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ABSTRACT Numerous abnormal transactions have been exposed as a result of targeted attacks on
Ethereum, such as the Ethereum Decentralized Autonomous Organization attack. Exploiting vulnerabilities
in smart contracts, malicious users can pursue their own illicit objectives through abnormal transactions.
Consequently, identifying these malevolent users, implicated in fraudulent activities and their attribu-
tion, becomes exceedingly complex. Cryptocurrency transactions used for malicious purposes, employing
pseudo-anonymous accounts to send and receive ransom payments and accumulating funds under various
identities, further highlight the need to control and detect these abnormal transactions for maintaining
a high level of security within the Ethereum network. Although existing Intrusion Detection Systems
(IDSs) help mitigate abnormal transaction occurrences, their performance necessitates improvement.
To address this issue, this study presents a novel approach, named Abnormal Transactions Detection Using a
Semi-Supervised Generative Adversarial Network (ATD-SGAN), which efficiently detects abnormal attacks
within the Ethereum network. ATD-SGAN leverages a semi-supervised generative adversarial network for
this purpose. The results demonstrate that ATD-SGAN significantly enhances the performance of state-of-
the-art IDSs. It achieves an increase in detection accuracy from 3.78% to 11.05% and reduces the false alarm
rate from 42.29% to 0.15%.Moreover, ATD-SGAN notably improves the F1-measure, ranging from 10.39%
to 3.79%, compared to the current IDSs.

INDEX TERMS Abnormal transactions, ethereum, feature selection, intrusion detection system, network
security.

I. INTRODUCTION
Illicit activities, including money laundering, phishing, and
fraud, have cast a shadow over the advancements made
in cryptocurrencies and the accompanying advantages they
offer, as highlighted in a study on detecting such activities
on the blockchain network [1]. Due to the substantial volume
of sensitive data they handle, these technologies are vulner-
able to a range of malicious actions, attacks, and security
threats that pose risks to the availability and integrity of
information and services. Unlawful behaviors have had a
substantial impact on financial systems like Ethereum, intro-
ducing unprecedented challenges. The pseudonymous nature
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of blockchain networks allows criminals to conceal their true
identities, making it an attractive feature for carrying out
abnormal or malicious activities.

Furthermore, the increasing reliance on the Ethereum
network for various aspects of our lives, including cryp-
tocurrencies and decentralized apps (DApps), has resulted
in a surge in Ethereum transactions. However, this has also
captured the attention of attackers who exploit vulnerabilities
in Ethereum contracts, transactions, and the EthereumVirtual
Machine (EVM) to devise a range of attack methods aimed at
stealing Ethereum or disrupting the Ethereummarket [2]. It is
important to note that Ethereum, which is built on blockchain
technology, comprises two types of transactions. The first
type involves external transactions used for cryptocurrency
exchanges, while the second type entails internal transactions
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executed by smart contracts or DApps. Internal transactions
require gas to execute, and this gas is acquired through exter-
nal transactions using the Ether cryptocurrency [2], [3].

Although blockchain networks are secure, they are exposed
to security vulnerabilities. Consequently, intruders have
emerged in Ethereum networks and made thefts of millions
of Ethers. For instance, a Decentralized Autonomous Orga-
nization (DAO) attack occurred in 2016 and over $50M
was stolen [4], [5]. In addition, $13M of Ether was stolen
by a parity multi-sig wallet attack in July 2017 and a new
version from this attack stole $155M of Ether in November
2017 [6]. Further, in 2018 integer flow attack stole $2.3 M of
Ether [7]. While $48.7 M of Ether was stolen by an unknown
address account in South Korea through a cryptocurrency
exchange [8], and $48.7 M of Ether was stolen by a 51%
attack in 2020 [9]. Besides that, several attacks attempted to
steal cryptocurrencies from the Ethereum network or other
malicious actions. All the above-mentioned attacks generate
a huge number of abnormal transactions, therefore; detection
of these abnormal transactions led to detecting the attacks
that target the Ethereum network. On the other hand, the
conventional IDS are unable to detect abnormal transactions
because the Ethereum network has a new complex environ-
ment and infrastructure. Therefore, it is essential to propose
an IDS approach mainly to detect abnormal transactions in
the Ethereum network, the security, detection, and protection
of the various communication infrastructures using Intrusion
Detection Systems (IDSs) are of critical importance.

To this end, IDS is a security tool that monitors network
traffic for signs of cyber-attacks or malicious activity. It can
be used to detect and prevent attacks on Ethereum networks,
as well as to identify and alert on suspicious activity. There
are several types of IDS that can be used for Ethereum,
including network-based, host-based, and wireless IDS. The
importance of an IDS in Ethereum lies in its ability to pro-
vide an additional layer of security to protect against attacks
and malicious activity. By continuously monitoring network
traffic and alerting on suspicious activity, an IDS can help
to identify and prevent potential threats before they can
cause harm [10]. Generative Adversarial Networks (GANs)
comprise a pair of neural networks, namely the generator
and the discriminator, which collaborate in the identification
and classification of network data. The generator generates
synthetic data to train the discriminator, whose role is to
discern between real and synthetic data. As the generator
and discriminator undergo training, the generator becomes
proficient in generating lifelike synthetic data, while the dis-
criminator becomes adept at distinguishing between real and
synthetic data. GANs can enhance the precision of an IDS by
augmenting the volume of available training data and aiding
the IDS in generalization, enabling the detection of novel
attack types [11], [12].

However, there is still a need to improve the performance
of the existing IDS in terms of detection accuracy and reduce
the false-positive rate as these approaches do not evaluate on a
real dataset and are usually evaluated using only self-prepared

datasets. The characteristics of self-prepared datasets in terms
of attack coverage, accuracy, and validity are not revealed.
Therefore, it is imperative to develop resilient IDSs that can
improve detection accuracy, decrease the false alarm rate,
and enhance the detection rate when identifying anomalous
transactions within the Ethereum network. This paper aims
to accomplish the following objectives:

• To adopt a multi-digraph theory to extract a set of fea-
tures for the Ethereum transactions.

• Proposed multi-objective function to reduce the dimen-
sionality of the dataset and improve detection perfor-
mance.

• Proposed ensemble feature selection mechanism to
select the most significant features that contribute to
detecting abnormal transactions in the Ethereum net-
work efficiently.

• To adapt automatic data augmentation mechanism to
avoid overfitting and achieve impressive detection per-
formance from few labeled transactions used in training

• To evaluate ATD-SGAN approach

A. PAPER ORGANIZATION
The structure of this paper is as follows: Section II provides
an overview of the related works on intrusion detection in
the Ethereum network; Section III introduces the proposed
IDS approach; Section IV presents the experimental results;
Section V discusses the outcomes; and finally, Section VI
concludes the paper.

