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ABSTRACT The Binary Paint Shop Problem (BPSP) is a combinatorial optimization problem which
draws inspiration from the automotive paint shop. Its binary nature, making it a good fit for Quadratic
Unconstrained Binary Optimization (QUBO) solvers, has been well studied but its industrial applications
are limited. In this paper, in order to expand the industrial applications, QUBO formulations for two
generalizations of the BPSP, which are the Multi-Car Paint Shop Problem (MCPSP) and the Multi-Car
Multi-Color Paint Shop Problem (MCMCPSP), are proposed. Given the multiple colors, the MCMCPSP
is no longer natively binary which increases the problem size and introduces additional constraint factors
in the QUBO formulation. Resulting QUBOs are solved using Scatter Search (SS). Furthermore, extensions
of the SS that can exploit k-hot constrained structures within the formulations are proposed to compensate
the additional complexity introduced by formulating non-binary problems into QUBO. Since no public
benchmark database currently exists, random problem instances are generated. Viability of the proposed
QUBO solving methods for the MCPSP and MCMCPSP, is highlighted through comparison with an
integer-based Random Parallel Multi-start Tabu Search (RPMTS) and a greedy heuristic for the problems.
The greedy heuristic has negligible computational requirements and therefore serves as a lower bound on the
desired performance. The results for both problems show that better results can be obtained than the greedy
heuristic and integer-based RPMTS, by using the novel k-hot extensions of the SS to solve the problems as
QUBO.

INDEX TERMS Automotive paint shop, evolutionary algorithms, k-hot constraints, quadratic unconstrained
binary optimization, scatter search.

I. INTRODUCTION
The demand for mass-customization in the automotive indus-
try has presented numerous operational planning challenges
for car manufacturers. This paper will focus on two of
these problems encountered within the automotive paint
shop and attempt to solve them as Quadratic Unconstrained
Binary Optimization (QUBO). The binary paint shop prob-
lem (BPSP) is the most extensively studied problem within
this context [1], [2], [3], [4], [5], and given its binary nature,
is well suited to be solved as QUBO. Its restrictive formu-
lation however, which considers only two colors and two
cars per model, limits its applicability in industry [5]. This
paper, therefore, examines two generalizations of the BPSP:
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the Multi-Car Paint Shop Problem (MCPSP), which extends
the considered cars per model, and theMulti-CarMulti-Color
Paint Shop Problem (MCMCPSP), which further extends
the considered colors. Both problems were only recently
introduced by Yarkoni et al. in 2021 [6] and are thus not
yet extensively studied. Their research introduced both gen-
eralizations but focused exclusively on the binary MCPSP
which they solved using D-wave’s Quantum Annealer. The
modelling and solving of the non-binary MCMCPSP was left
up to future research.

QUBO has been proposed as a potential unifying model
to tackle many combinatorial optimization problems encoun-
tered in operations research [7]. Contrary to what the
naming would suggest, QUBO can be applied to more gen-
eral optimization problems which often are constrained and
non-binary. For many classical combinatorial optimization
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problems, QUBO formulations have already been pro-
posed [8], [9]. Furthermore, the similarity between QUBO
and the Ising Model makes it especially appealing for
research, as this enables the problems to be solved by Ising
machines such as the D-wave Quantum Annealer [10] and
Fujitsu Quantum-inspired Computing Digital Annealer [11],
as done by Yarkoni et al. [6] to solve theMCPSP. The general
QUBO formulation is defined in (1). Q ∈ Rn×n is a symmet-
ric matrix and the goal is to minimize the energy E of the
model over the binary variable vector x.

min
x∈{0,1}n

E = xTQx (1)

Solving non-binary and/or constrained problems involves
reformulation techniques to turn the problems into QUBO.
These reformulation techniques tend to increase the problem
size and add additional constraint factors in the energy of
the system which can obscure the main objective [8], [9].
Consequently, it becomes challenging to identify problems
suitable for QUBO as well as efficient algorithms that out-
perform classical approaches utilizing the original problem
representation.

The choice is made to solve the problems with a
self-implemented QUBO solving algorithm instead of a ded-
icated high-end commercial QUBO solver, as this allows
for the implementation and analysis of solving capabilities
which are not yet available in commercial QUBO solvers. The
chosen algorithm is a Scatter Search (SS) that uses Univariate
Marginal Distribution Algorithm (UMDA) to combine solu-
tions. For this SS, the performance improvement was shown
in [12] compared to an existing SS that uses path relinking to
combine solutions, which has been reported to be competitive
on QUBO problems [13].
Since not only the binary MCPSP but also the non-binary

MCMCPSP are solved within this paper, the SS is extended
to be able to exploit the constrained structure of the consid-
ered problems to compensate for the additional complexity
introduced by formulating non-binary problems into QUBO.
The constrained structure the extended SS exploits are 1-hot
constraints and the more general k-hot constraints, as these
often appear in QUBO formulations of other well-known
optimization problems such as permutation problems and
assignment problems [8], [9]. These constraints link certain
binary variables within the problem, allowing only k of them
to be equal to one, hence reducing the actual feasible binary
solution space. Exploitation of these constraints can therefore
considerably improve the solving capabilities. It is no sur-
prise that current high-end commercial QUBO solver have
implemented or are researching such capabilities. However
to the best of our knowledge, research and implementation
has mostly been limited to 1-hot constraints and not the more
general k-hot constraint, as is for example the case for 3rd
and 4th generation of Fujitsu Quantum-inspired Computing
Digital Annealer (DA) [11].
The results of the QUBO solving methods are compared

to classical algorithms that use the natural representation
of the problems. The first method is a self-implemented

integer-based Random Parallel Multi-start Tabu Search
(RPMTS), which performs multiple random-restart itera-
tions of parallel tabu searches to fully utilize the CPU
cores. This is the simplest version of a Multi-start Tabu
Search (MTS), which have shown to be competitive for
the Quadratic Assignment Problem (QAP) [14]. A second
method is multi-color extension of the Black-first heuristic
used by Yarkoni et al. to solve the MCPSP [6], which can
also be used to solve the MCMCPSP.

