sound transmission through the lung, (c) time domain sound
waveform distribution.

FIGURE 5. (a) candidate audio signal and (b) extracted inhalation and exhalation signal.

and extracted from the candidate audio signal based on the
respiration information detected from the trachea sound. The
rest of the signal (other than the inhalation and exhalation

pattern) is eliminated to improve the accuracy and efficiency
of the system since the adventitious sounds occur only during
the inhalation and exhalation. Figure 5 shows an example of
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the inhalation and exhalation signal recognized and extracted
from the candidate audio signal.

D. WHEEZE, RHONCHI, AND SQUAWK SOUND
DETECTION (STAGE 4)
1) WHEEZE AND RHONCHI SOUND DETECTION
Wheeze and rhonchi are continuous sounds with similar time
duration (in the time domain) but different frequencies (in the
frequency domain). An algorithm (Fig. 6) is developed with
the functional characteristics of detectingwheeze and rhonchi
based on time duration and dominant frequency analysis
being simultaneously performed (creating a time-frequency
representation of the sound signal). The algorithm consists of
signal transformation, feature extraction, and classification of
adventitious sound.

a: SIGNAL TRANSFORMATION
Signal transformation involves segmentation and DFT of
extracted inhalation and exhalation signals of candidate audio
signal, to convert them into time-frequency representation,
similar to a digital channelizer [46]. A time–frequency repre-
sentation aids in the analysis of a signal represented over both
time and frequency simultaneously to describe the frequency
components of time-varying signals which can be used for the
detection of wheeze and rhonchi. Segmentation is a process
that splits high-dimensional vectors of the extracted pattern
into several low-dimensional vectors (frames) and captures
their detailed characteristics in terms of time and frequency.
This process is implemented by processing narrow time seg-
ments (50 ms width) with overlapped (50%) periods using
a Hamming window function (Fig. 7). This operation is a
digital channelizer, filtering and decimating the audio signal
into a defined number of bandpass frequency regions (DFT
bins) that are produced at a decimated rate from the original
audio.

A DFT was used to convert the segmented frames (in the
Hamming window) (Fig. 7) into frequency domain bins
(Fig. 8(a)) (discrete-time data converted to discrete frequency
data) using Eq. 4. In other words, DFT acquires the frequency
content of the segmented frame as it changes over the time
segments processed and enables visualizing the signal as a
2-D function of time and frequency.

X (m, k + 1) =

∑N−1

n=0
x(n+ m ·M + 1)e−j2knπ/N (4)

where x(n) is the segmented frame and X(m,k) is the
converted signal (time segmented frequency domain), k is
representing the frequency domain ordinal, n is the time
domain ordinal, N is the length of the window (Fig. 8(a)), and
M is the time sample offset of each segment. The converted
signal (time-frequency domain) provides useful information
such as frequency, time length, and strength of a continuous
abnormal sound.

b: FEATURE EXTRACTION
The feature extraction includes frequency band selection
and peak detection to extract potential information or key

characteristics of the wheeze/rhonchi sound in each inhala-
tion/exhalation signal. In the frequency waveform of one
segmented frame (Fig. 8(b)), the frequency axis is split into
3 frequency bands, 50 - 150 Hz (Band I), 150 - 250 Hz
(Band II), and 300 – 600 Hz (Band III). As specified in
the literature, the dominant frequency of rhonchi falls in the
150 - 250 Hz frequency band, wheeze in the 300 – 600 Hz
band, and normal breath (considered as reference) in the
50 – 150 Hz band [43]. Therefore, different magnitude cri-
teria (wheeze and rhonchi) can be defined to detect the peaks
in the predefined three frequency bands of the waveform.

Peak detection is a method in digital signal processing to
detect the dominant frequency of the signal in the segmented
frame. When the peak (highest amplitude) is identified (Pref-
erence (Band I), Prhonchi (Band II) and Pwheeze (Band III)),
its dominant frequency is marked as ‘‘∗’’ (Fig.8) and this
procedure is repeated for each segmented frame to obtain the
peaks of all the frames.

c: CLASSIFICATION OF THE DETECTED PEAKS AS WHEEZE
AND RHONCHI
A set of criteria is applied to examine the detected peaks
in mainly 5 Steps, for detecting the wheeze and rhonchi
characteristics. These main criteria include:

• Local maxima: Obtain the amplitude of Preference,
Prhonchi, and Pwheeze.

• Peak coexistence: The amplitude of each of the Pwheeze
and Prhonchi should be greater than the amplitude of
Preference and if not, discard the peak that is lower than
the Preference. If both the Pwheeze and Prhonchi are
greater than the Preference, then the peak with a smaller
magnitude (between the Pwheeze and Prhonchi) should
be greater than half of the other (largest) peak, otherwise
discard the smaller magnitude peak.

• Grouping: Peaks from all the segmented frames in
the same frequency band are considered to be part of
the same wheeze/rhonchi if the frequency difference
between the peaks that belong to subsequent frames is
no more than 50 Hz.