II. RELATED WORKS
Several research studies have been undertaken to identify
abnormal transactions using blockchain networks. Further-
more, the present work utilizes a learning model based on the
anomaly detection approach. In contrast, machine learning
and deep learning techniques can aid IDSs in automati-
cally detecting both new and existing attacks without the
need for human intervention by optimizing feature selec-
tion. In recent times, numerous machine learning and deep
learning algorithms, such as support vector machines and
artificial neural networks, have been incorporated into IDSs
to bolster system security. Moreover, a Convolutional Neural
Network (CNN) incorporating a self-attention mechanism
has been employed to construct theABCNN (Attention-based
Convolutional Neural Network) model for the purpose of
identifying vulnerabilities in smart contracts. The ABCNN
model utilized a self-curated dataset by manually collecting
8632 verified smart contracts from Etherscan. This dataset
was prepared to facilitate the training and evaluation process.
The ABCNNmodel demonstrated superior performance with
a reduced missing rate and faster execution time. Addition-
ally, it successfully detected three types of attacks, namely:
(i) Reentrancy, (ii) Arithmetic issues, and (iii) Time manipu-
lation [13].
The ESCORTmodel employed deep learning networks and

Transfer Learning (TL) to effectively identify both known
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and unknown vulnerabilities, addressing the scalability and
generalization limitations present in previous research efforts.
ESCORT utilizes a multi-output neural network architec-
ture comprising two main components: (i) A shared feature
extractor that learns the semantics of the input smart con-
tract, and (ii) Multiple branch structures where each branch
focuses on learning a specific vulnerability type using the
extracted features from the feature extractor. The research
paper provides a thorough assessment of ESCORT’s perfor-
mance on different smart contracts, successfully detecting six
vulnerability types as well as identifying new vulnerability
types through the application of TL. ESCORT achieved a
better detection accuracy rate in the empirical results [14].
In addition, a new model to detect abnormal transactions in
the Bitcoin network is proposed by utilizing the K-Nearest
Neighbours (KNN) algorithm and by testing the model on
the Elliptic dataset which has 203,769 nodes and 234,355
edges. In addition, the Elliptic dataset classifies the data into
three categories illicit, licit, or unknown. On the other hand,
the Elliptic dataset has 166 features for each node where
94 features represent local information about the transaction
and 72 features are called aggregated features. However,
the proposed approach has higher accuracy, but the rate of
detection and precision is not efficient [15].

Besides, a supervised machine learning-based anomaly
detection method was used, in [16], to identify malicious
nodes by analyzing the transaction behavior of accounts.
Supervised machine learning models were applied to two dif-
ferent types of accounts: Externally Owned Accounts (EOA)
and smart contract accounts. These models achieved a detec-
tion accuracy of 96.54% with a false-positive ratio of 0.92%
for EOA accounts and 96.82% with a false-positive ratio
of 0.78% for smart contract accounts. During the period
from 20 January 2020 to 24 February 2020, the method
identified 85 new malicious EOA and 1 malicious smart
contract address.When tested on these addresses, the model’s
accuracy was 96.21%with a false-positive ratio of 3%.More-
over, the authors proposed a framework to detect abnormal
entities in the Ethereum network through several machine
learning methods: Logistic Regression (LR), Support Vec-
tor Machine (SVM), Random Forest (RF), Stacking, and
AdaBoost in [1]. First, the dataset was gathered from Ether-
scan.io, and then all instances of this dataset were labeled
by Ethereum community members (i.e. experts). After that,
the re-sampling technique was used to handle the nature of
the imbalanced dataset. As a result, the proposed frame-
work achieves high performance in the classification of the
Ethereum entities for the Stacking, and AdaBoost learning
methods. Furthermore, a fraud detection model was proposed
to identify illicit accounts on the Ethereum blockchain in [17].
The model utilized three machine learning algorithms: deci-
sion tree (j48), Random Forest (RF), and KNN. A dataset
comprising 42 features was obtained from Kaggle.com and
subsequently, the correlation coefficient was employed to
select the most impact features. A new dataset was then

constructed, containing only 6 selected features. The experi-
mental results demonstrated significant enhancements in time
measurements across all three algorithms, while the Random
Forest algorithm exhibited improved performance in terms of
the F-measure.

Within the framework of the escalating adoption of
Ethereum and the subsequent proliferation of smart
contract-driven decentralized applications (DApps), the fre-
quency of malicious attacks targeting this ecosystem has
surged. Notably, frontrunning attacks exploit transaction
latency within the pending pool by manipulating gas prices,
thereby posing a serious threat to DApp security. Thus, the
authors in [18] proposed a model-based defense mecha-
nism based on Multi-Layer Perceptron (MLP). The proposed
model aims to discern whether a transaction exhibits indi-
cators of a frontrunning attack. By involved the extraction of
transaction-specific features, which are then transformed into
feature vectors for real-time analysis, and extensive experi-
ments on a comprehensive transaction dataset. In addition, the
study in [19] introduced a model that combines Generative
Adversarial Networks (GAN) and Deep Recurrent Neural
Networks (RNN) for cyber threat identification within the
Ethereum blockchain. The proposed model follows a two-
phase approach, the first phase of the model utilized GAN to
produce fake transactions by leveraging genuine Ethereum
transactions as a foundation. Subsequently, the second
phase employed a bi-directional Long Short-Term Memory
(LSTM) mechanism to detect adversarial transactions during
a cyber threat hunting process. As a result, themodel achieved
in the first phase an accuracy of 82.51% in generating trans-
actions closely resembling authentic Ethereum transactions.
In the second phase, the model demonstrated high perfor-
mance with a 99.98% accuracy rate in identifying adversarial
transactions. Furthermore, in [20], a method is introduced to
detect fraudulent activities within the Ethereum blockchain
through the analysis of transaction records. This approach
entails the use of web crawlers to gather labeled fraudulent
addresses. Subsequently, a transaction network is constructed
using the available public transaction ledger. For the pur-
pose of identifying fraudulent transactions, a specialized
algorithm based on network embedding is employed. This
algorithm is tailored for networks structured by transaction
amounts. It extracts features from the nodes in the network.
Notably, the study [20] adopts a Graph Convolutional Net-
work (GCN) model for the classification of addresses into
legitimate or fraudulent categories. The experimental results
showcase an impressive accuracy of 95%, underscoring the
system’s effectiveness in pinpointing fraudulent transac-
tions within the Ethereum blockchain. Despite the challenge
posed by an unlabeled dataset for evaluating the approach’s
performance, the trimmed k-means algorithm successfully
identified known instances of anomalies.