The research of Yarkoni et al. in 2021 [6] was performed
in collaboration with the Volkswagen Group and includes real
industrial data which are not publicly available. To the best of
our knowledge, there is currently no public dataset available
that can be used to study the MCPSP and MCMCPSP. There-
fore, randomly generated problem instances are used within
the paper.

The main contribution within this paper is the mod-
elling and solving of novel QUBO formulations to two
generalizations of the BPSP which are more applicable to
industry. Additionally, novel extensions are proposed for the
self-implemented QUBO solving method to exploit k-hot
constraints within the problems.

The rest of this paper is structured as follows. A review of
literature is presented in Section II. The problem formulations
are presented in Section III. A description of the solving
methods used in this study follows in Section IV. The prob-
lem sets used and the experimental settings are presented
in Section V. Results are analyzed in Section VI. Finally,
conclusions and further work are discussed in Section VII.

II. PREVIOUS WORK
A. SCATTER SEARCH
Scatter Search (SS) is a metaheuristic framework which
belongs to the class of Evolutionary Algorithms (EA). The
framework was first proposed by Glover in 1977 [15]. Similar
to other EAs such as Genetic Algorithms (GA) [16] and Dif-
ferential Evolution (DE) [17], SS maintains a set of solutions
which evolves over time. Within SS, this set of solutions is
referred to as the RefSet. The SS framework contains five
main procedures to reach the final solution. These steps are
diversification generation, solution improvement, reference
set update, subset generation, and solution combination [15].
One of the main ideas behind SS, is to guarantee a level
of diversity in the solution set. This is realized by both
the diversification generation and reference set update steps.
During the diversification generation step, an initial set of
promising solutions is generated and only a diverse subset
of these solutions is selected to make the initial RefSet. Dur-
ing the iterations of the algorithm, new solutions are only
included in the RefSet by the reference set update step if
the diversity is maintained. This diversity allows to explore
more valuable solutions during the solution combination step.
Within SS, solutions are not only combined, but also locally
improved during the solution improvement step. This step
is commonly realized by Tabu Search (TS) [18]. Because
of this, SS is viewed as a sibling of TS. SS has already
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been applied to QUBO problems and shown to produce com-
petitive results [13], [19]. Exploitation of k-hot constraints
for binary problems when using SS has however remained
limited to so-called multiple-choice problems where only k
out of all the binary variables are allowed to be one [20].
Exploitation of more general k-hot constraints, containing
only a subset of binary variables has not yet been studied.
For an extensive review of the SS framework, its steps and
possible applications, we refer the reader to [21].

B. PAINT SHOP PROBLEMS
The origins of the MCPSP and MCMCPSP can be traced
back to the Paint Shop Problem for Words (PPW), which
was first introduced in 2004 by Epping et al. [1]. Within the
PPW, a word consisting of colored letters is considered.
The goal is to find the optimal permutation of the colored
letters such that the number of color switches is minimized,
while also assuring that the word itself remains the same.
Hence, the new permutation needs to have the same letters
in the same positions but they can have different colors.
Linking this formulation back to the automotive paint shop,
the letters represent different car models and the word rep-
resents a fixed sequence in which they enter the paint shop.
In [1], Epping et al. showed that this problem is NP-complete
in both the number of car models and number of colors.
Additionally, they showed that a polynomial-time dynamic
programming solution exists if the number of car models
and colors are bounded. However, given the expected values
for these parameters in industry, this dynamic programming
solution quickly becomes inapplicable in practice.

Epping et al. also introduced a restricted version of the
PPW called k-regular PPW. For this problem, every letter
appears k times per color. The BPSP is such a k-regular
instance, where k is equal to one and only two colors
are being considered. Hence, every car model in the fixed
sequence appears twice and needs to be painted once in each
color. Even though the BPSP seems very simple, subsequent
research by Bonsma et al. in 2006 [2] showed that even this
highly restricted version of the PPW is still NP-complete and
even APX-hard. Efforts have been made to find heuristics for
the BPSP with minimal expected color switches which show
good results [4]. Recently these heuristics have been beaten
by the use of a Quantum Algorithm in research performed by
Streif et al. in 2021 [5].
Due to the restrictive nature of the BPSP, its applicability to

industry is limited. Subsequent research of Yarkoni et al. [6]
therefore, introduced two new extension to the BPSP called
the Multi-Car Paint Shop Problem (MCPSP) and the Multi-
Car Multi-Color Paint Shop Problem (MCMCPSP). The first
extension removes the 1-regular nature of the BPSP and
allows the color demand per car model to be irregular. Car
models no longer appear in pairs but still only two colors
are considered. The second extension additionally removes
the restriction of only two colors, making the problem no
longer natively binary. The research of Yarkoni et al. [6] uses
an Ising machine to solve the problem and only solved
the MCPSP. The research showed that the Ising machines

are well suited for smaller to intermediate sized prob-
lems. However for large problem sizes, the performance
quickly approached that of a simple greedy algorithm. The
multi-color extension of the problem, due to its non-native
binary nature, was not yet solved and left as further research,
leading to the current paper.

