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ABSTRACT Multi-UAV cooperative mission assignment is an important research direction in the field
of UAV research. In the planning process, the assignment conflict between UAVs and mission points and
the solution efficiency are the key difficulties in multi-UAV cooperative mission assignment. Based on
the Weighted Approximate Flight Cost (WAFC) method and the Reduced Redundant Assignment Scheme
(RRAS) algorithm, a multi-UAV cooperative mission problem considering different assignment models is
proposed. The contributions of this study are: firstly, the approximate flight cost matrix is constructed based
on the vertical distance between the UAV and the mission point, and the matrix is applied to calculate the
initial flight distance of the UAV, which fully takes into account the effects of mountain type and radar threat
on the mission assignment. Secondly, the auxiliary flight cost method and the spatial mapping matrix are
constructed, which maps the discrete approximation of the flight cost to the continuous space and solves
the UAV’s local conflict problem in the assignment process. Finally, an adaptive selection mutation strategy
based on iterative individual fitness values is proposed to reduce the redundancy of candidate assignment
schemes and improve the efficiency of the planning system. The simulation results verify that the algorithm
has high cooperative capability, good robustness and fast solution speed when dealing with cooperative
multi-UAV mission assignment planning.

INDEX TERMS Vertical cut method, approximate flight cost method, mapping strategies, assignment
conflicts, multi-UAV cooperative mission assignment.

I. INTRODUCTION
Multi-UAV cooperative mission assignment (MUCMA)
refers to the mission scheduling and division of multiple
UAVs according to complex mission environment and differ-
ent mission requirements, so as to achieve the highest mission
efficiency and the lowest combat cost of UAVs [1], [2], [3].
With the increasing variety of UAVs performing missions
and the mission requirements becoming more and more
complex, it is difficult for a single UAV to complete the recon-
naissance and saturation attack in the enemy area by itself
with its limited load. However, MUCMA can handle various
complex missions through cooperation among multiple UAs
to improve the efficiency of mission completion. However,
MUCMA also has many difficulties, for example, in the
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assignment process, MUCMA not only needs to consider the
differences in performance between UAVs, the complexity of
the simulation environment and the priority of mission exe-
cution, but also to avoid problems such as UAV assignment
conflicts and long planning times [4]. Therefore, the research
of MUCMA still faces great challenges.

In the last decade, researchers have proposed many
excellent mission assignment algorithms, which are divided
into two main categories, centralized mission planning and
distributed mission planning, depending on the different
structures of cooperative control of multiple UAVs [5], [6].

Centralized algorithm (CA)-based cooperative mission
assignment adopts a centralized algorithm that can centrally
control and coordinate the assignment relationship between
UAVs and mission points. Tang et al. [7] proposed a hetero-
geneous UAV cooperative multi-tasking assignment problem
with objective priority constraints based on fuzzy c-mean
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clustering idea and ant colony optimisation algorithm, which
fully considered the performance evaluation of the original
algorithm in a dynamic environment as well as the extension
of the algorithm, which is suitable for dealing with more
realistic dynamic simulation environments. Zhen et al. [8]
presented a hybrid algorithm based on artificial potential
field ant colony optimization for UAV cooperative planning.
The algorithm uses the artificial potential field method to
construct the simulation environment and the centralized ant
colony algorithm to improve the local search capability of
each UAV with high assignment efficiency under different
simulation environments. Wang et al [9] proposed a unified
modeling approach for cooperative mission assignment of
complex multi-constrained UAVs, using the spatial vertical
cut to calculate the approximate flight cost of the UAV, and
optimizing the mission assignment algorithm using the flight
cost matrix. It is simple and flexible when used in cases
with low dimensionality, but it oversimplifies the complex
simulation environment and over-relies on the control center;
hence, the assignment model has poor scalability.

