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ABSTRACT The prediction of software vulnerability requires crucial awareness during the software
specification, design, development, and configuration to achieve less vulnerable and secure software.
Software vulnerability prediction is the process of model development that can be beneficial for the early
prediction of vulnerable components at various granularity levels such as file, class, and method. Machine
learning and deep learning techniques are gaining popularity in developing vulnerability prediction models.
This paper performs a systematic review of primary studies from 2000 to 2022 in the literature that used
machine learning and deep learning techniques for software vulnerability prediction. In addition to this, the
paper understands the concept of resampling methods to handle imbalanced dataset problems; summarizes
the important hyperparameter optimization methods to tune hyperparameters; explains the types of features,
data pre-processing techniques, dimensionality reduction, and feature selection techniques. Furthermore,
encapsulating the comparison of ML/DL techniques and highlighting the best technique is performed. The
paper identifies seventy-seven research studies that use thirty-two machine learning and five deep learning
techniques. Additionally, it identifies five different feature types, data pre-processing methods, thirty-seven
datasets, nine data balancing techniques, twenty-six performancemeasures, six hyperparameter optimization
methods, and the ranges of hyperparameters. Finally, guidelines for researchers to increase the productivity
of software vulnerability prediction models have been illustrated in the paper.

INDEX TERMS Systematic literature review, software vulnerability prediction, machine learning, deep
learning.

I. INTRODUCTION
The demand for software has increased with the advent of the
technological world. Furthermore, the fourth Industrial Rev-
olution (IR 4.0) has promoted the automation of information
systems that gave way for hackers to intrude into the systems
leading to financial and confidential data losses. A few exam-
ples that state the damages caused by software vulnerabilities
are popular web browser plugins such as Adobe Flash Player
and Oracle Java; open-source software Heartbleed, Shell-
Shock, and Apache Commons. The browser plugins have
threatened the security of millions of internet users and the
open-source software has threatened thousands of companies
and customers across the world. In addition to this, financial
losses have also occurred of 1.7 million USD [1] due to
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software failure. In 2017, cybercrimes also made organiza-
tions spend 1.4 million USD and 1.3 million USD to deal
with cyberattacks in 2018 [2]. There has been an exponential
increase in software vulnerabilities since 2016 reported by the
National Institute of Standards and Technology (NIST) [3].

Software vulnerability can be defined as an ‘‘error’’ that
is caused during the software development life cycle by the
programmingmistakes of the developers. Vulnerabilities pro-
vide loopholes for attackers to invade information systems
and perform malicious activities [4]. Prediction of vulner-
able components at a prior stage formulates an essential
step in achieving the quality and security of the software.
The software vulnerability prediction (SVP) model classifies
the software components as vulnerable and non-vulnerable
classes. In a software security context, a vulnerability analysis
system is said to be sound if it rejects all the vulnerable
programs and is said to be complete if it accepts all the secure
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programs. The vulnerability analysis system gives binary
output and there exists a vulnerability discovery/reporting
system that describes the details of discovered vulnerabilities
i.e. type, location, etc.

Different approaches have been incorporated over the
past years to mitigate the issues caused by software vul-
nerabilities. Conventional approaches include static analy-
sis, dynamic analysis, hybrid analysis, software penetration
testing, fuzz testing, and static data-flow analysis. These
approaches have the drawback of high time consumption and
high false-positive rates therefore machine learning (ML) and
deep learning (DL) approaches have become popular [5]. The
review paper [4] has categorized the research studies in the
area of software vulnerability analysis and discovery based on
ML and data-mining techniques into four categories namely
software metrics-based SVP models, approaches on anomaly
detection, pattern recognition of vulnerable code, and miscel-
laneous approaches. Paper [6] discusses existing approaches
such as static analysis, hybrid analysis, and testing to mitigate
program security vulnerabilities.