On the other hand, the arena of mitigating Distributed
Denial-of-Service (DDoS) attacks has become a focal point
for extensive research endeavors. Concurrently, emerging
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technologies, with blockchain at the forefront, present
promising avenues for groundbreaking solutions. In [21],
the authors introduced Cochain-SC, an inventive approach
anchored in blockchain technology. Cochain-SC pioneers
a two-tiered mitigation framework that encompasses both
intra-domain and inter-domain scenarios of DDoS attacks.
Harnessing the capabilities of software-defined networks
(SDN) in conjunction with the secure decentralization
facilitated by blockchain, Cochain-SC devises a pio-
neering strategy that amalgamates these technologies to
achieve robust, collaborative, and effective mitigation out-
comes. This entails the fusion of SDN-based intra-domain
mechanisms responsible for classifying and mitigating
flows with blockchain-enabled inter-domain cooperation
facilitated by smart contracts. In addition, Co-IoT is
a novel blockchain-based framework designed for col-
laborative DDoS mitigation. By leveraging the capabil-
ities of SDN and blockchain technology, particularly
Ethereum’s smart contracts, Co-IoT aspires to foster collab-
orative efforts among SDN-based domains. The framework’s
decentralized approach facilitates the exchange of attack-
related information, aiming to enhance flexibility, efficiency,
security, and cost-effectiveness in combating large-scale
DDoS attacks [22]. Furthermore, The field of safeguard-
ing blockchain nodes faces a significant breakthrough with
the introduction of BrainChain, an innovative and scal-
able solution designed to counteract the most extensive
DDoS attack witnessed, specifically the Domain Name Sys-
tem (DNS) amplification attack. BrainChain is meticulously
crafted within SDN to protect and enhance the resilience
of blockchain nodes. This scheme is composed of four piv-
otal components namely: (i) The Flow Statistics Collection
scheme (FS), (ii) The Entropy-Based scheme (ES), (iii) The
Bayes Network-Based Filtering scheme (BF), and (iv) The
DNS Mitigation scheme (DM). where the empirical assess-
ment affirms the formidable capabilities of BrainChain in
promptly and accurately identifying and countering DNS
amplification attacks [23].
Despite the numerous research studies conducted to detect

abnormal transactions in two prominent blockchain net-
works, Bitcoin and Ethereum, these studies continue to
face certain common challenges. One such challenge is the
absence of a definitive ground truth to evaluate the effective-
ness of any proposed model. Additionally, there are multiple
cybersecurity concerns across different layers that further
complicate the detection process.

III. PROPOSED IDS APPROACH
This paper proposes an abnormal transactions-based detec-
tion approach, called ATD-SGAN, in the Ethereum network
using SGAN. The proposed approach enhances the detec-
tion performance while detecting abnormal transactions in
the Ethereum network. The aim of this approach is to
detect abnormal transactions using a semi-supervised learn-
ing method and deep learning. The proposed approach
consists of five main stages, namely: (i) Ethereum data

gathering: which aims to propose gathering transactions and
labeling the transactions, (ii) data pre-processing: which aims
to increase the quality of the dataset by eliminating noisy
data, (iii) feature extraction: aims to extract feature based
multi-digraph theory, (iv) ensemble feature selection: aims
to select a mutual feature from two bio-inspired algorithms
and (v) abnormal transactions detection: to detect abnormal
transaction utilized SGAN in Ethereum network as shown in
Figure 1.

A. BLTE DATASET
Benchmark Labelled Transactions Ethereum (BLTE) is a
benchmark dataset that gathers based on a real Ethereum
network called Ethereum Classic (ETC) network [24], and
it is a real chain, public, open-source, and distributed plat-
form. ETC has many tables, but ATD-SGAN chooses the
Transactions table with seventeen features as shown in Fig
5. These transactions are performed by EOA which deals
with external transactions and records them on blockchain
to exchange cryptocurrency transactions [25]. According to
Figure 1 the first stage (Ethereum Dataset Generation), and
second stage (pre-processing) have been implemented and
discussed in former research minutely [24].
However, the seventeen features of the transaction table

suffer from two main problems. The first problem is that
these features, in their current form, do not contribute to
the detection of abnormal transactions and need to be fur-
ther analyzed to derive new features that contribute to the
detection of abnormal transactions, while the second problem
is that the transaction table is unable to be automatically
labeled (i.e in case of the transaction does not exist in Ether-
scamdb). The first problem is tackled in the feature extraction
stage (refer to Section III-C) while the second problem is
tackled in the abnormal transactions’ detection stage (refer
to SectionIII-E). ATD-SGAN obtains abnormal transactions
from Etherscamdb,1 which is open-source and available on
GitHub.2

B. DATA PREPROCESSING STAGE
Data pre-processing is a significant stage that can enhance
the performance of intrusion detection systems [26]. The
proposed model begins cleansing data by eliminating the
irrelevant features including any feature that has a null value
or the same value for all Ethereum transactions in BLTE. Con-
sequently, thirteen out of seventeen features are confirmed in
BLTE. Table 1 presents the description for each feature.

Therefore, the BLTE dataset holds great importance in
evaluating detection systems that heavily depend on labeled
data, specifically transactions. Consequently, within the
BLTE dataset, every transaction has been categorized as
either a normal or abnormal transaction. Each transaction
involves two addresses: the sender and the receiver. Abnormal
transactions are characterized by originating from intrusion

1https://etherscamdb.info
2https://github.com/MrLuit/EtherScamDB
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FIGURE 1. The main stages of ATD-SGAN.

TABLE 1. Transactions table.

source addresses, being targeted addresses, or involving both.
Let training data be (T) = (I, Trx, S, R), where I, Trx, S,
and R are a transaction Id, transaction, sender, and receiver,
respectively. Further, Trx ∈ {0,1} is a binary classification,
0 indicates normal Trx and 1 indicates abnormal Trx. Even-
tually, BLTE has sixteen features, thirteen after the cleansing
step, and inserting three features from the labeling step that
is from scam to scam and scam. Then, balancing data is a
significant concern when preparing a dataset to increase the

TABLE 2. Statistics of the BLTE dataset.

classification accuracy of the model. The reduction method
is one approach to processing imbalanced data [27].

The ATD-SGAN approach leverages the instance selection
technique to reduce the count of a specific class in the training
data since the generated dataset in BLTE contains a lower
count of abnormal transactions as compared to normal trans-
actions; therefore, the instance selection is used to reduce the
number of normal transactions as it does not affect the model
performance [28]. BLTE reduced the size of normal transac-
tions for compatible abnormal transactions in the dataset by
Local Density-based Instance Selection (LDIS) and Table 2.
summarizes information on the total number of Ethereum
transactions in the BLTE.

Ultimately, the scaling step refers to converting values of
attributes in a dataset in a specific range. The two main
methods of scaling are standardization and normalization.
Standardization transforms attribute values based on Gaus-
sian distribution, while normalization transforms attribute
values to a common scale with a specific range. Whereas
machine learning algorithm always benefits from the nor-
malization method to convert the values in a dataset without
distorting variation in its range [29].