C. K-HOT CONSTRAINED PROBLEMS
The reformulation techniques to tackle constrained and/or
non-native binary problems as QUBO, result in an increased
solution space and the introduction of additional constraint
factors in the energy of the system [8], [9]. These additional
energy terms often originate from k-hot constraints on the
binary variables. K-hot constraints, as the name implies, only
allow k binary variables within a set S to be equal to one,
hence limiting the actual feasible solution space of the prob-
lem. In QUBO formulations, the deviations from these k-hot
requirements are introduced in the energy of the system, mul-
tipliedwith a penalty coefficientP. By doing this, the problem
can be solved as an ‘‘unconstrained’’ problem. By properly
scaling the penalty coefficient, the energy landscape of the
system can be tuned to make sure that any feasible solution
is preferred over an infeasible one. An example of a k-hot
constraint and the resulting constraint energy factor are given
by (2) and (3). ∑

i∈S

xi = k (2)

P · (k −

∑
i∈S

xi)2 (3)

Given that most QUBO solving algorithms are based on
single bit flips [22], [23], research to improve solvability of
k-hot constrained problems has been limited to approaches
which consider the QUBO solvers to be black-box entities.
Efforts are made to reduce the overall solution space by
finding smaller formulations [24] and using decomposition
techniques [25], [26], [27], as well as trying to improve the
energy landscape of the QUBO formulations by using data
scaling techniques and penalty coefficient tuning [26], [28].

III. PROBLEM DEFINITION
Within this section, the problem definition and QUBO for-
mulation for both extensions of the BPSP are provided. For
a concrete definition of the BPSP itself, the reader is referred
to [2]. Both The MCPSP and MCMCPSP originate from an
automotive paint shop in which the following assumptions
are made. The sequence of cars that enters the paint shop is
assumed to be optimized for the final assembly step of the
cars and is therefore fixed. The sequence of cars is made up
of distinct car models and the color demand per model can
vary. Within the paint shop, the cars go through two painting
steps. The first painting step applies a filler paint layer, which
can either be black or white. The second painting step applies
a base paint layer which depends on the desired final color
of the car. The set of possible base paints can be split into
two groups; those that require the white filler paint and those
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FIGURE 1. Example scenario of the paint shop with a fixed sequence of
12 cars (a) containing four distinct models and three base paint colors
with the demand per model k and color l given by matrix dk,l . A solution
to the base paint application (c) and its corresponding solution to the
filler paint application (b).

that require the black filler paint. For every car model and
every base color, the demand over the sequence is known.
The two painting steps are assumed to be realized by separate
spray nozzles. In respective painting steps, before a new color
can be applied, the spray nozzles need to be cleaned which
can be an expensive process. The goal is therefore, to find
a color assignment over the sequence which minimizes the
number of color switches for both the filler paint nozzle and
base paint nozzle and also meets the required color demand
for the different models. When only the filler paint nozzle
optimization is considered, the definition of the MCPSP is
obtained. When only the base paint nozzle optimization is
considered, the definition of the MCMCPSP is obtained.
An example scenario can be seen in Fig. 1.

It should be noted that in the described automotive paint
shop, both problems are interdependent. Optimizing the filler
paint nozzle will influence the base paint nozzle and vice
versa, and should thus be considered at the same time. There
is however some merit in studying both problems separately,
as solving the problems sequentially is also possible. First,
the filler paint nozzle is optimized by using the MCPSP for-
mulation. This will result in a solution containing segments
of consecutive white or black cars.Within these segments, the
base paint nozzle can then be optimized using theMCMCPSP
formulation.

A. MCPSP FORMULATION
The input for the MCPSP is a fixed sequence of N cars con-
tainingM unique models, and the number of cars that need to
be painted black dk for a certain model k . Additionally, the set
of sequence positions Sk of a certain model k can be obtained
from the input sequence. The MCPSP can be modelled as a
QUBO problem by the introduction of the binary variables xi
which are equal to one if the car in position i of the sequence
is painted black. The complete QUBO formulation for the
problem can be derived from the Hamiltonian given in (6).
This Hamiltonian includes only quadratic terms and can thus
be converted to the QUBO formulation of (1). Pd is a penalty
coefficient which can be tuned. Equation (4) represents the
color switch objective. Equation (5) ensures the color demand
per car model k .

HCS =

N−2∑
i=0

(xi + xi+1 − 2 xixi+1) (4)

HD(k) = (dk −

∑
i∈Sk

xi)2 (5)

H = HCS + Pd
M−1∑
k=0

HD(k) (6)

B. MCMCPSP FORMULATIONS
Similar to the MCPSP, the MCMCPSP’s main input is a fixed
sequence of N cars containing M unique models, where the
set of sequence positions Sk of a certain model k can be
obtained from that input sequence. Compared to the MCPSP,
the MCMCPSP considers a set of C unique colors which
results in demand dk,l per model k and color l. For the
MCMCPSP, we introduce the binary variables xi,j which are
equal to one if the car in position i of the sequence is painted
in color j. The complete QUBO formulations can be derived
from the Hamiltonian given in (10). This Hamiltonian also
includes only quadratic terms and can thus be converted to the
QUBO formulation of (1) after remapping the binary matrix
variables xi,j to binary vector variables xi. Pd and P1−hot
are penalty coefficients which can be tuned. Equation (7)
represents the color switch objective. Equation (8) ensures
the demand per car model k and color l. Equation (9) ensures
that every car can only be painted in one color.