• Reforming: Calculate the average frequency of the peaks
in one group for wheeze/rhonchi identification. The
peaks group in Band II is considered a potential rhonchi
and the peaks group in Band II is considered a potential
wheeze.

• Time Continuity: The total time duration of each peak
group should be greater than 250ms. If the time duration
of each peaks group is greater than 250 ms in Band II,
the person is confirmed with rhonchi and if it is in
Band III, the person is confirmed with wheeze.

These criteria are repeated for each inhalation/exhalation
signal. Analyzed results from all of inhalation and exha-
lation signals will be recombined sequentially to reform
the 20s sound signal in the time-frequency representation.
An example of a signal containing a wheeze is shown in
Fig. 8(d). In Band II, the group gradually formed by peaks
with a duration greater than 250 ms were wheeze. Similarly,
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FIGURE 6. Algorithm for Wheeze/Rhonchi detection.

FIGURE 7. Waveform segmentation.

Fig. 8(e) shows the example of a signal containing rhonchi,
where the peaks group duration in Band I was observed as
greater than 250 ms.

2) SQUAWK SOUND DETECTION
Squawk is defined as a short continuous adventitious sound
which is also called as a short inspiratory wheeze. Only
inhalation is required for the detection of a wheeze since it
appears only during inhalation (hence, called as short inspi-
ratory wheeze). The detection algorithm for squawk follows
the algorithm of wheeze and rhonchi detection. Since the
duration of the squawk is very short (50 ms to 100 ms),
a relatively higher resolution is required in the segmentation
stage. Each of segment frame was further split into 5 sub-
frames using a narrower hamming window with a 10 ms
duration. After feature extraction and classification, peak
groups with duration from 50 – 100 ms and frequency band
from 200 - 800 Hz are considered as squawks. Figure 8(f)
shows the pattern of squawk in the time-frequency domain of
lung sound (since the time duration is 70 ms and frequency
is 280 Hz).

IV. DISCUSSION
The developed algorithm was implemented using MATLAB
on a Microsoft® Surface laptop for evaluating its per-
formance to detect wheeze, rhonchi, and squawk events.

A total of 440 verified audio datasets were utilized. These
datasets were recorded by Stethographics, Inc. from patients
with pneumonia, COPD, and asthma at Faulkner Hospital,
Boston, using the stethograph prototype system. Among the
440 datasets, 220 sets contain wheeze events, 130 sets have
rhonchi events, 20 sets have both rhonchi and wheeze events
and 30 sets have squawk events. The remaining 40 sets
have normal breath sounds without any adventitious sound
events. To build the algorithm, 20 datasets of wheeze, 20 sets
of rhonchi, and 10 sets of squawks were selected from
the 440 datasets. For testing the developed algorithm, all
440 datasets were used for evaluation. The algorithm devel-
oped to detect various adventitious sounds was characterized
in terms of sensitivity (SE), specificity (SP), and accuracy
(ACC) using Eq.5 to 7, respectively [47].

SE(%) =
TP

TP+ FN
× 100 (5)

SP(%) =
TN

TN + FP
× 100 (6)

ACC(%) =
TP+ TN

TP+ TN + FP+ FN
× 100 (7)

where TN, TP, FN, and FP indicate the true negative, true
positive, false negative, and false positive values, respec-
tively. TP indicates if a specific adventitious sound event was
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FIGURE 8. (a) Frequency waveform of one segmented frame obtained using DFT, (b) distribution of frequency bands in
frequency waveform, (c) peak group in time-frequency representation of one respiration cycle (23 segmented frames), and
time-frequency representation of the characteristic audio signal showing the (d) Rhonchi and (e) Wheeze (f) squawk.

correctly detected. FP denotes if a normal respiratory sound
event was incorrectly detected as a specific adventitious
sound event. TN provides information on whether a normal
respiratory sound event was correctly detected. FN denotes if
a specific adventitious sound event was incorrectly detected
as a normal respiratory sound event. In simple terms, SE rep-
resents ‘‘the ability of a test to correctly identify patients with
a disease’’, SP provides the information on ‘‘the ability of
a test to correctly identify people without the disease’’ and
ACC represents ‘‘the ability to differentiate the patients with
and without disease correctly’’ [48].

All 440 audio datasets utilized in this study were verified
samples obtained from the Faulkner Hospital, Boston. The
patient lung conditions and infection locations were col-
lected based on the patient’s diagnosis history. The presence
of adventitious sound events was verified by the medical
professionals in the hospital through auditory and visual
examination of the sounds. Then, a datasheet with com-
prehensive information about each audio dataset, including
the patient’s lung condition and the presence of wheeze,
rhonchi, and squawk, was provided by Stethographic, Inc.
This datasheet served as the ground truth/gold standard to
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TABLE 1. Test results obtained using developed algorithm.

TABLE 2. Comparison of the current system with published literature in terms of functionality.

evaluate the developed algorithm’s accuracy in detecting the
adventitious sounds present in the datasets.