There are various normalization methods such as Min-
Max, Z-score, and so on. ATD-SGAN applies the common
one in a Min-Max normalization due to its enhanced speed
learning model, which scales data between 0 and 1 according
to Equation (1) where a symbol X is a numerical value, Xmax,
Xmin is the maximum and minimum values of the attribute,
respectively. While Xnorm ∈ [0,1] is a new value for the
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attribute [30]:

Xnorm =
X + Xmin

Xmax − Xmin
(1)

However, each dataset consists of features (attributes),
such as, in BLTE dataset, All degree, In degree, Out degree,
Unique in degree, Unique out degree, Avg amount incom-
ing, Avg amount outgoing, Total amount incoming, Total
amount outgoing, Max amount incoming, and Total Amount
(described in Table 3). In fact, feature engineering is the
process of selecting and creating important features from raw
data that can be used to train a machine learning model. In the
context of an intrusion detection system, feature engineering
is the process of identifying and creating features that can
accurately classify malicious activity. This is important for
ensuring that the IDS can effectively detect and respond
to threats while minimizing false positives, or instances of
normal activity being incorrectly classified as malicious.
By carefully selecting and creating relevant features, it is
possible to build an IDS that is effective at detecting and
responding to real threats while minimizing disruptions to
normal network activity [31], [32].

In machine learning, statistical analysis, and deep learning,
in particular, feature selection is the process of selecting a
subset of relevant features for use in model construction.
The goal of feature selection is to select the most useful
features in predicting the response while excluding irrelevant
or redundant features. The chosen features should be able to
effectively predict the response variable and should not be
highly correlated with each other. Therefore, the following
subsections discuss the feature extraction and selection used
in this paper in detail.

C. FEATURE EXTRACTION STAGE
Feature extraction is a process to extract subset features
from input data that improves the accuracy of learned mod-
els [33]. According to existing studies, several features have
been extracted using weighted multi-digraph from Bitcoin
and Ethereum networks as mentioned in Table 1. In the
ATD-SGAN approach, 22 features have been extracted from
sixteen features from BLTE based on multi-graph theory.
Whereas the Ethereum network is a graphG = (N ,E), where
(N) presents as a node of the Ethereum address, and (E) is a
transaction edge that links between two Ethereum addresses
if the edge has weight or value, then it is a weighted graph;
otherwise, it unweighted graph. However, there are several
types of graphs, but the Ethereum network is a weighted
multi-digraph in which each node has multiple weighted
edges from the source node to the target node, this paper
used the Neo4j graph database to present and analyze the rela-
tionship (transactions) between Ethereum addresses (nodes)
for BLTE dataset. Figure 2 demonstrates an example for one
Ethereum node, where node 2 is a sender and other nodes are
receivers. Furthermore, each edge has four essential values
tuples (s, u, v, t) where s is the source node (sender), u is
the target node (receiver), v is (value) of the transaction and t

FIGURE 2. Sample of multi-digraph of Ethereum nodes.

is (timestamp) of the transaction occurred [34], [35]. Indeed,
multi-digraph allows multiple transactions between nodes
which is necessary to record the information of the Ethereum
node.

Table 3 presents the results of feature extraction. How-
ever, the 22 features do not contribute to the detection of
abnormal transactions. Thus, an ensemble Bio-Inspired fea-
ture selection mechanism has been proposed to select the
most significant features that contribute to the detection accu-
racy of abnormal transactions. On the contrary, the existing
approaches that ignore or select the features are based on
simple heuristics.

D. ENSEMBLE BIO-INSPIRED FEATURE SELECTION STAGE
To enhance the performance of ATD-SGAN, it is crucial
to eliminate irrelevant features after the process of feature
extraction. This helps to reduce redundant data, improve the
accuracy of the prediction model, and decrease the training
phase duration [36]. Feature selection is employed by ATD-
SGAN, utilizing two bio-inspired algorithms: (i) Manta Ray
Foraging Optimization (MRFO), and (ii) Particular Swarm
Optimization (PSO). Subsequently, ATD-SGAN identifies
the common features from the outcomes of these two algo-
rithms using a novelmulti-objective function. The subsequent
subsections provide a comprehensive explanation of the fea-
ture selection mechanism employed by ATD-SGAN.

1) FEATURE SELECTION BASED MRFO
MRFO is a bio-inspired meta-heuristic algorithm for fea-
ture subset selection, which is used to enhance the feature
selection stage due to its effectiveness in feature selec-
tion, as well as it needs a smaller number of iterations
and configuration settings to converge (i.e., reaching the
optimum), which are major concerns in any feature selec-
tion problem [37], [38], [39], [40]. Thus, the MRFO is
utilized to reduce the dimensionality of the dataset con-
sequently decreasing the complexity of detection compu-
tation and enhancing the overall detection performance by
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TABLE 3. Features code.

FIGURE 3. a) Manta Ray’s body, (b) Manta Rays’ physical
construction [39].

avoiding irrelevant or duplicated features (if any). TheMRFO
algorithm was inspired by the feeding strategies of Manta
rays, which are the largest deep-sea creatures, Figure 3
demonstrates the body of the Manta ray. The properties of
Manta rays are body flat, swimming smoothly, largemouth,
and plankton is the main food [39].

The MRFO algorithm draws inspiration from three forag-
ing strategies observed in Manta rays: (i) Chain, (ii) Cyclone,
and (iii) Somersault [41]. In the Chain feed strategy, Manta
rays observe the position of plankton and swim toward it.
The concentration of plankton in a particular position plays
a crucial role, as a higher concentration signifies a better
solution. The equations describing this strategy are presented
in Equation (2) [41].

xdi (t + 1) =


xdi (t) + r .(xdbest (t) − xdi (t))
+α.(xdbest (t) − xdi (t)), if 1
xdi (t) + r .(xd(i−1)(t) − xdi (t))
+α.(xdbest (t) − xdi (t)), i=2,. . . ,N

(2)

where x id(t) refers to the position of t th individual at time t
in d th dimension. while r refers to a random vector within

the range of [0, 1], and α is a weight coefficient as shown
in Equation (3), xbestd(t) is the plankton with high condensa-
tion [41].

α = 2.r .
√

| log(r)| (3)

Manta rays exhibit fascinating behavior when they detect
a patch of plankton with a high concentration in deep water.
They form a long foraging chain and swim in a spiral pat-
tern toward the food, known as the cyclone feed strategy.
The equations describing this strategy can be observed in
Equation (4) and Equation (5) [40].

xdi (t + 1) =


xdbest (t) + r .(xdbest (t) − xdi (t))
+β.(xbestd (t) − xdi (t)), if 1
xdbest (t) + r .(xdi−1(t) − xdi (t))
+β.(xbestd (t) − xdi (t)), i=2,. . . ,N

(4)

β = 2.er1∗
T−t+1
T (5)

In the MRFO algorithm, the weight coefficient β is
employed, while T represents the maximum number of iter-
ations. The variable r1 denotes a random number within the
range ∈ [0, 1]. Each individual within the algorithm performs
a random search, utilizing the best-found plankton position
as a reference point. Moreover, to enhance the exploration
capability of theMRFO algorithm, Equation (6) and Equation
(7) are employed. These equations compel the manta rays to
search for new positions by assigning a random position as
their reference point, thus enabling a more extensive global
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search [40].

xdrand = Lbd + r ∗ (Ubd − Lbd ) (6)

xdi (t + 1)=


xdrand (t) + r .(xdrand (t) − xdi (t))
+β.(xrandd (t) − xdi (t)), if 1
xdrand (t) + r .(x(i− 1)d (t) − xdi (t))
+β.(xdrand (t) − xdi (t)), i=2,. . . ,N

(7)

The variable xrandd represents a random position within
the search space, where Lbd and Ubd denote the lower and
upper limits, respectively, of the dth dimension. In the MRFO
algorithm, the chain foraging strategy is employed if the
random value exceeds 0.5. Conversely, if the random value
is less than or equal to 0.5, the MRFO algorithm utilizes
the cyclone foraging strategy as defined in Equation (3). The
position is then updated to find the best solution according
to Equation (7), while the somersault strategy, outlined in
Equation (8), is utilized [42].