Distributed algorithm (DA)-based cooperative mission
assignment is computationally flexible, highly scalable, and
can handle different levels of assignment separately, but
the system’s robustness decreases as the number of UAVs
increases [10]. Liu et al. [11] designed a mechanism to
avoid UAV assignment conflicts and proposed a distributed
adaptive algorithm based on individual and group deci-
sion making. Individual decision-making is applied in UAV
intelligence and adjustment, and group decision-making is
utilized in the leadership mechanism and joint decision-
making. Shirani et al. [12] designed a distributed controller
based on suboptimal LQR-PID extended system control
laws for coordinated mission assignment involving the cargo
transportation of multiple UAVs. The controller priori-
tizes loads of the UAVs and optimizes the overall mission
planning while avoiding conflicts and collision obstacles.
Qiu et al. [13] proposed a distributed optimal control frame-
work to transform the UAVs cooperative assignment problem
into a multi-objective optimization problem. In addition,
a multi-objective pigeon heuristic algorithm was proposed
to coordinate the local interaction information of UAVs in
a complex environment, effectively avoiding mission assign-
ment conflicts.

Although the above methods are able to solve MUCMA
in different environments, with the increasing demand for
cooperative multi-UAV assignment systems, the number of
UAVs and mission points has increased dramatically, making
it difficult for the planning system to make assignment deci-
sions in an effective time. At the same time, the inconsistency
in the number of UAVs and mission points increases the
blindness of the assignment mechanism and leads to assign-
ment conflicts in the planning system [14], [15], [16]. The
specific difficulties are described below:

• MUCMA is divided into various assignment mod-
els in accordance with the relationship between the
numbers of UAVs and mission points, and different

assignment models have different assignment mecha-
nisms and strategies. In a case with UAVs and mission
points, if the same spatial conversion and mapping
mechanism is chosen, the UAVs and mission points will
cause assignment conflicts, which will greatly reduce
the efficiency of the assignment system. Therefore, how
to construct reasonable mapping strategies in accor-
dance with different assignment models is crucial to
avoid assignment failures.

• With the dramatic increase in the number of UAVs and
mission points, the computational complexity of the
planning system will increase significantly. At the same
time, after many iterations, a large number of candidate
assignment schemes are generated, and it is difficult to
solve the optimal assignment scheme in a short time.
Therefore, it remains a difficult problem forMUCMA to
solve the optimal assignment scheme effectively under
the situation of data redundancy.

In order to solve these difficulties, this study adopts
fixed-wing UAV as the research object and aims to avoid
assignment conflicts, reduce redundant data and shorten plan-
ning time. The main contributions are summarized below.

• In constructing the assignment model: To reduce the
complexity of the assignment system, the parameters
of UAVs in some studies used the same flight distance,
flight speed, and so on, but in the actual combat envi-
ronment, UAV formation often consists of UAVs with
different performances.. Therefore, this study focuses
on the influence of heterogeneous UAVs on MUCMA.
A weighted hybrid fitness function for the cooperative
mission assignment of UAVs is constructed. The sum of
flight cost, flight time, and constraint violation is used as
the fitness function, and constraint violation is applied
as the penalty function at the important evaluation stage
of the evolutionary algorithm.

• In terms of resolving assignment conflicts: Different
assignment models have different assignment mecha-
nisms and mapping strategies, and reasonable mapping
strategies must be considered in conjunction with the
physical meaning of the actual problem. In this study,
the flight cost between UAVs and mission points is used
as the mapping medium, and the main order match-
ing method and the auxiliary flight cost method are
employed to map discrete UAVs and mission points to
a continuous flight cost space. The method effectively
avoids UAVs assignment conflicts.

• In terms of improving the performance of the algorithm:
In order to reduce the redundancy of candidate assign-
ment schemes and avoid the algorithm falling into local
optimum. This paper adaptively selects different muta-
tion strategies according to the calculation of individual
fitness values in each generation, which reduces the
redundancy rate of candidate assignment schemes and
enhances the diversity of candidate assignment schemes.

In order to detect the performance of the improved
algorithm, we present three sets of simulation experiments
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and evaluate the feasibility and stability of the computer sim-
ulation results. The experimental results show that themethod
proposed in this paper is superior in solving multi-UAV coop-
erative mission assignment conflicts and planning efficiency,
and is a good reference for different types of multi-agent
mission planning.