HCS =
1
2

N−2∑
i=0

C−1∑
j=0

(xi,j + xi+1,j − 2 xi,jxi+1,j) (7)

HD(k, l)= (dk,l −
∑
i∈Sk

xi,l)2 (8)

H1−hot =

N−1∑
i=0

(1 −

C−1∑
j=0

xi,j)2 (9)

H=HCS+Pd
M−1∑
k=0

C−1∑
l=0

HD(k, l)+P1−hotH1−hot (10)

IV. SOLUTION METHODS
A. PROPOSED QUBO SOLVING METHODS
We extended the SS developed in [12] to exploit QUBO
formulations that contain k-hot constraints. Extension of the
SS is limited to the way solutions are generated during
the diversification generation step, and the way solutions
are locally improved during the solution improvement step.
In both steps, measurement are taken to guarantee the valid-
ity of the k-hot constraints. However, during the solution
combination step, the viability of the k-hot constraints is not
guaranteed by UMDA. Therefore the solution improvement
methods also have capabilities to first ensure that a solution
satisfies the k-hot constraints by recycling as much of the info
in the solution as possible, before local improvement starts.

The developed solution generation methods have all been
implemented to generate random solutions that satisfy the
required constraints. Given that k-hot constrained variables
require minimal two bit flips to go from one feasible solution
to another, solution improvement is realized by multi-bit
TS implementations. The tabu elements are chosen to be
the moves. The multi-bit flip move costs are calculated
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using consecutive fast single-bit flip cost calculations to pre-
vent the heavy matrix computation in (1). Given a solution
x ∈ {0, 1}N , the cost of every x ′

∈ {0, 1}N which differs from
x in exactly one entry can be evaluated without computing
x ′TQx ′ [29]. Assuming that x and x ′ differ at index i and the
current cost xTQx is known, the cost of x ′ can efficiently be
computed as E(x ′) = xTQx + 1i where 1i is given by

1i = (1 − 2xi) · (qii +
N−1∑
j=0,j̸=i

2qijxj). (11)

A first novel multi-bit TS implementation we propose
is k-hot TS, which allows the user to define multiple
non-overlapping groups of binary variables that are linked
together with a k-hot constraint per group. Not all binary
variables need to be in a group, nor do the grouped variables
need to be consecutive. The moves that the TS considers is
either flipping a non-grouped variable (single-bit flip move)
or swapping the position of a one and a zero in a group (two-
bit flip move). The number of moves within a group of n
binary variables is thus equal to (n− k) · k . When k is equal
to n

2 , this results in (n −
n
2 ) ·

n
2 =

n2
4 moves. The possible

moves within the group thus scale polynomial in the worst
case and tends to be larger than the 1-bit flip neighborhood
of only n moves. A noticeable exception to this, is when k
is equal to one. In this case, the number of possible moves
within the group is only (n−1) ·1, which is less than the 1-bit
flip neighborhood.

A second novel multi-bit TS implementation we propose
is 1-hot/k-hot TS, which allows the user to again define
multiple non-overlapping groups of non-consecutive binary
variables. However this time the grouped variables need to
be formattable as 2D binary matrices. On every matrix, either
row-wise or column-wise k-hot constraints are applied, with
1-hot constraints applied on the other remaining axis. The
shape of the binary matrix, as well as the k-hot axis and
the k values need to be provided by the user per group. The
TS move either flips a non-grouped variable (single-bit flip
move) or swaps the position of two ones in different rows
and columns within a grouped binary variable matrix (four-
bit flip move). The combined 1-hot and k-hot constraints
divide the ones within the matrix into several distinct sets,
one per k-hot constraints. The total possible moves within the
group is thus given by every possible unique way of swapping
the ones within two of these sets. In the worst case, such a
grouped matrix containing n binary variables only contains
two of these sets, with the two resulting k values being both
equal to n

4 . This results in
n2
16 possible moves, which again

scales polynomial and tends to be larger than the 1-bit flip
neighborhood of only n moves.
Even though this multi-bit TS implementation seems quite

niche, this problem structure often occurs in assignment
problems as well as the less general form where the k-hot
constraints are also 1-hot constraints, resulting in the two-
way one-hot constrained structure which commonly occurs
in permutation problems [8], [9].

FIGURE 2. Multi-bit move example on grouped binary variables
for the first novel TS implementation that exploits k-hot constraints (a) ,
and the second novel TS implementation that exploits 1-hot and k-hot
constraints (b). Blue and white squares represent one- and zero-values
respectively.