The information regarding SVP models needs to be dis-
seminated as it can help the developers tackle the problem of
software vulnerability at the early stages of software devel-
opment. There exists to review works that give insight into
the approaches, challenges, and open issues in the field of
program security vulnerability [6]; conventional and current
(ML and data-mining) approaches in the area of software
vulnerability analysis and discovery [4]; encapsulation of the
process of predicting software vulnerability using machine
learning techniques with feature engineering, categorizing
existing works into four feature types, challenges faced dur-
ing feature-basedML [7]; focusing on current research issues
in software vulnerability detection and reducing the gaps by
presenting a taxonomy of research interests and ML methods
[8]; and knowledge about data preparation challenges in the
field of SVP [9].

Recent review works have focused on categorizing the
works mainly based on detecting the vulnerable compo-
nents, description of approaches to mitigate vulnerabilities,
or the data preparation process. The current paper is moti-
vated to unveil the knowledge about the factors that affect
the efficiency of SVP models. Mainly, it revolves around
three main factors i.e. the hyperparameters, feature selection
(FS) criteria, and data balancing approaches. This knowledge
will assist researchers in analyzing the better understanding
of the ways to improve the efficacy of SVP models. This
review paper aims to encapsulate, analyze, and evaluate the
empirical validation of the ML, DL, resampling, FS, and
hyperparameter optimization (HPO) techniques used in pre-
vious research papers. The paper reviews the research studies
between 2000 to 2022.

The contributions are as follows:
• Searches the existing research works that involve ML
and DL techniques in SVP models.

• Understanding the concept of data imbalance and the
measures to tackle it.

FIGURE 1. Systematic literature review process.

• Summarizing the important hyperparameters and their
ranges for each ML and DL technique that can be tuned
to enhance the productivity of SVP models.

• Explaining which type of features can be used in con-
structing SVP models and how FS methods impact the
performance.

• Encapsulating the comparison of ML/ DL techniques
based on different performance measures and highlight-
ing the best technique.

The remaining paper is organized as Section II explains the
methodology to conduct the review, Section III presents the
results of SLR, Section IV gives the threats to validity, and
Section V concludes the paper and suggests future recom-
mendations.

II. RESEARCH METHODOLOGY
The current paper has performed a systematic literature
review (SLR) based on the procedure mentioned by [10]
and [11] depicted in FIGURE 1. The first stage of SLR is
the Planning Stage which includes the formation of research
questions and building a review protocol that focuses on
research questions.

Creation of a search string, selecting a database to search
primary studies, describing inclusion or exclusion criteria,
and creation of data extraction form are the steps of the
review protocol. The second stage is the Conducting Stage
where databases are searched to collect relevant primary stud-
ies, eliminated using inclusion/exclusion criteria, performing
quality assessment tests, and extracting appropriate data from
final primary studies. Finally, the last stage summarizes the
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TABLE 1. Research questions framed for the systematic literature review.

TABLE 2. Framing of search string.

data extracted, illustrates the research questions, and reports
the gaps and future suggestions.

A. FORMULATING RESEARCH QUESTIONS
The research questions are articulated to analyze and evaluate
the empirical evidence gained from the research studies using
ML and DL techniques for SVP in the literature. Table 1
defines the research questions with the motivation behind
formulating them.

B. SEARCH STRATEGY
The paper uses a search strategy to identify all appropri-
ate research papers from different digital libraries using the
search strings.

1) SEARCH STRINGS
PICOC (Population, Intervention, Comparison, Outcomes,
and Context) criteria suggested by [12] are used to formulate
the search strings. The steps to frame search strings are as
follows:

• Search terms are identified from PICOC
• Search terms that extract the studies to answer the
research questions

• Identification of terms in apt titles, keywords, and
abstracts

• Find synonyms, antonyms, and other spelling
• Boolean ANDs and ORs are used to identify search
string

2) SOURCES SEARCHED
The current study has tried to use popular databases to search
relevant studies for the survey such as IEEE Xplore, ACM
Digital Library, SpringerLink, ScienceDirect, World Scien-
tific, Wiley online library, and Google Scholar.