The rest of the paper is organized as follows. Section II
introduces three different assignment models and assignment
mechanisms, constructing the MUCMA fitness function and
the co-constraints for UAVs. Section III describes the con-
struction of approximate flight costs and spatial mapping
strategies. Section IV introduces the classical differential
evolution algorithm and the method for reducing redun-
dant data, and describes the MUCMA execution framework.
In Section V, the WAFC-RRAS algorithm is analyzed for
effectiveness and stability and its performance is compared
with other algorithms. A brief summary of the conclusions is
given in Section VI.

II. MULTI-UAV COOPERATIVE MISSION ASSIGNMENT
MODEL
This section first introduces the different simulation scenarios
of MUCMA, the assignment mechanism and the difficul-
ties in solving each assignment model. Then, the method
of experimental modeling is introduced. Finally, the method
of constructing the fitness function and the co-constraints of
MUCMA are presented.

A. COOPERATIVE MISSION ASSIGNMENT SCENARIOS
AND ASSIGNMENT MECHANISMS
MUCMA is a multi-model, multi-constrained, compu-
tationally difficult and complex optimization NP prob-
lem [17], [18]. During the planning process, obstacles such
as mountains and radars have to be considered, as well as
various factors such as the number and performance of UAVs,
the execution timing of UAVs, and the weighting of missions.
This requires MUCMA to consider the complexity of the
simulation environment, the synergy between heterogeneous
UAVs and a clear assignment mechanism.

1) COOPERATIVE MISSION ASSIGNMENT SCENARIOS
The MUCMA simulation scenario is described in detail: in
a complex 3D environment the UAVs finds a set of cor-
responding mission assignment sequences. According to a
cooperative mission assignment fitness function and con-
straints. The assigned UAVs should have the shortest flight
cost, the shortest flight time and the smallest constraint
violation.

Figure 1 presents the four different assignment models
of MUCMA, namely N = M , N > M , N < M , and
N ≈ M . The blue circle indicates the number of UAVs
N = [U1,U2, . . . ,Un]. The yellow pentagram indicates the
number of mission points M = [M1,M2, . . . ,Mm]. The
grey dashed line and grey solid line indicate the assignment
sequence of UAVs that may strike and eventually strike the
mission points, respectively. The purple dashed line and

purple solid line indicate the assignment sequence of UAVs
that may strike and eventually strike the mission points
sequentially, respectively. Model N ≈ M combines the
assignment mechanisms of the three models. The assignment
mechanism of this model is extremely complex and requires
consideration of not only whether the UAVs are assigned in
conflict, but also whether the UAVs conform to the optimal
assignment mechanism.

2) MUCMA’S MISSION ASSIGNMENT MECHANISM
This study focuses on three MUCMA assignment models,
namely N = M , N > M , and N < M . The different
assignment models have different assignment mechanisms
and assignment difficulties, which are described as follows:
When N = M , the mission assignment mechanism of this

model is relatively simple. Each UAV is assigned a mission
point, each mission point is assigned a UAV, and the UAV
and mission point have one-to-one correspondence. The key
to solving the problem is to avoid conflicts caused by mission
competition and use cooperation to reduce the probability of
destruction so that the MUCMA fitness value is maximized.
When N > M , the mission assignment mechanism of

this model is highly complex. Each mission point can be
assigned multiple UAVs, each UAV must execute a mission
point, and the UAVs and mission points have a many-to-one
relationship. The number of UAVs in this assignment model
is not balanced with the number of mission points, resulting
in high computational complexity and high probability of
mission competition conflict in the assignment process. The
key to solving the problem is to reduce the probability of
conflict in the assignment.
When N < M , the model is the most complex of the three

models. Each UAV can handle multiple mission points, each
mission point must be assigned a UAV, and the UAVs and
mission points have a one-to-many relationship. This assign-
ment model has multiple missions to be performed by one
UAV, and in terms of this involves UAVs performing mission
point timings. The key to solving this model is the need to
use fewer resources to complete more complex missions and
to be able to deal effectively with mission point weighting
relationships.