Examples of the multi-bit flip moves used within
the novel TS implementations can be seen in Fig. 2.
Given that both novel TS implementations exhibit the
possibility of having to evaluate a large number of
moves in every TS iteration, we also developed ‘‘capped’’
versions of these multi-bit TS implementations which
confine the number of possible moves by considering
only a subset of random selected moves in every TS
iteration.
No-hot SS: This solving method refers to the basic SS

framework developed in [12]. The TS implementation used
within this SS variant hence uses only single-bit flip moves.
1-hot SS: This solving method refers to the SS framework

which has been extended to exploit binary variables that
are 1-hot constrained during the solution generation and the
solution improvement step. The TS within this SS variant
is realized by the first novel TS implementation, with the
possible k values limited to one.
k-hot SS: This solving method refers to the SS framework

which has been extended to exploit binary variables that
are k-hot constrained during the solution generation and the
solution improvement step. The TS within this SS variant is
realized by the first novel TS implementation.
1-hot/k-hot SS: This solvingmethod refers to the SS frame-

work which has been extended to exploit binary variables that
are both 1-hot constrained and k-hot constrained during the
solution generation and the solution improvement step. The
TS within this SS variant is realized by the second novel TS
implementation.

A summary of the worst-case possible moves per TS iter-
ation for a group of n bits for the different SS-based QUBO
solving methods can be seen in Table 1.

B. NATURAL REPRESENTATION SOLVING METHODS
To support the viability of the aforementioned QUBO solving
methods, a comparison with classical algorithms that use the
natural representation of the problem is required.
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TABLE 1. Worst-case possible moves per TS iteration for a group of n bits
for the different SS-based QUBO solving methods.

1) RPMTS
This solving method, uses multiple random-restart iteration
of parallel TSs and is thus similar to the SS-based QUBO
solving methods. A solution to the problems is represented by
an integer vector where the integers represent the individual
cars and their values represent the assigned colors. Compared
to the QUBO solving methods, the cost of a solution in
this integer-based method can not easily be calculated by
using (1). Instead, the integer based solutions are explicitly
checked for the number of color switches and whether or not
they meet the required color demand. Any deviation from the
required color demand is penalized by a factor PD, similar
to how this is done in the Hamiltonian’s in (6) and (10).
All the different iterations and parallel TSs use the same TS
parameter but a different starting solution.

2) MAINTAIN COLOR
This solving method, as the name implies starts by applying a
certain color over the sequence of cars and attempts to apply
it until this is no longer possible. When a car in the sequence
is encountered that no longer requires the current color, the
color is switched. The new color is determined as the color
that still needs to be applied the most over all the cars in
the sequence and can be applied to the current car. If ties
are encountered, the color with the lowest index is selected.
All the possible colors are used once as starting color and
the best encountered solution is returned. This heuristic is a
natural multi-color extension of the black-first heuristic used
by Yarkoni et al. when solving the MCPSP [6]. This solv-
ing method is deterministic and has limited computational
requirements. It therefore serves as a lower bound on the
desired performance.

V. EXPERIMENTAL PROTOCOL
A. DATASETS
Since no public dataset is available for the MCPSP and
MCMCPSP, a new problem generator was created. Given the
N number of cars, M unique models and C unique base col-
ors, the problem generator creates a newMCPSP/MCMCPSP
instance. The generator first splits the total number of cars N
intoM different non-emptymodel groups. The cars permodel
then get randomly assigned a base color, to obtain the color
demand dk,l per model k and base color l. It is possible that
certain values of dk,l are zero. The base colors get split into
two non-empty paint groups, requiring the white and black
filler paint respectively. Finally, a random car sequence is
generated containing the required cars per model.

FIGURE 3. Example of problem instance containing 200 cars (N), 10 car
models (M) and 5 base colors (C).

When generating the data, a check is performed to ensure
a minimal amount of flexibility within the problem. It is
possible that all cars of a certain model need to be painted
with the same filler and/or base color and thus can not be
optimized within the respective problem. With this in mind,
only instances are generated for which the number of these
fixed cars remains limited to 30%. The decision of 30% is
in line with the data filtering performed by Yarkoni et al.
on the industrial data used in [6]. An visualization of the
data contained within a single problem instance can be seen
in Fig. 3.

For this paper, data were generated for problems of 10 cars
up to 1500 cars. The decisionwasmade to scale the number of
car models proportional to the number of cars in the problem
asM = max(N · 0.05, 3). In terms of colors, the analysis has
been limited to problems containing either 5, 10 or 15 colors.
Since the MCPSP neglects the base paint color information,
its complexity is independent of the number of base colors
C used to generate the data. Therefore, only the generated
problem instances containing 5 colors were used to analyze
performance for theMCPSP. The number of cars per problem
were chosen to be equal to 10, 50, 100, 200, 300, 500, 800,
1000, 1200, and 1500 for the MCPSP. For the MCMCPSP,
the complexity is highly dependent on the number of base
colors in the problem and can quickly become unmanageable
to solve in limited time when the number of cars is too large.
Therefore, the cars per problem were chosen to be equal to
10, 30, 50, 80, 100, 120, and 150 cars.

B. BENCHMARKING
Parameter tuning for the SS-based QUBO solving methods
and the RPMTS has been performed in good faith to give
good performance, but is not guaranteed to be optimal. The
interested reader is referred to [12], for a detailed list of
the parameters used within the SS. The different SS-based
QUBO solving methods all use the same parameter values to
be able to isolate the influence of the different solution gener-
ation and improvement methods, except for the tabu tenure.
The tabu tenure of the different TS methods is scaled with
the problem size by placing it equal to 10% of the number
of unique moves being considered in every TS iteration. For
the RPMTS, the number of parallel TS searches has been set
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FIGURE 4. Performance of solving methods in color switch (CS)
improvement over Maintain color heuristic baseline for MCPSP. Only valid
solutions are shown.

equal to the RefSet size in the SS-based methods and the tabu
tenure is set as 10% of the number of cars in the problem. The
penalty coefficient values used in the QUBO formulations
and used to penalize infeasible solutions in the RPMTS have
all been set equal to the Maintain color heuristic solution
value for the problem instances.