Xdi (t + 1)b = xdi (t)b+ bs.(r2.xdbest − r3.xdi (t))

, i = 1, 2 . . . ,N (8)

In the MRFO algorithm, the variable S represents the
Somersault factor, while r2 and r3 denote random numbers
within the range of [0, 1] [41]. The value of S is fixed at
2. The somersault feed strategy is characterized by random,
frequent, localized, and cyclical movements, enabling manta
rays to maximize their intake of plankton. This strategy
involves utilizing the best-known plankton position as a pivot,
and each swimmer swims back and forth around the pivot
while somersaulting to reach new positions.

The effectiveness of the MRFO algorithm has been
demonstrated in solving real-world engineering problems.
It has been evaluated and compared with eight benchmark
algorithms, showcasing superior performance in solving
engineering problems. The MRFO algorithm has also been
successfully applied in feature selection for S-shaped and
V-shaped transfer functions. An evaluation was conducted
on 18 UCI datasets, and the MRFO algorithm outperformed
existing methods in terms of accuracy and the number of
selected features. The results demonstrate the effectiveness of
the MRFO algorithm compared to state-of-the-art methods in
terms of accuracy and selected features [40].

2) FEATURE SELECTION BASED PSO
The PSO algorithm, originally proposed by James Kennedy
and Russell Eberhart in 1995, draws inspiration from the col-
lective behavior observed in bird and fish swarms [43], [44].
It aims to optimize problems by iteratively refining candidate
solutions [45], [46]. PSO operates based on the concept of a
global best solution, which is continually updated during each
iteration to converge toward the optimal solution. To achieve
optimal feature selection in BLET, PSO employs a fitness
function that leads to improved feature selection, precision,
and true negative rate. The algorithm initiates particles with

TABLE 4. Values of the objectives’ weights.

random positions, evaluating their fitness at each position.
These particles then update their positions and velocities
based on historical data, aiming to converge toward the opti-
mal position. This process is demonstrated by Equation (9)
and Equation (10), which illustrate the updating of particle
positions and velocities, respectively [47].

xi,j = xi,j + Vi,j (9)

Vi,j = u ∗ Vi,j + c1 ∗ rand1 ∗ (LBi − x(i, j))

+ c2 ∗ rand2 ∗ (GBi − xi,j) (10)

The inertia weight value often fluctuates during iterations
within the range of [0, 1]. LBi represents the current best local
solution at iteration number I, while GBi represents the cur-
rent best global solution at iteration number I. The variables
rand1 and rand2 are random numbers within the range of [0,
1], while c1 and c2 typically denote two constants [47].

3) PROPOSED MULTI-OBJECTIVE FUNCTION
Proposed a new multi-objective function based on the scalar-
ization method that combines the multi-objective into the
single solution utilized weights and it was incorporated into
the fitness function [48]. The bio-inspired algorithms RMFO
and PSO seek to combine the three objectives namely: (i) high
accuracy, (ii) smaller false-positive rate, and (iii) a smaller
number of subsets features as shown in Equation (11).

Fitness = W1 ∗ Accuracy−W2∗

FPR−W3 ∗ Numfeatures (11)

However, the Rank-Sum (RS) weights method is utilized in
this paper to calculate weights because it is commonly used.
Equation (12) can be used to compute RS weights [49].

Wi =
2(n+ 1 − i)
n(n+ 1)

(12)

where Wi indicates the variable weight value, n indicates the
number of the total weights, and i is the weight number based
on its order in Equation (11) and Table 4 illustrates the value
for each Wight.

The proposed approach combines the MRFO and PSO
algorithms to effectively select relevant features from a given
dataset. Initially, the dataset is divided into separate train-
ing and testing sets, and a subset of features is generated.
Subsequently, the bio-inspired algorithm generates candi-
date feature subsets using a multi-objective function. MRFO
is employed to maximize classification performance while
minimizing the number of selected features, guided by the
proposed multi-objective approach. These candidate feature
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subsets are then evaluated using a KNN classifier trained
on the transformed training and testing sets. The search for
additional feature subsets continues until a stopping criterion,
based on the desired number of selected features, is met.
Finally, the approach identifies the mutual features shared
by both the MRFO and PSO algorithms to be utilized in the
subsequent abnormality detection stage.

E. ABNORMAL TRANSACTIONS DETECTION
Detecting abnormal transactions plays a crucial role in the
proposed approach, which aims to customize a prediction
model using the selected features from earlier stages. To iden-
tify abnormal transactions within the Ethereum network,
the proposed approach adopts the SGAN algorithm. The
dataset of abnormal transactions is obtained from donors
through Etherscamdb. It is worth noting that abnormal trans-
actions constitute a small proportion within the Ethereum
network, indicating a high likelihood of encountering unla-
beled abnormal transactions. Furthermore, in the scenario
where a new abnormal behavior emerges, it won’t be auto-
matically included in the database for recognizing intrusion
addresses. Semi-supervised learning, by internalizing hidden
patterns within the data, aims to generalize from a lim-
ited set of labeled data points to accurately classify new,
unseen examples. The scarcity of labeled datasets poses
a significant challenge in both machine-learning research
and real-world applications. Despite the abundance of unla-
beled data available (such as images, videos, and text on
the internet), assigning class labels to them is often cost-
prohibitive, impractical, and time-consuming. To tackle the
aforementioned challenges, the SGAN algorithm can pro-
vide a solution by automatically assigning accurate labels to
transactions. This is made possible due to the enhanced dis-
criminator present in the SGAN, which offers improvements
over the vanilla GAN approach.