B. MODELLING OF THE SIMULATION ENVIRONMENT
In this paper, two kinds of threats are considered: mountain
and radar detection. Currently, the impact of mountain on
UAVmission execution is rarely considered in the literatures,
because the irregular simulation environment of mountain is
very challenging. Radar is the most common detection threat
for UAV penetration. The simulation environment is shown in
Figure 2. Figure 2(a) is the unified simulation environment of
the two obstacles. The right figure of Figure 2 is the schematic
diagram of radar detection and mountain respectively.

• Mountain
The Digital Elevation Model (DEM) is a digital simulation

of the mountain through mountain elevation data. In this
paper, USGS 24kdem is used as a mountain obstacle, and
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FIGURE 1. Schematic diagram of MUCMA under different assignment models.

FIGURE 2. Environmental modelling of MUCMA.

the format USGS 1:24000 digital elevation map file is read,
which contains the real longitude, latitude and height. During
the planning process, the planning system must effectively
avoid UAVs crossing the mountainous terrain causing UAVs
to be destroyed.

• Radar detection
Radar from the purpose of operation can be divided into

fire control radar and early warning radar, it through the
target’s electromagnetic wave reflection for analysis to deter-
mine the location of the target. Radar detection performance
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is susceptible to environmental and signal influences, and
it is difficult to describe the detection characteristics of a
radar threat considering various factor states, assuming that
the radar threat is established on flat terrain with horizontal
distance and detection height of the detection area boundary
as in equation (1).

hB = KB · L2B (1)

Formula (1), hB is the radar detection height; LB is the radar
detection horizontal distance;KB is the radar detection perfor-
mance parameters. The above formula can be calculated from
the maximum distance dmax of the radar detection area on the
radar detection boundary.

dmax =

√
h2B + L2B (2)

From equation (1) and equation (2), it can be seen that as
the UAV is further away from the radar, the lower the proba-
bility of radar detection. The probability of radar detection of
the target can be approximated by equation (3).

PR(dR) =


0, dR ≥ dRmax

(1/dr )4, dRmin < dR < dRmax

1, dR < dRmin

(3)

C. CONSTRUCTING THE FITNESS FUNCTION AND
CONSTRAINTS FOR MUCMA
1) FITNESS FUNCTION FOR MUCMA
MUCMA is equivalent to the assignment problem in oper-
ations research. Assume that N UAVs are combatting M
missions distributed in different locations in the simulation
environment. MUCMA needs to be able to handle different
assignment models in consideration of the shortest flight
distance, shortest total flight time, and smallest constraint
violation. The MUCMA fitness function is given as follows:

min f (x) = α

N∑
i=1

M∑
j=1

wjd(i,j)D(i,j)

+ . . . + β(max(
N∑
i=1

M∑
j=1

t(i,j)D(i,j)))

+ γ

K∑
k=1

ck , α + β + γ = 1 (4)

where d(i,j) represents the approximate flight distance from
UAV i to mission point j. wj is the weight of mission j, and
0 < wj ≤ 1. The larger the value of wj is, the more important
mission j is. t(i,j) represents the time from UAV i to mission
point j. ck denotes the penalty corresponding to the constraint.
α, β and γ are scaling factors used to maintain the balance of
the polynomials in the fitness function, which keeps the flight
cost, flight time, and constraint violation in the same order of
magnitude. D(i,j) is the decision variable that determines the
mapping between the UAV and the mission point, and it has

different expressions as follows:

D(i,j) =


D(i,j) N = M
D([is,...,il ],j)∀s, l ∈ N and s, l ∈ NN > M
D(i,[jp,...,jq])∀p, q ∈ M and p, q ∈ NN < M

(5)

In Equation (5), when N = M , D(i,j) denotes a one-to-one
correspondence between UAVs and mission points. When
N > M , D([is,...,il ],j) represents a many-to-one relationship
between UAVs and mission points, which means that UAVs
can attack the samemission point. WhenN < M ,D(i,[jp,...,jq])
indicates a one-to-many relationship between UAVs and mis-
sion points, whichmeans that a single UAV can attack a group
of mission points.