First the filler paint nozzle optimization will be dis-
cussed in Section VI-A. Similar to the procedure used by
Yarkoni et al. in [6], the timing for every seeded run is scaled
proportionally to the number of cars as N

3 seconds. The
base paint nozzle optimization is discussed in VI-B. As the
complexity increases with the number of colors C , the timing
per seeded run is determined as N ·C

3 seconds. For every
combination of number of cars N and number of colors C ,
five instances are solved with five seeded runs each.

All of the SS-based QUBO solving methods as well as the
RPMTS have been implemented using the Rust Programming
Language. the Rust-based source code was then developed
as a Python module using the Maturin crate. Python could
then be used to perform the benchmarking and analysis of
the experiment results. The experiments were performed on
Ubuntu 20.04.4 LTS with an Intel Core i7-9700K CPU, using
Python version 3.7.12 and Rust version 1.66.1.

VI. RESULTS AND DISCUSSION
A. MCPSP RESULTS
Of the QUBO solving methods mention in Section IV-A,
two can be used to solve the MCPSP. These are no-hot SS
and k-hot SS. When using the latter, it is possible to exploit
the k-hot constraints enforced by the color demand on the
car models in (5), resulting in M distinct groups of binary
variables. Results are generated when all possible moves are
being considered in every TS iteration, as well as when only
a random subset is being considered in the capped version.
The random subset size has been chosen to be equal to the
size of the 1-bit flip neighborhood. This means that the same
number of moves are being considered in every TS iteration
as when using no-hot SS.

Fig. 4 and Fig. 5 show that for small problems up to
200 cars, all solving methods perform equally well compared
to the heuristic baseline. For the very small problems, only

FIGURE 5. Average color switches (CS) in the solutions of different solving
methods for MCPSP. Only valid solutions are included in the average.

limited improvement is possible. When looking at the results
for RPMTS and no-hot SS, which both do not exploit problem
structure, it can be seen that no-hot SS is able to outperform
RPMTS for all problems. These results confirm that the
binary MCPSP is well suited to be solved as QUBO. For
problems between 300 cars and 800 cars, a sizeable number
of runs for both methods is able to improve over the Maintain
color heuristic. However for problems containing a 1000 cars
or more, the average performance degrades below the Main-
tain color heuristic. Performance can be improvedwhen k-hot
constraints within the problem are being exploited. One must
however be careful when doing so, as exploiting k-hot leads
to many possible moves in the TS iterations of the solu-
tion improvement step. Evaluating all of them, considerably
increases the computational requirements. This explains the
degraded performance of the uncapped k-hot SS. When the
number of moves in every TS iteration is capped, noticeable
improvements over the Maintain color heuristic are obtain-
able for problems up to 1500 cars. For example, for problem
instances containing 1000 cars, the solutions obtained with
the capped version of k-hot SS only contain 56 color switches
on average compared to 100 color switches when using the
heuristic.

B. MCMCPSP RESULTS
For the MCMCPSP, four QUBO solving methods can be
used. These are no-hot, 1-hot, k-hot and 1-hot/k-hot SS.
The 1-hot variant allows the exploitation of the 1-hot color
assignment constraints per car in the sequence given by (9),
resulting in N distinct groups of binary variables. The k-hot
variant allows the exploitation of the k-hot color demand
constraints per model and color given by (8), resulting in
M · C distinct groups of binary variables. The 1-hot/k-hot
variant allows for the exploitation of both constraint types at
the same time. This results in M distinct groups of binary
variables, one per car model. Every group is shaped in a
matrix which contains as many rows as there are cars of that
corresponding car model in the sequence, and which contains
as many columns as there are colors in the problem. The k-hot
constraints are applied column-wise.

Similar to theMCPSP, results are produced both when con-
sidering all moves in every TS iteration and when considering
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FIGURE 6. Performance of solving methods in color switch (CS)
improvement over Maintain color heuristic baseline for MCMCPSP. Only
valid solutions are shown.

only a random subset of moves equal to the size of the 1-bit
flip neighborhood in the capped version. For the 1-hot SS
variant, the number of moves in every TS iteration is always
less than the 1-bit flip neighborhood so there is no need to cap
the number of moves.