C. STUDY SELECTION PROCESS
The research studies for SLR are searched from the sources
using the search string mentioned in section B.1 and
section B.2. The paper restricts the search from 2000 to 2022.
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FIGURE 2. Study selection process.

FIGURE 2 represents the study selection process. Initially,
on searching various databases we found 1813 articles.
Inclusion/Exclusion Criteria:
Inclusion and exclusion criteria are used for refining the

collection of research studies obtained after searching the
databases to figure out the most relevant study for the SLR.

Inclusion Criteria

• Studies that are related to SVP
• A study should have empirical validation of SVP
• Studies that include machine learning or deep learning
techniques

• Studies that include conventional approaches are
included for comparison

• Considered the studies that are published in journals and
conferences

Exclusion Criteria

• Eliminating redundant studies
• Studies not available in English
• Excluding multiple versions of one study
• Full-text of the study is not available

Out of 1813 primary studies, 471 studies are included based
on title and abstract. Further, we downloaded these studies for
full-text review and finally shortlisted 164 studies.

D. QUALITY ASSESSMENT
We created the quality assessment questionnaire to evaluate
the applicability and strength of the primary studies. These
questions are considered by the suggestions in [13]. Table 3
presents the quality questions which are scored as 1 for
‘‘yes’’, 0.5 for ‘‘partly’’, and 0 for ‘‘no

The quality score will rank the papers as high (8 ≤ score ≤

12), medium (4< score< 8), and low (score≤ 4). 164 studies
went through a quality assessment test and 67 studies were
taken into consideration that have medium or high ranks. The
quality score of each primary study is mentioned in Appendix
A. There lies a possibility that the search strategy might skip
some of the relevant studies therefore manual search such as
forward and backward snowballing is performed [14].

E. SNOWBALLING
The snowballing obtains additional studies that are not
obtained from searching automatically or are not present
in the digital libraries. This technique extracts the relevant
papers from citations or references list of the set of studies
included. Further based on inclusion/exclusion and quality
assessment criteria these papers are added to the final pool.
The final pool contains 77 primary studies mentioned in
Table 4.
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FIGURE 3. Year-wise distribution of research publications.

TABLE 3. Quality assessment questions.

TABLE 4. Search results.

III. RESULTS
The data is extracted from the selected studies to answer
the research questions. Out of these 77 studies, 25 are
published in journals, 48 are published at conferences,

2 in the symposium, and 2 in the workshop. The research
studies related to SVP published in different years are
depicted in FIGURE 3. The highest number of publica-
tions was observed in 2019. Around 85% of publications
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TABLE 5. Software vulnerability prediction studies.
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TABLE 5. (Continued.) Software vulnerability prediction studies.

have been identified after 2014 which indicates the grown
interest in ML and DL. Table 5 provides the unique Study
ID corresponding to each primary study selected and its
reference.

A. ANSWERS TO RESEARCH QUESTIONS
RQ 1: What are the various types of ML and DL techniques
used for SVP?

After reviewing the primary studies it is noticed that a
large variety of ML and DL techniques have been applied to
increase the productivity of SVP models. Table 6 describes
various ML and DL techniques and their frequency of usage
in different studies. There are 32machine learning algorithms
and 5 deep learning algorithms that have been implemented
in the area of vulnerability prediction of software compo-
nents. RF and SVM are used in 33 studies, LR is used in
32 studies, DT in 26 studies, NB in 30 studies, and KNN in
18 studies. Conventional machine learning algorithms have
been used in most of the studies whereas ML techniques like
ensemble learning, gradient boosting, adaboost, RUSBoost,
and XGBoost are used in a few studies. In the case of deep

learning, LSTM is used in 12 studies, GRU and DNN in
5 studies, CNN in 4 studies, and BPNN in 2 studies. Further-
more, Table 7 depicts the tools used to implement ML/DL
techniques. It has been observed thatWeka is the most widely
used tool for implementing machine learning algorithms and
Tensorflow with Keras is used widely for deep learning.