2) CONSTRUCTING COOPERATIVE CONSTRAINTS
UAV and mission point decision variable constraints: When
N ≥ M , the number of UAVs is greater than or equal to
the number of mission points. The mission decision is as
follows: each UAV must execute one mission point, and each
mission point must be executed by one UAV. When N < M ,
the number of UAVs is smaller than the number of mission
points. Then, the mission decision is that one UAV must be
assigned to each mission point, and a single UAV can cruise
the mission points in the execution space.

N
∩
i=1

D(i,j) = 1∀j = 1, · · · ,M N ≥ M (6)

M
∩
j=1

D(i,j) = 1∀i = 1, · · · ,N N < M (7)

Equations (6) and (7) represent the relationships corre-
sponding to the two different decisions.

•Maximum flight constraint MaxDis(km): Under differ-
ent assignment models, the maximum flight cost refers to
the sum of the approximate flight costs of all assignment
relationships, and this constraint reflects each UAV’s own
performance, such as fuel consumption and effective com-
munication.

N∑
i=1

M∑
j=1

d(i,j)D(i,j) ≤

M∑
k=1

Dk , ∀k = 1, . . . ,N (8)

In Equation (8), d(i,j) denotes the approximate flight cost,
and Dk denotes the limited maximum flight distance of each
UAV.

•Minimum/maximum speed constraints for UAVs
(SpeFli(km/h)):

V(i) = [V(i) min,V(i) max] (9)

In Equation (9), V(i) min denotes the minimum speed of
UAV i, and V(i) max denotes the maximum speed of UAV i.

•Maximum flight time constraint (MaxTime(h)): It repre-
sents the maximum value of the time consumed by each UAV
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to perform the mission in the cooperative assignment result.
max


n∑
i=1

m∑
j=1

t(i,j)D(i,j)

 ≤

k∑
i=1

Tk∀k = 1, . . . , n

Tmax = max{
d(i,j)D(i,j)

vi
, ∀i, j ∈ N }

(10)

The maximum flight time can be calculated based on the
maximum flight constraint in Equation (8) and the maximum
and minimum speed constraints in Equation (9).

•Maximum flight height constraint: In order to ensure the
safety of theUAV’s flight, it is required to fly at an appropriate
height. On the one hand, if the UAV flies too high above the
ground, it will increase the chances of being detected by radar.
Full use should be made of the terrain in order to reduce the
risk of detection. On the other hand, if the UAV flies too low,
it is likely to collide with mountains or obstacles.

dhj =

∣∣∣∣hj − hmax + hmin

2

∣∣∣∣ , hmin ≤ hj (11)

In equation (11), hj represents the altitude value j of the
UAV route at the h-th waypoint. hmax and hmin represent
the maximum and minimum distances of the UAV from the
mountains and the ground.

•Timing constraint between mission points (OrdMis): It
reflects the order of execution betweenmission points. Impor-
tant mission points must be executed first, and the other
mission points are executed afterward in accordance with
their constraints.{

Tjmax < T(j+τ )min
∀τ ∈ N and τ < m− j

(12)

Equation (12) indicates that mission point j must be exe-
cuted later than mission point j + τ , where τ is a positive
integer.

•Multi-time-window constraint: Missions are grouped by
different time-windows and the mission points within the
group cannot be executed beyond the time-window range
[Tk−1,Tk ] of the group.

[Tk−1,Tk ] ̸= 8

max{ti, . . . ., tj} ≤ Tk i, j ∈ 1, . . . .,m
min{ti, . . . , tj} ≥ Tk−1 i, j ∈ 1, . . . ,m

(13)

Simultaneous arrival constraint (SimArr): It reflects the
ability of UAVs in Model N > M to arrive at a mission at
the same time and the ability of UAVs to work together to
perform a mission, which means that UAVs must arrive at a
mission at the same time.