Similar to the MCPSP, Fig. 6 and Fig. 7 show that for
very small problems, only limited improvement is possible
over the heuristic baseline. For both 5, 10, and 15 colors,
all solving methods show similar performance for problems
up to 50 cars. Compared to MCPSP, no-hot SS is no longer
able to consistently outperform RPMTS and for 10 and
15 colors shows considerably worse performance. This is
to be expected, given the non-native binary nature of the
MCMCPSP, resulting in large problem sizes when solved as
QUBO. By exploiting the 1-hot constraints, which do not
considerably increase the number of moves in every TS iter-
ation, it is again possible to consistently outperform RPMTS.
Further improvements can be obtained by exploiting the k-hot
constraints and by exploiting both 1-hot and k-hot constraints.
The additional improvements are more noticeable in more
complex problems containing more colors. For problems
containing 5 colors, exploiting k-hot is not able to improve
over exploiting 1-hot constraints, even when capping the
number of moves per TS iteration. However, capped versions
do always outperform their uncapped counterparts both in

FIGURE 7. Average color switches (CS) in the solutions of different solving
methods for MCMCPSP. Only valid solutions are included in the average.

exploiting k-hot constraints and in exploiting both 1-hot and
k-hot constraints. By using the capped version of 1-hot/k-hot
SS, solutions contained on average only 18, 32, and 39 color
switches for problems containing 150 cars and 5, 10, and
15 colors respectively. Compared to this, the Maintain color
heuristic results in 39, 53, and 66 color switches on average
respectively.

VII. CONCLUSION AND FURTHER WORK
The research within this paper shows the viability of using
QUBO solvers to solve two novel industry-inspired problems
encountered within the automotive paint shop. Both a native
(MCPSP) and non-native binary problem (MCMCPSP) are
modelled and solved as QUBO. Methods to exploit k-hot
constrained structures within the problem formulations are
investigated. The results for the native binaryMCPSP showed
that exploitation of k-hot constraints when solving the prob-
lem as QUBO, is not required to be able to outperform the
heuristic and RPMTS for problems up to 800 cars. Even
better results can however be obtained when the k-hot con-
strained are exploited, but care should be given the number
of multi-bit flip moves that are being considered during every
TS iteration. The results of the non-native binary MCM-
CPSP showed that without exploiting k-hot constraints when
solving the problem as QUBO, it is not possible to consis-
tently outperform the heuristic and RPMTS. At a minimum,
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1-hot constraints need to be exploited to bring the solving
capabilities to a useful level. By exploiting k-hot constraints
performance can be further improved, but again care should
be given to the number of moves that are being considered in
ever TS iteration to limited computational requirements.

REFERENCES
[1] T. Epping, W. Hochstättler, and P. Oertel, ‘‘Complexity results on a paint

shop problem,’’ Discrete Appl. Math., vol. 136, no. 2, pp. 217–226, 2004.
[2] P. Bonsma, T. Epping, and W. Hochstättler, ‘‘Complexity results on

restricted instances of a paint shop problem for words,’’ Discrete Appl.
Math., vol. 154, no. 9, pp. 1335–1343, 2006.

[3] T. Epping, W. Hochstättler, and M. E. Lübbecke, ‘‘MaxFlow-MinCut
duality for a paint shop problem,’’ in Operations Research Proceedings,
U. Leopold-Wildburger, F. Rendl, and G. Wäscher, Eds. Berlin, Germany:
Springer, 2003, pp. 377–382.

[4] S. D. Andres, ‘‘Greedy versus recursive greedy: Uncorrelated heuristics for
the binary paint shop problem,’’ Discrete Appl. Math., vol. 303, pp. 4–7,
Nov. 2021.

[5] M. Streif, S. Yarkoni, A. Skolik, F. Neukart, and M. Leib, ‘‘Beating
classical heuristics for the binary paint shop problem with the quantum
approximate optimization algorithm,’’ Phys. Rev. A, Gen. Phys., vol. 104,
no. 1, Jul. 2021, Art. no. 012403.

[6] S. Yarkoni, A. Alekseyenko, M. Streif, D. Von Dollen, F. Neukart, and
T. Bäck, ‘‘Multi-car paint shop optimization with quantum annealing,’’ in
Proc. IEEE Int. Conf. Quantum Comput. Eng. (QCE), Los Alamitos, CA,
USA, Oct. 2021, pp. 35–41.

[7] G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, ‘‘A unified mod-
eling and solution framework for combinatorial optimization problems,’’
OR Spectr., vol. 26, no. 2, pp. 237–250, Mar. 2004.

[8] A. Lucas, ‘‘Ising formulations of many NP problems,’’ Frontiers Phys.,
vol. 2, p. 5, Jun. 2014.

[9] F. Glover, G. Kochenberger, and Y. Du, ‘‘A tutorial on formulating and
using QUBO models,’’ 2019, arXiv:1811.11538.

[10] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze,
N. Dickson, R. Harris, A. J. Berkley, J. Johansson, and P. Bunyk, ‘‘Quan-
tum annealing with manufactured spins,’’ Nature, vol. 473, no. 7346,
pp. 194–198, May 2011.

[11] H. Nakayama, J. Koyama, N. Yoneoka, and T. Miyazawa, ‘‘Third gen-
eration digital annealer technology,’’ Fujitsu Ltd., Kawasaki, Japan,
Fujitsu Ltd., Kawasaki, Japan. [Online]. Available: https://www.fujitsu.
com/global/documents/about/research/techintro/3rd-g-da_en.pdf

[12] J. Pauckert, P. Debevere, M. Parizy, and M. Ayodele, ‘‘Comparing solu-
tion combination techniques in scatter search for quadratic unconstrained
binary optimization,’’ in Proc. GECCO Companion. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 2241–2249.

[13] Y. Wang, Z. Lü, F. Glover, and J.-K. Hao, ‘‘Path relinking for uncon-
strained binary quadratic programming,’’ Eur. J. Oper. Res., vol. 223, no. 3,
pp. 595–604, Dec. 2012.