RQ 2: Which empirical validation is found for predicting
vulnerabilities using ML and DL approaches mentioned in
RQ 1?

This question determines the types of features used for
ML/DL models, feature extraction, reduction or selection
techniques, the types of datasets used and their description,
data balancing techniques, training strategies applied, mea-
sures to evaluate the performance of SVP models, which
hyperparameters are tuned and using which HPO method.

RQ 2.1: Which feature types are used for SVP models?
The type of feature is vital to process ML/DL algorithms.

This paper classifies feature types into 5 categories code
attributes, metrics (lines of code, function calls, etc.), text
features (bug reports, function calls, source code imports),
a combination of metrics and text features, and patterns
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TABLE 6. Machine learning and deep learning algorithms.

(micro, nano). Table 8 describes the studies where the
above-mentioned feature types have been used. It has been

found that metrics and text-features are used in 37 and
43 studies respectively. Only two studies [46] and [73] used a
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TABLE 7. Tools for implementing ML/DL techniques.

TABLE 8. Types of features used for SVP models.

TABLE 9. Feature extraction, reduction, or selection techniques used.
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TABLE 10. Datasets used in the SVP area.
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TABLE 10. (Continued.) Datasets used in the SVP area.
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TABLE 10. (Continued.) Datasets used in the SVP area.

TABLE 11. Data balancing techniques used.

TABLE 12. Cross-validation methods.

combination of metrics and text features. Three studies [32],
[33], and [39] have utilized patterns, and four studies [7], [13],
[16], and [68] used code attributes.
RQ 2.2: Which feature extraction, reduction, or selection

techniques have been used?
Feature extraction techniques are used to extract the met-

rics, patterns, and text attributes from the data source as the
data may be present in the raw form there. The data input
given to ML/DL methods needs to be pre-processed for the
execution of the experiment. Some studies have included
various dimensionality reduction and selection techniques
to prioritize the important and dominant features thereby
optimizing the SVP models. Principal component analysis
(PCA) is a good technique for identifying linearly uncor-
related dimensions in large datasets with potentially many
inter-correlated features applied in [41] and [43]. PCA is
applied after themin-max normalization of the dataset in [22].
Min-max normalization allows our predictors to operate in a
standardized data space rather than a raw data space.

Researchers used a variety of feature selection strategies
to extract the most significant characteristics from a vast
feature vector. It removes irrelevant and noisy features from
prediction models to improve their performance. The effect
of dimensionality reduction approaches (feature selection,
principal component analysis, and confirmatory factor syn-
thesis) on the output of SVP models was examined by

Stuckman et al. [31]. Additionally, rather than within-project
prediction, dimensionality reduction strategies fared better
in cross-project prediction. The [34] study used Information
Gain feature selection approaches to extract notable features
and build the ProminentIG (F3) feature set. Ranking features
using the Wilcoxon rank sum test is employed by [44]. The
research study [47] used Point-Biserial Correlation among
the nano-patterns and metrics in vulnerable and neutral meth-
ods. The goal is to identify and use strongly correlated
patterns andmetrics in vulnerable and neutral code to develop
a prediction model. In [55], bellwether analysis, a novel
method is suggested for locating and choosing an excellent
subset of data to use as the training set to increase prediction
accuracy. Linear discriminant analysis (LDA) and subspace
discriminant (SD) are used in [60] and [67]. To improve
class separability, LDA projects a dataset into a lower dimen-
sional feature space. The LDA algorithm consists of three
key phases. Calculating how easily various classes can be
separated is the first step. Calculated are the differences
between class attributes. The distance between the mean and
samples of each class is calculated in the subsequent step.
The third phase entails creating the lower dimensional space
that maximizes the variance between classes and minimizes
the variance within classes. A linear classifier can be created
using the resulting dataset. The case of unequal intraclass
frequencies is simply handled by LDA.
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FIGURE 4. Count of studies for each programming language.