N
∩
i=1

[t(i)min, t(i)max] ̸= φ N ∈ 1, . . . , n (14)

In Equation (14), t(i) denotes the execution time of the i-th
UAV, and N denotes the number of UAVs participating in the
cooperative operation.

•Waiting time constraint (Twait ): To ensure that the UAVs
in Models N = M and N > M arrive at the specified mission
at the same time, some of the UAVs are allowed to wait for
some time before departing.

Twait (i) ≤ Tmax (i) (15)

In Equation (15), Twait (i) denotes the i-th UAV waiting
time, and Tmax(i) denotes the i-th UAV maximum waiting
time.

III. SOLUTION OF APPROXIMATE FLIGHT COST BASED
ON VERTICAL TANGENT METHOD
At present, the study of MUCMA is mostly about UAVs
striking mission points in the 2D plane or an equal number of
UAVs and mission points in the 3D space with a one-to-one
assignment relationship [19], [20], [21], [22]. The reasons
for this are: 1) the small amount of information in the 2D
plane does not require consideration of the impact of 3D data
information on the conflicting assignment of UAVs. 2) the
use of an equal number of UAVs and mission points only
requires consideration of a one-to-one approximate flight cost
base construction method, and the transition simplifies the
assignment mechanism. Therefore, this section proposes a
strategy for solving the approximate flight cost and spatial
mapping using the vertical cut method.

A. APPROXIMATE FLIGHT COST METHOD
When the simulation environment is determined, UAVs and
mission points can be initially assigned relationships by
approximating the flight cost. Currently, some of the literature
often uses the straight-line distance between the UAV and
the mission point or the distance of the trajectory segment
on the Voronoi diagram to approximate the flight cost of the
UAVs. These methods are less complex to compute, but do
not take into account the probability of destruction of UAVs
during the system planning process and are not applicable
in a 3D complex environment. Therefore, the method of
approximating the flight cost representation greatly deter-
mines the reliability and reasonableness of the assignment
results. In this section, a vertical slice is used to estimate the
flight cost, which makes the approximate flight cost more
reasonable in a three-dimensional complex environment.

The main idea of this method is: firstly, the DEM (Digital
Elevation Model) is used to describe the geomorphology of
the landscape, and at the same time combined with the radar
parameters to obtain a unified simulation environment. Then,
a vertical horizontal section is made through the line between
the UAV and the mission point, and the elevation value of
the section intersecting the simulation environment is used as
a flight point for the approximate flight path, and the inter-
secting discrete values are mapped to the new coordinates
through a coordinate transformation. Finally, only the dis-
tance of each discrete value needs to be calculated. Although
this method is not the shortest actual distance of the UAV,
it makes full use of the 3D terrain information and is closer
to the optimal distance than the method of calculating the
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straight-line distance between two points, and is suitable for
solvingmulti-UAV cooperativemission assignment problems
in complex 3D environments.

Figure 3 shows the constructionmethod of the approximate
flight cost. The black circle and pentagram in Figure 3(a)
indicate the location of the UAV and the location of the mis-
sion point respectively, the semi-circular sphere indicates the
detection area of the radar, and the grey triangle indicates the
mountain The grey dashed line indicates the elevation value
of the vertical tangent between the UAV and the mission point
that intersects the simulated environment. Figure 3(b) shows
the approximate flight cost generated in the real simulation
environment. Figure 3(c) shows the approximate flight cost
after hiding the mountain and radar.

It is worth noting that the calculation of the approximate
flight cost consists of two main distance formulas: the
Euclidean distance between mountains L1 = (U ,A,B, . . . ,

G,H ) and the radar detection zone arc length formula L2 =

(H , I ). The higher weighting of the approximate flight cost θ1
for the intersection of the vertical tangent with the mountain
is due to the need to avoid damage to the UAVs caused
by the UAVs impacting the mountain. The equation for the
approximate flight cost is shown in (16).