Table 1 shows SE, SP, and ACC results for wheeze,
rhonchi, wheeze & rhonchi, and squawk to evaluate the
robustness of the developed algorithm in detecting the
adventitious sound events. The performance of the wheeze
detection has a SE of 96.3%, SP of 100%, and an accuracy
of 96.9%, since eight samples were not correctly detected
out of 220 samples. The algorithm was not able to detect
the wheeze from the eight samples since the amplitude of
the wheeze was too weak (in other words, the wheeze has
low energy (dB) with dominant breath sound in the frequency
domain). The performance of the rhonchi detection has a SE
of 95.3% and ACC of 95.3%. Six samples were not correctly

detected out of 130 samples due to weak rhonchi sounds
compared to the breath sounds in the frequency domain.
An SP of 95%was calculated since two samples out of 40 sets
of normal breath sound (no adventitious sound events) were
detected with rhonchi due to the dominant frequency of the
breath sound observed at 150 to 250 Hz. The performance of
Wheeze & Rhonchi detection has an accuracy of 96.6% since
the amplitude of the wheeze was too weak when compared to
the rhonchi in two samples and therefore only rhonchi has
been detected. In 30 sets of HLT sounds with squawk, the
algorithm has achieved an accuracy of 100% due to the strong
energy and short duration of the squawk sound. The pre-
cise original location of the mother adventitious sounds (that
potentially linked to respiratory disease) in the patients’ left
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lung or right lung was easily determined. Out of 440 samples,
the developed algorithm successfully identified the disease’s
original location in 429 samples (left or right lung). 11 sets
were incorrect because they were insignificant, implying that
the sound amplitudes in the left and right lung were similar.
The main concern regarding the algorithm evaluation is the
limited availability of recorded audio datasets containing
multiple adventitious sounds, especially squawk events. Due
to this limitation, the number of available audios may not
be sufficient to comprehensively assess the accuracy of the
algorithm.

The amplitude and frequency of each adventitious event
in respiratory sounds which generated in the chest region
of human body are different, and the location/origin of
sounds can only be detected by simultaneously recording
the sounds at different locations of the chest by increasing
special resolution [49]. The multi-channels are very critical
to detect any potential respiratory disease manifestations at
an early stage. The proposed algorithm was able to fully
utilize the advantage of the multi-channel system to simul-
taneously detect breath patterns using trachea sound, and the
location of the mother adventitious event using lung sound
(14 channels), and determine the type of adventitious sound
by correlating the lung sounds with breath patterns from
trachea sound. The comparison of the presented algorithm
with existing algorithms in terms of functionality is shown in
Table 2. As mentioned in the introduction, there are several
reports with algorithms developed for detecting lung sounds
using 1 - 4 acoustic sensors [12], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [28], [29], [30], [31]. However, often
they cannot find the origin of the diseases or the location
of mother adventitious sounds due to the limited acous-
tic sensors. In addition, these algorithms do not have the
capability to process the audio signal processing efficiently
(lacks identifying and extracting necessary information and
eliminating/discarding unnecessary data). The advantage of
the developed system and algorithm over existing meth-
ods is the capability to detect various adventitious sounds
using 16 acoustic sensors efficiently (this provides relatively
accurate location/origin of the diseases) and intelligently
identifies, extracts and characterizes the desired sounds pat-
terns in the lung audio based on the trachea audio and detect
the different adventitious sounds effectively.

V. CONCLUSION AND FUTURE WORK
Since detection and monitoring of the respiratory diseases
is very critical in diagnosing CDs, the STG system with
intelligent algorithms was developed which has capability
to condition and transmit HLT sounds simultaneously for
detecting various adventitious sounds which are the key char-
acteristics of various CDs [51]. Also, it is envisioned to
improve the quality of health care and clinical productivity
through faster testing and analysis of HLT sounds, particu-
larly when X-Rays or CT scans are to be avoided. In addition,
this system can facilitate at-home diagnosis of various CCDs
during the coronavirus progression and remote consultation.

The developed algorithm is comprehensive, intelligent, and
avoids unnecessary complex classification techniques and
models. The algorithm uses the frequency and duration of
adventitious sounds as the critical parameters to set the
required thresholds for detecting various adventitious sounds.
It detects adventitious sounds with a sensitivity of >90%
and a specificity of >95%. This combination of acoustic
sensor system and intelligent algorithm can facilitate easy
and continuous diagnosis of any lung disorders, which is
crucial during the COVID pandemic. In this study, 440 ver-
ified audio data sets were utilized to preliminarily evaluate
the algorithm and assess its accuracy to detect the adven-
titious sounds. The robustness of our methodology will be
improved by collecting more verified datasets from different
patients and validating them using the developed algorithm.
Future research is focused on obtaining US Food and Drug
Administration (FDA) clearance and conducting very large-
scale clinical tests (to improve the algorithm, if necessary;
and obtain precise location of themother adventitious sounds)
on patients. In addition, the algorithm will be tested prospec-
tively in a real-life setting to assess both its accuracy and
its usability by Personal healthcare workers (HCWs). The
algorithm will be updated and refined based on new datasets.
This enables potential applications in resource-limited set-
tings in the developing world to assist HCWs in the early
diagnosis of CDs.).
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