FIGURE 5. Confusion matrix.

TABLE 13. Training strategy.

An ensemble classification technique called subspace dis-
criminant (SD) makes use of linear discriminant classifiers.
The random subspace process, also known as feature bag-
ging, is used in the subspace discriminant classifier to lessen
the correlation between estimators. The random subspace
approach is comparable to bagging, however, it differs from
bagging in that each learner receives a replacement when
the features are randomly subsampled. It is possible to find
students who have specialized knowledge of the various fea-
ture sets. Table 9 shows various techniques used for feature
representation, extraction, reduction, and selection. Study
[72] assessed variance for each column and identified the
main components to show the most significant features and
exclude the least significant elements. This allows to reduce
the array size from 1533 to 250, which benefits the ML
model’s training process. The experimental research shows
that this procedure cuts training time by roughly 68%. In [73],
it is mentioned that SVP data sets frequently include several

features, which leads to the dimensionality curse. Since other
forms of feature selection methods have a high computational
cost, the focus of this paper is on the effect of filter-based
ranking feature selection (FRFS) approaches on SVP. Final
results demonstrate that, as compared to state-of-the-art base-
lines, utilizing FRFS can enhance SVP performance, given
the comparable cost of code inspection.

Study [75] used the SYMbiotic genetic algorithm with the
dominance mechanism for phenotyping the dominant-feature
representations, which were then fed into the deep learning
framework using LSTM and GRU RNNs models. The results
revealed that the proposed method (GRU-SYMbiotic GA-
II) enhanced vulnerability prediction, indicating improved
software quality. Reference [77] proposes a novel model
for predicting software maintainability and testing it using
vulnerability metrics. The proposed method was utilized
to discover critical vulnerable software metrics that aid in
improving software maintainability accuracy. It implements
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TABLE 14. Evaluation measures used in the study.
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TABLE 14. (Continued.) Evaluation measures used in the study.

a novel framework symbiotic immune network based on deep
learning to improve robustness to forecast software maintain-
ability. In [78], an empirical study in which a comparison
of three-word embedding-based code representation methods
in the context of vulnerability prediction in Python code is
presented. These natural language processing algorithms -
word2vec, fastText, and BERT - are commonly used in prac-
tice to represent source code as numeric vectors and perform
SE tasks. The results show that all text representationmethods
are appropriate for code representation in this task, but the
BERT model is the most promising because it is the least
time-consuming, and the LSTM model based on it achieved
the best overall accuracy (93.8%) in predicting source code
vulnerabilities. Reference [79] look at features generated by
the SonarQube and CCCC tools to see which ones might
be used to predict software vulnerabilities. It evaluates the
applicability of thirty-three different features for training
thirteen different machine learning algorithms to construct
vulnerability predictors and determine the most relevant
features for training. The evaluation is based on a thor-
ough feature selection process based on feature correlation
analysis (Pearson, Spearman, and Kendall), as well as four

well-known feature selection techniques (information gain
ratio, Gini decrease index, information gain, χ2 ranking).
BERT with self-attention mechanism and CodeBERT are
used in [85]. In [87], a Bag of words and sequences
of text tokens is used for feature extraction and utilizes
point-biserial correlation to rank features according to the
correlation among them. Metaheuristic techniques like the
greywolf, particle swarm optimization, and genetic algorithm
are applied in [88] for feature selection. In [89], This study
presents a method for anticipating vulnerable files against
input validation flaws. Transforming the programs first into
intermediate representations (MSSA form) removes unnec-
essary instructions in the SSA form; it also illustrates the
vulnerabilities with their accompanying clear dependence
links.