In SGAN, the discriminator takes a random noise vector z
and produces a fake example. On the other side, the discrimi-
nator received three types of inputs namely: (i) real labeled
transactions (normal and abnormal transactions resulting
from BLTE), (ii) real unlabelled transactions (from BLTE
without label), (iii) fake transactions generated from the gen-
erator. Then, the discriminator classifies the unlabelled and
fake transactions which aims to distinguish fake transactions
from the real ones, and for real transactions (unlabelled)
identifies the correct class (normal or abnormal). However,
turning the discriminator from being a binary classifier to a
multi-classifiermight look like a trivial change (vanilla GAN)
but it implies more significance than it receives at first glance.
As a result, the training of SGAN was conducted in this form
to ensure the classification accuracy is close to a supervised
classifier while using labeled and unlabelled transactions.
On the other hand, the generator aims to serve as a source
of additional information (the fake transactions it produced),
which may help the generator learn the relevant pattern in
transactions, improving the classification accuracy.

FIGURE 4. Flowchart of ATD-SGAN approach.

Although the BLTE training dataset has 24600 labeled data
transactions which are 80% of the BLTE dataset, only a small
fraction of these transactions are used in training and pre-
tends that all the remaining transactions are unlabelled. After
training, testing set 6150 which is 20% of the BLTE dataset
related to Table 2 was used to assess the effectiveness of the
classification model in generalizing the previously unseen
transactions (unlabelled). By using SGAN, the discriminator
becomes a well-trained and robust classifier that may achieve
impressive classification performance from few labeled trans-
actions as possible, thereby dimensioning the dependency
of the classification process on a huge volume of labeled
transactions. Moreover, Figure 4 presents the flowchart of the
ATD-SGAN approach.

IV. EXPERIMENT AND RESULTS
This section describes the aspects related to the design
methodology and the implementation of the proposed
ATD-SGAN approach which is thoroughly explained in
Section III. ATD-SGAN approach aims to improve the
abnormality detection in the Ethereum network, in terms
of detection accuracy, recall, false alarm rate, and F1-
measure. Referring to the background of the aforementioned
bio-inspired feature selection in Section III-C, theMRFO and
PSO algorithm design and evaluation based on the proposed
multi-objective function are presented in this section.

A. EVALUATION METRICS
In order to assess the effectiveness of an IDS, various eval-
uation metrics can be utilized to gauge its performance.
The performance metrics are calculated using a confusion
matrix derived from the output of the two-class classifier.
The confusion matrix provides detailed information about the
classification outcomes. Each column in the matrix repre-
sents a predicted class instance, while each row represents an
actual class instance in the real-world scenario. The equations
utilized to assess the performance of feature selection are
illustrated in Table 5. The symbols used in the equations
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are as follows: TP represents the count of true positives,
FN represents the count of false negatives, TN represents the
count of true negatives, and FP represents the count of false
positives [50], [51], [52], [53], [54], [55].

B. EXPERIMENTAL SETUP
1) IMPLEMENTATION ENVIRONMENT
The ATD-SGAN is implemented using Python programming
language, which is characterized by its easiness and imple-
mentation robustness, as it is rich in libraries that allow
developers to implement machine learning and others easily
from out of the box, friendly syntax, and many researchers
and developers support python and view it as a standard
programming language [56]. In detail, Python version 3.8,
and Spyder Editor version 5.2 for facilitating interactive
code writing, execution, and result visualization. Moreover,
Table 6 presents the main libraries used to implement the
ATD-SGAN.

The efficient execution of the proposed approach relies
on hardware components that offer ample computational
power and memory. This includes a capable multi-core
processor, Intel Core i7, with a clock speed of at least
2.0 GHz. Dedicated Graphics Processing Unit (GPU) support
is also essential, with GPUs like the NVIDIA GeForce GTX
1080 being preferable. Moreover, 32 GB of RAM has been
utilized to handle the computational requirements effectively.
Additionally, involved a Solid State Drive (SSD) to enhance
data loading speed and storage efficiency, with a capacity
of 1 TB.

2) HYPERPARAMETERS OF ATD-SGAN
Fine-tuning of hyperparameters is a crucial step in achieving
success in ML and DL models [57]. In order to thoroughly
assess the performance of ATD-SGAN, it is necessary to
fine-tune multiple hyperparameters. The evaluation experi-
ments are conducted in phases to evaluate the performance of
the ATD-SGAN approach, utilizing various hyperparameters
as follows:

• Loss Function: The binary cross-entropy loss function
is used, serving as the objective function in the neural
network. This loss function is well-suited for binary
classification problems, which is the case for abnormal
transaction detection.

• Activation Function: Sigmoid activation functions are
applied at each node after the linear combination of
inputs. The sigmoid function is commonly used in
binary classification tasks, as it maps the output to a
probability-like range between 0 and 1.

• Optimizer: The Adam optimizer is chosen for updating
the model’s parameters during training. Adam is known
for its adaptive learning rate and momentum properties,
making it efficient for a wide range of optimization
tasks.

• Learning Rate: The learning rate, set at 10−4, defines
the step size taken during parameter updates. This value

FIGURE 5. Ensemble feature selection results.

is carefully selected to balance convergence speed and
stability.

• Batch Size: A batch size of 32 is used, indicating the
number of events processed in a single update. Larger
batch sizes can lead to better hardware utilization and
smoother gradient updates.

• Epochs: The number of training epochs spans a range
from 500 to 8000. This broad range allows for observing
how the model’s performance evolves over extended
training periods.

Hyperparameter fine-tuning facilitates the acquisition of pro-
found insights into the intricate interactions that exist between
hyperparameters and their discernible impact on performance
outcomes. This discernment holds pivotal importance in the
interpretation of the obtained results of the model. Besides,
the comprehensive evaluation of hyperparameters serves as a
testament to the depth of assessment undertaken in unraveling
the full potential of ATD-SGAN. Moreover, it serves as an
unequivocal demonstration of the model’s adaptability to
varying configurations, effectively enhancing the sphere of
intrusion detection.

Furthermore, ATD-SGAN applies MRFO and PSO to both
training and test data in order to select a subset of relevant
features. The bio-inspired algorithms generate candidate fea-
ture subsets, starting with a random subset of features created
by a new multi-objective function, as proposed in Equation
(11). Furthermore, Table 7 shows the parameters of MRFO
and PSO used in the experiments of ATD-SGAN.

C. RESULTS
1) ENSEMBLE FEATURE RESULTS
Let D is a BLTE dataset with 22 features D =

{F0,F1,F2, . . . ,F22}, R is the feature subset from D by
RMFO algorithm R ⊆ D, and P is the feature subset from
D by PSO algorithm P ⊆ D. Then, the intersection between
two sets R and P presents the mutual feature selection, where
∀R,P : R ∩ P ≡ {F |F ∈ R3F ∈ P}. Figure5 depicts
the results of ensemble feature selection based on mutual
features.

Consequently, R = {2, 3, 5, 6, 8, 9, 10, 13, 16, 18, 21},
P = {0, 1, 2, 3, 5, 6, 14, 15, 16, 17, 18, 20, 21}, and S =

R∩P = 2, 3, 5, 6, 16, 18, 21. In summary, a total of 7 features
out of 22 are selected as a result of the mutual feature step.