[14] T. James, C. Rego, and F. Glover, ‘‘Multistart Tabu search and diversifica-
tion strategies for the quadratic assignment problem,’’ IEEE Trans. Syst.,
Man, Cybern. A, Syst. Humans, vol. 39, no. 3, pp. 579–596, May 2009.

[15] F. Glover, ‘‘Heuristics for integer programming using surrogate con-
straints,’’ Decis. Sci., vol. 8, no. 1, pp. 156–166, Jan. 1977.

[16] X.-S. Yang, ‘‘Chapter 6—Genetic algorithms,’’ in Nature-Inspired Opti-
mization Algorithms, 2nd ed. Cambridge, MA, USA: Academic Press,
2021, pp. 91–100.

[17] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[18] F. Glover andM. Laguna, Tabu Search. Boston, MA, USA: Springer, 1998,
pp. 2093–2229.

[19] M. Samorani, Y. Wang, Y. Wang, Z. Lv, and F. Glover, ‘‘Clustering-driven
evolutionary algorithms: An application of path relinking to the quadratic
unconstrained binary optimization problem,’’ J. Heuristics, vol. 25, nos. 4–
5, pp. 629–642, Oct. 2019.

[20] F. Gortázar, A. Duarte, M. Laguna, and R.Martí, ‘‘Black box scatter search
for general classes of binary optimization problems,’’ Comput. Operations
Res., vol. 37, no. 11, pp. 1977–1986, Nov. 2010.

[21] M. Kalra, S. Tyagi, V. Kumar, M. Kaur, W. K. Mashwani, H. Shah,
and K. Shah, ‘‘A comprehensive review on scatter search: Techniques,
applications, and challenges,’’ Math. Problems Eng., vol. 2021, pp. 1–21,
May 2021.

[22] A. Verma and M. Lewis, ‘‘Penalty and partitioning techniques to improve
performance of QUBO solvers,’’ Discrete Optim., vol. 44, May 2022,
Art. no. 100594.

[23] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H.
G. Katzgraber, ‘‘Physics-inspired optimization for quadratic unconstrained
problems using a digital annealer,’’Frontiers Phys., vol. 7, p. 48, Apr. 2019.

[24] S. González-Bermejo, G. Alonso-Linaje, and P. Atchade-Adelomou,
‘‘GPS: A new TSP formulation for its generalizations type QUBO,’’Math-
ematics, vol. 10, no. 3, p. 416, 2022.

[25] S. T. Goh, S. Gopalakrishnan, J. Bo, and H. C. Lau, ‘‘A hybrid framework
using a QUBO solver for permutation-based combinatorial optimization,’’
2021, arXiv:2009.12767.

[26] S. T. Goh, J. Bo, S. Gopalakrishnan, and H. C. Lau, ‘‘Techniques to
enhance a QUBO solver for permutation-based combinatorial optimiza-
tion,’’ in Proc. Genetic Evol. Comput. Conf. Companion. New York, NY,
USA: Association for Computing Machinery, Jul. 2022, pp. 2223–2231.

[27] S. Okada, M. Ohzeki, and S. Taguchi, ‘‘Efficient partition of integer
optimization problems with one-hot encoding,’’ Sci. Rep., vol. 9, no. 1,
p. 13036, Sep. 2019.

[28] M. Ayodele, ‘‘Penalty weights in QUBO formulations: Permutation prob-
lems,’’ in Evolutionary Computation in Combinatorial Optimization.
Madrid, Spain: Springer, 2022, pp. 159–174.

[29] F. Glover and J.-K. Hao, ‘‘Efficient evaluations for solving large 0–1
unconstrained quadratic optimisation problems,’’ Int. J. Metaheuristics,
vol. 1, no. 1, pp. 3–10, 2010.

PIETER DEBEVERE received the B.S. degree
in electrical engineering and the M.S. degree in
industrial engineering and operations research
from Ghent University, Ghent, Belgium, in
2020 and 2022, respectively.

In 2022, he joined the company Fujitsu Ltd.,
as a Research Intern, under the Vulcanus in Japan
Internship Program, organized by the EU-Japan
Centre for Industrial Cooperation. His research
interests include combinatorial optimization,

machine learning, and operations research.

MASAHIKO SUGIMURA received the B.S.
degree in applied mathematics and physics and
the M.S. degree in applied system science from
Kyoto University, Kyoto, Japan, in 1993 and 1995,
respectively.

He joined Fujitsu Ltd., Kawasaki, Japan,
in 1995, where he is currently a Principal
Researcher and is engaged in research areas of
image recognition, machine learning, and usabil-
ity engineering. From 2006 to 2010, he was a

User Experience Designer and a Consultant with Fujitsu Design Ltd. Since
2010, he has been engaged in research and development on image retrieval
and combinatorial optimization with Fujitsu Consulting (Canada) Inc., and
Fujitsu Ltd.

MATTHIEU PARIZY received the B.Eng. and
M.Eng. degrees in computer science from ESIEE
Paris, France, in 2006 and 2008, respectively, and
the Ph.D. degree in computer engineering from
Waseda University, in 2023.

He joined the company Fujitsu Ltd., Kawasaki,
Japan, in 2008, where he is currently a Research
Director. His research interests include combina-
torial optimization, machine learning, and VLSI
design.

Dr. Parizy was a recipient of the IEEE International Conference on
Consumer Electronics Best Paper Award, in 2023.

VOLUME 11, 2023 97777