RQ 2.3: Which datasets are used?
Table 10 describes the datasets used in the primary studies

of SVP. It mentions the name of the dataset, the program-
ming language of the dataset, the dataset source, the nature
of the dataset, and the primary studies that use it. There
are 37 different datasets used in the 77 primary studies.
FIGURE 4 describes the programming languages used in
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TABLE 15. HPO methods and the hyperparameters that are tuned.
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TABLE 15. (Continued.) HPO methods and the hyperparameters that are tuned.

different primary studies. PHP language-based dataset is used
in 25 studies, C/C++ based dataset in 24 studies, Java in
18 studies, Python in 4 studies, JavaScript in 3 studies, and
unspecified programming language in 3 studies. It is found
that the PHP dataset (Drupal, Moodle, and PHPMyAdmin) is
the highly utilized dataset i.e. in 17 studies.

RQ 2.4: Are the datasets balanced or imbalanced?
It has been observed that all the datasets used are imbal-

anced which is the open research problem that is catered in
the next research question.

RQ 2.5: What are the data balancing techniques applied?
Software vulnerability datasets have the problem of imbal-

anced datasets which can be tackled by data balancing
techniques (refer to Table 11). Table 11 describes various
resampling methods in different primary studies. Out of 77,
twenty-five primary studies have used data balancing tech-
niques. SMOTE is maximum used resampling method in
7 studies followed by undersampling i.e. in 6 studies. To bal-
ance the data, [19], [45], [51], and [72] used under-sampling
by eliminating randomly selected majority class data until
the numbers of data instances in the majority and minor-
ity classes were equal. Research study [24], [31], [62],
and [73] uses Weka SpreadSubsample unsupervised filter to
implement undersampling. The examined systems in [37] and
[58] make use of the RandomUndersampling (RU) balancing

mechanism, which eliminates randomly selected majority
class data. The chosen percentage is maintained until the
number of data instances in the majority class and the number
of instances in the minority class are equal. In [27] and
[60], ADASYN (adaptive synthetic oversampling) is used,
which reduces the bias caused by the class imbalance problem
by generating synthetic, false data for the minority class
instances to balance the (unbalanced) data. It can be easily
implemented as an additional data preprocessing step because
it does not call for the modification of standard classifiers.
In [39], [56], [60], [64], [66], [80], and [88] research stud-
ies SMOTE (synthetic minority oversampling technique) is
the most popular technique for creating synthetic samples.
Instead of reproducing the current samples, it makes new
ones. It handles oversampling by working in feature space
rather than data space. Along the line segments connect-
ing the samples of the minority class’s k-nearest neighbors,
the synthetic instances are introduced. The K-nearest neigh-
bors are selected at random. Decision boundaries become
more strict and generalized with this method. Additionally,
it avoids overfitting. Cluster SMOTE and Borderline SMOTE
are enhanced versions of SMOTE used in [46]. In cluster
SMOTE, data is clustered first and then SMOTE is applied
to each cluster. Borderline SMOTE generates and adds new
data from borderline samples.
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TABLE 16. Comparison of ML/DL techniques.

Weka ClassBalancerFilter is used in [46], [53], [59], and
[69]. The instances are reweighted by this filter so that the
total weight for each category is the same. References [81]
and [90] uses random oversampling.
RQ 2.6: Which cross-validation methods have been

applied?
Table 12 shows the cross-validation methods used in vari-

ous primary studies. K-fold cross-validation have been highly
used. Table 13 describes the studies that have incorporated the
cross-project, cross-version, and cross-metric training strat-
egy. Such training strategies are different from within project
prediction and train the ML/DL method using one project/
metric/version and test on another project/metric/version.

RQ 2.7: What are the evaluation measures used?
Evaluation metrics are used to measure the performance

of SVP models. The studies have used around 26 different
performance measures described in Table 14. FIGURE 5
shows the confusion matrix that is used to calculate most of
the performance metrics. Accuracy, F1-score, precision, and
recall are widely used.

RQ 2.8:WhichHPOmethods have been applied for param-
eter tuning?