VOLUME 11, 2023 98525



Y. K. Sanjalawe, S. R. Al-E’mari: Abnormal Transactions Detection in the Ethereum Network

TABLE 5. Evaluation metrics.

TABLE 6. Python l Used to implement the ATD-SGAN.

TABLE 7. Values of MRFO and PSO control parameters.

According to Table 4.5, the mutual feature selection is Out
degree, Unique in degree, Avg amount incoming, Avg amount
outcoming, Active Duration, Mean time interval, Avg gas
price. Table 8 presents the sample of results.

2) ATD-SGAN PERFORMANCE ACROSS DIFFERENT EPOCHS
No doubt that detection accuracy is a vital metric for any IDS
since it indicates the robustness of the IDS against intrusions,

attacks, or abnormal behaviors. However, to demonstrate
the robustness and reliability (in terms of accuracy) of the
ATD-SGAN, it was run with different training epochs (500,
1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000, respec-
tively). This extensive experimentation aims to capture the
model’s performance across different training durations. The
outcomes reveal an intriguing trend in terms of detection
accuracy, false alarm rate, and F1 measure. As the number
of training epochs increases, there is a progressive improve-
ment in all performance metrics. This observation highlights
the model’s capacity to continuously learn and adapt to
the dataset, resulting in heightened accuracy, reduced false
alarms, and enhanced F1-measure as the training progresses
as shown in Table 9.

3) ENHANCING DETECTION PERFORMANCE
The research contributions, particularly the ensemble feature
selection process and the incorporation of the SGAN model,
are central to the heightened detection performance of the
ATD-SGAN approach. The mutual feature selection step
successfully narrows down the feature set from the original
22 to a compact set of 7 essential features. This parsimo-
nious selection not only improves the model’s efficiency but
also signifies the effectiveness of the multi-objective function
utilized for feature selection. Moreover, the SGAN’s role
in automatic data augmentation equips the model with aug-
mented and diverse data, essential for the training process.
The synergy of these contributions culminates in a highly
accurate and robust intrusion detection system. To ensure
a fair and meaningful comparison, all the aforementioned
IDSs were assessed using the BLTE dataset. The results
were obtained for each IDS, and the evaluation metrics were
computed accordingly. Table 10, presents the results obtained
from state-of-the-art IDSs and ATD-SGAN using the BLTE
dataset based on seven subset feature selections S (refer to
Section IV-C) and compared to the performance using all
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TABLE 8. Ensemble bio-inspired feature selection results.

TABLE 9. Values of performance Metrics of ATD-SGAN with different
epochs.

features of the original dataset. Furthermore, the state-of-the-
art approaches selected are based on the related works (refer
to Section II).

As shown in Table 10, the results ensure the superiority of
ATD-SGAN over the other state-of-art IDSs in terms of the
average detection accuracy, false alarm rate, and F1-measure,
as it obtained the highest average detection accuracy (i.e.,
95.06%) and the highest average f1-measure (95.11%), and
lowest false alarm rate (i.e., 8.05%). Overall, the comparison
result revealed that ATD-SGAN detection accuracy on the
previously seen transactions in the testing dataset is far supe-
rior two comparable with other models trained on the same
number of labeled transactions.

V. DISCUSSION
In the above-mentioned sections, the ATD-SGAN has been
compared with LR, RF, KNN, SVM, MLP, LSMT, and CNN
in terms of average detection accuracy, false alarm, and F1
measure. The obtained comparison results ensure that the
ATD-SGAN outperformed the other state-of-the-art IDSs in
all evaluation metrics. However, this section provides a dis-
cussion of enhancement resulting from the ATD-SGAN on
the other state-of-the-art IDSs.

Figure 6 (a) depicts the enhancement percentage of the
ATD-SGAN on the other state-of-the-art approaches in terms
of the average accuracy in detecting abnormal transactions
existing in the BLTE dataset across all runs’ experiments.
However, the enhancement percentages in terms of average
detection accuracy look slight if they are taken alone with-
out bearing in mind other metrics used in the evaluation.
In fact, if the enhancement percentage resulting from all

of the evaluation metrics is considered together, of course,
the enhancement will be clearly significant. The false alarm
rate is another important evaluation metric that is usually
calculated to indicate the degree of effectiveness of any IDS.
It denotes the ratio in classifying normal transactions wrongly
as abnormal transactions; this means the IDS with the lowest
value of false alarm is the best IDS. However, using the
BLTE dataset, the ATD-SGAN declines the false alarm rate
to LR, SVM, KNN, RF, MLP, LSTM, and CNN, respectively.
Figure 6 (b) presents the enhancement percentages of the
ATD-SGAN with other state-of-the-art IDSs in terms of false
alarms. Besides that, the F1-measure is commonly used to
assess the success of a binary classifier, especially when the
count of one class is less than another, herein since the BLTE
dataset contains binary classes (i.e., two-class instances: (i)
normal, and (ii) abnormal transaction), the precision is an
important metric to be used in evaluating the ATD-SGAN.
However, Figure 6 (c) shows the enhancement percentages of
ATD-SGAN with other state-of-the-art IDSs in terms of F1-
measure. It can be seen in Figure 6 that the ATD-SGAN also
the ATD-SGAN enhanced the F1-measure of the compared
other IDSs approaches.

Substantially, concluded from the above findings, the
ATD-SGAN is indeed an applicable IDS to address research
gaps. In detail, the use of multi-digraph theory to extract
the most important set of features from the generated BLTE
dataset (refer to Section III-B) has increased the overall per-
formance by decreasing the selected number of features used
to train and test the classifier, then in detecting abnormal
transactions, respectively. Besides, it was discovered that the
proposed multi-objective function (refer to Section III-C),
which is implicitly achieved in the research objective num-
ber two in this paper, has a direct positive effect on the
feature selection algorithm (i.e., MRFO), and consequently
on detection process as well. In other words, the use of
multi-objectives as a fitness function also ensures the proper
efficient selection of a set of features. It also assesses the
feature subset if it meets the objectives (i.e., the highest
accuracy and recall and the lowest number of features) or not,
effectively.

Although deep learning is carried out more efficiently than
machine learning, especially when learning a huge volume of
data, it still suffers from challenges, whichmight result in data
loss or overfitting problems. The ATD-SGAN proves that it

VOLUME 11, 2023 98527



Y. K. Sanjalawe, S. R. Al-E’mari: Abnormal Transactions Detection in the Ethereum Network

TABLE 10. Comparison results of ATD-SGAN with state-of-the-art approaches.

FIGURE 6. Enhancement percentages of ATD-SGAN with other state-of-the-art IDSs.

overcomes these issues by using the Semi-supervised GAN
model, which is an unsupervised learning method of DL that
automatically generates new augmented data similar to the
existing one. Also, the ATD-SGAN is not used SGAN only
for generating new data instances, but it is also used to classify
(detect) unlabelled data (i.e., testing data). However, selecting
and extracting the right features can significantly improve
the performance of a deep-learning classifier. Some of the
ways in which feature selection and extraction can affect a
deep-learning classifier include:

1) Reducing the dimensionality of the data: By selecting
the most relevant features and extracting them, you can
help reduce the complexity of the data, which can make
the training process more efficient and reduce the risk
of overfitting.