Hyperparameter tuning is essential to increase the pro-
ductivity of SVP models [64], [65], [80], and [91]. There
exist different HPO methods to tune the hyperparameters
such as Grid search, Optuna, RMSprop, LibLinear, sensitive
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TABLE 17. Quality assessment score.
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TABLE 17. (Continued.) Quality assessment score.

analysis, and manual. Out of 77 primary studies, 22 studies
have applied HPO. Researchers have to check the appropri-
ate HPO methods which take less computational time and
the suitable hyperparameters that need to be tuned as per
their requirements. This study gave them insights into which
hyperparameters and methods that can be applied to machine
learning algorithms to optimize SVP models.

RQ 2.9: What are the hyperparameters that are tuned?
Table 15 explains the hyperparameters that are tuned in

various studies with their hyperparameter values or ranges.
DL techniques have mostly tuned the hyperparameters
manually.

RQ 3: Which studies have shown the comparison of
ML/DL techniques?

This paper has collected 77 studies that have used ML/DL
techniques in the SVP area. Forty studies have shown the
comparison among various ML/DL methods. Table 16 shows
which ML/DL are compared and stated the highest perfor-
mance ML/DL technique. The paper has fetched the results
based on F1-Score, AUC, precision, and recall to show the
best-performingML/DL techniques. It has been observed that
RF is used inmost of the studies and found to perform the best
followed by SVM and LR.

IV. THREATS TO VALIDITY
There are a few threats that affect the validity of SLR. The
first threat can be the inclusion of all possible relevant studies.
Although we have tried to include all the studies that use
ML/DL techniques in the software prediction area, there can
be some studies that have been missed. Secondly, the quality
assessment criteria and data extraction process need thorough

investigation. If not done properly, there can be chances of
missing studies. Thirdly, we have extracted the data as given
in the previous studies and our motive is to unveil the chal-
lenges, problems, and considerations hence the data extracted
by us might not be exhaustive.

V. CONCLUSION AND FUTURE GUIDELINES
The importance of ML and DL techniques has gained inter-
est in developing software vulnerability prediction models.
Researchers have come up with a wide variety of ML and
DL approaches that can be used to predict vulnerable soft-
ware components. These studies reveal various challenges
and issues that need to be approached to understand the SVP
models. Hence, there was a need to systemize the knowledge
of available literature to uncover the challenges faced in
developing the SVP models.

This paper has performed a systematic literature review
of 77 studies as per Kitchenham SLR guidelines. First, the
primary studies are thoroughly examined and their quality is
assessed. Secondly, the data is extracted which depicts the
type of ML/DL methods used, and empirical validation for
predicting vulnerable components (datasets, data balancing
techniques, cross-validation methods, evaluation measures,
HPOmethods). Thirdly, the comparison amongML/DL tech-
niques has been captured. The findings of this study are as
follows:

• The current study collected 32 different ML and 5 DL
techniques among 77 primary studies. DT, LR, NB, RF,
and SVM are highly used. The tools for implementing
these algorithms have also been mentioned.
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• There exist five different feature types; metrics and text
features are highly used.

• The study has also illustrated the data preprocessing
methods which are feature extraction, feature reduction,
and feature selection methods

• Thirty-seven different datasets are collected and 29 data
sources are available. The datasets are mostly in PHP,
C/C++, and Java programming languages. Other lan-
guages are Python and JavaScript.

• Twenty-five primary studies have used nine different
data balancing techniques.

• Twenty-six different performance measures are col-
lected from different studies. Accuracy, precision, recall,
and F1-Score are used widely.

• Twenty-two studies have used HPO methods to increase
the performance of SVP models

• Forty studies have shown the comparison among
ML/DL techniques.

The following guidelines can be used for carrying out
research in the future on SVP using ML/DL techniques

• More studies should incorporate data balancing tech-
niques as vulnerability datasets are imbalanced as
mentioned in this paper.

• Evolutionary algorithms can be used for feature selec-
tion to optimize SVP models

• The hyperparameters should be tuned to increase pro-
ductivity. By far, only 22 studies have implementedHPO
methods.
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