2) Improving generalization: Removing irrelevant or
redundant features can help the classifier learn more
generalizable patterns in the data, improving its perfor-
mance on unseen data.

3) Enhancing interpretability: Extracting meaningful fea-
tures from the data can help you better understand and
interpret the model’s decisions, which can be partic-
ularly useful in applications where interpretability is
important.

4) Decreasing computational complexity: Removing
unnecessary features can reduce the number of param-
eters in the model, decreasing the computational
complexity of training and inference.

While feature selection and extraction can be beneficial for
deep learning classifiers, it’s important to find the right
balance. Removing too many features can lead to a loss
of important information that the classifier needs to make
accurate predictions. On the other hand, ensemble feature
selection involves using the predictions of multiple models
to identify the most relevant features for a deep learning
classifier. This method can have several beneficial impacts
on deep learning classifiers, including:

1) Improved accuracy: Combining the predictions of mul-
tiple models can help identify a more robust set of
relevant features, which can improve the accuracy of
the classifier.

2) Reduced risk of overfitting: By aggregating the predic-
tions of multiple models, ensemble feature selection
can help prevent the classifier from overfitting to any
one particular model, resulting in a more generalizable
model.

3) Enhanced interpretability: Ensemble feature selection
can help identify a smaller and more interpretable set
of features, making it easier to understand and interpret
the classifier’s decisions.

4) Increased efficiency: By selecting a smaller and more
relevant set of features, ensemble feature selection can
make the training process more efficient and reduce the
computational complexity of the classifier.

Our proposed solution revolves around the utilization of
Semi-Supervised Generative Adversarial Networks for the
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detection of anomalous transactions within the Ethereum
network. We believe that the strengths of our approach lie in
several key areas:

• Real Dataset Utilization: Unlike many existing
approaches that rely on self-prepared datasets, we employ
real-time Ethereum transactions to evaluate the effec-
tiveness of our IDS. This helps in establishing the
real-world applicability of our method and allows for
a more accurate assessment of its performance.

• Enhanced Detection Accuracy: Our approach seeks to
improve the detection accuracy of anomalous transac-
tions through the utilization of state-of-the-art genera-
tive adversarial networks. By incorporating both labeled
and unlabeled data, our IDS aims to achieve a more
refined classification, thus reducing false negatives and
positives.

• Transparent Evaluation: In our paper, we emphasize
transparency in evaluation by thoroughly discussing the
strengths and limitations of our method. We present
a comprehensive analysis of our results, including the
areas where our approach excels and where further
refinement is needed.

• Practical Significance: Our research strives to contribute
to the development of resilient IDSs that can make
tangible improvements in the detection of anomalous
transactions in the Ethereum network. By addressing the
research problem’s core aspects, we aim to bridge the
gap between existing methodologies and the practical
requirements of a real-world blockchain environment

In conclusion, the ATD-SGAN approach proves to be
highly effective in securing not only the Ethereum network
but also other types of blockchain networks. By successfully
detecting abnormal transaction attacks, this IDS ensures the
network’s resilience. When implemented on real Ethereum
transactions, the ATD-SGAN efficiently classifies them as
normal or abnormal, enabling miners to identify and distin-
guish fake transactions. As a result, the network becomes
more resistant to attacks and abnormal transactions. The
ATD-SGAN meets the criteria for delivering strong secu-
rity measures and effective decision-making capabilities.
Additionally, this IDS surpasses the state-of-the-art IDSs in
terms of accuracy, recall, false alarm rate, precision, and
F1-measure, showcasing its exceptional performance across
a range of evaluation metrics.

VI. CONCLUSION AND FUTURE WORKS
Throughout this study, we have introduced a new approach,
called ATD-SGAN, that employs Semi-Supervised Genera-
tive Adversarial Networks to detect anomalous transactions.
This approach capitalizes on the integration of real-time
Ethereum transaction data, thereby bridging the gap between
existing methodologies and the practical requirements of
real-world blockchain environments. Our method’s strengths
include its utilization of real datasets, which contrasts with the

reliance on self-prepared datasets that often lack transparency
in terms of attack coverage and accuracy.

The implications of our research are manifold. Firstly,
our approach significantly improves detection accuracy by
leveraging the power of generative adversarial networks
and semi-supervised learning. Secondly, the utilization of
real-time Ethereum transactions establishes the relevance of
our findings in a rapidly evolving and dynamic blockchain
environment. Moreover, our transparent evaluation approach,
addressing both strengths and limitations, contributes to the
scholarly discourse by fostering transparency and encour-
aging further advancements. In terms of insights, our study
underscores the value of embracing real datasets for evalu-
ating blockchain-based security solutions. The complexities
of real-world transactions and the presence of varying attack
scenarios challenge us to create more resilient IDSs that can
withstand evolving threats.

Additionally, the insights drawn from our results shed light
on the intricacies of anomaly detection within blockchain
networks, prompting future researchers to delve deeper into
refining IDSs and their applications. The ATD-SGAN was
compared with LR, RF, KNN, SVM, MLP, LSTM, CNN,
and ATD-SGAN using the BLTE dataset, and it outperformed
all of them, as it achieved 95.06%, 8.05%, and 95.11%
of average accuracy, average false alarm, and average F1-
measure, respectively. Particularly the ATD-SGAN can be
applied to secure the Ethereum network, and other types of
Blockchain networks in general, without being vulnerable
to abnormal transaction attacks. When this IDS is imple-
mented on real Ethereum transactions, these transactions are
efficiently classified into normal or abnormal ones; thus, the
miner can distinguish whether the transaction is fake or not,
and consequently, it will have the ability to figure out the
abnormal account. Therefore, a miner can secure its network
from attacks and abnormal transactions. The ATD-SGAN
then satisfies the requirements of achieving high security and
efficient self-decision. Despite the successful implementation
of the proposed ATD-SGAN to detect abnormal transac-
tions in the Ethereum network, there is still a margin for
improvement. The following is a brief list of recommen-
dations that can be improved or provide a basis for future
research:

• ATD-SGAN has been designed for binary classification
of Ethereum transactions (normal or abnormal). How-
ever, the ATD-SGAN can be extended to multi-class
anomaly detection problems in the Ethereum network.

• Applying mutual features based on proposed multi-
objective function in other network datasets to enhance
IDS performance wherein feature selection plays a sig-
nificant role in detection performance.

• ATD-SGAN approach can be extended to detect other
intrusion attacks such as phishing, malware, spam, and
botnets.

• Design a real-time approach to detecting abnormal trans-
actions in Blockchain networks.
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• Hybridizing the ATD-SGAN with signature-based IDS
to enhance the overall detection performance.
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