CostApproximate = θ1 ·

E∑
j=0

∥∥KijKi,j+1
∥∥ + θ2 ·

A∑
j=0

∥∥Lj∥∥
= θ1 ·

E∑
j=0

√
(xij+1 − xi,j)2 + (yij+1 − yi,j)2

+ . . . + θ2 ·

A∑
j=0

njπrj/180◦, θ1 ≫ θ2

(16)

In equation (16), Kij and Ki,j+1 in equation (15) denote
the j-th elevation value and the j + 1-th elevation value
respectively. When j = 0, K0 denotes the starting point of the
UAV,KN+1 denotes the mission point, (xj, yj) and (xj+1, yj+1)
denote the coordinates of the elevation values Kj and Kj+1,
nj and rj denote the j-th radial angle and radius of the j-th
radar, θ1 and θ2 denote the weights of the Euclidean distance
and radar arc length, respectively, and the value of θ1 is much
larger than the value of θ2.

B. SPATIAL MAPPING STRATEGIES
MUCMA has different assignment models, and different
models have different assignment mechanisms. Mapping the
approximate flight cost of discrete spaceUAVs to a physically
meaningful continuous space necessitates the design of an
effective mapping strategy. In this section, mapping strate-
gies for different models are designed using the following
principles.

1) AUXILIARY FLIGHT COST MATRIX METHOD
In accordance with the assignment mechanisms of different
models, the auxiliary flight cost matrix is constructed as

Algorithm 1 Approximate Flight Cost Method
Input: Location of UAVs: U ; Location of mission points:
M ; Mountain parameters: Latitude: lat; Altitude: Zz; Radar
parameters: Radar .
Output: Approximate flight cost: Costapproximate.
1 Experimental simulations with radar and mountain parame-
ters and integration of radar detection area and mountain type
data.
2 Set the position of the UAVs and the mission points.
3 if (xi ≤ xj&&yi ≤ yj

∥∥xi ≥ xj&&yi ≥ yj ) /∗
Calculate the elevation of all points at a unit distance ∗/
4 While (abs(x − xj) > 1

∥∥abs(y− yj) > 1)
5 x = xi + k/(

√
(1 + k2)); y = yi + 1/(

√
(1 + k2));

M (i, 1) = x; M (i, 2) = y;
6 i=i +1;
7 end
8 else
9 While (abs(x − xj) > 1

∥∥abs(y− yj) > 1)
10 x = xi − k/(

√
(1 + k2)); y = yi − 1/(

√
(1 + k2));

M (i, 1) = x; M (i, 2) = y;
11 i=i +1;
12 end
13 end
14 M = [fix(M (:, 1)), fix(M (:,2))].
15 for i=1: size(M ,1)
16 zheight(i, 1) = Zzx(fix(M (i, 2)), fix(M (i, 1))). /∗ Approxi-
mate flight cost elevation values are obtained by the vertical
cut method∗/
17 end
18 Use equation (11) to set the flight altitude of the UAVs.
19 Calculate the approximate flight cost of UAVs to mission
points using equation (16).

AuM1, AuM2, and AuM3. The auxiliary flight cost matrix
stores the flight generation values of each UAV and mission
point, and WAFC-RRAS calls the flight generation values
of each UAV and mission point during the evolution pro-
cess. This process reduces the repeated calculation of flight
costs and effectively improves the planning efficiency of the
algorithm. It is worth noting that AuM3 stores not only the
flight cost C(Ui,Mj) of each UAV executing the mission
point, but also the flight cost T (Mi,Mj) between two mission
points.

2) MAIN ORDER MATCHING PRINCIPLE METHOD
The first column U1 of reference cost matrix Cost is com-
pared with the flight cost of the first column U1 of auxiliary
flight cost AuM1. The smaller flight cost is selected as the
mapping medium for U1, the corresponding mission point
M5 is outputted, and the corresponding rows and columns
are deleted. Then, the execution assignment schemes for the
other UAVs are selected in turn. This method effectively
avoids repeated mapping of assigned execution relation and

98138 VOLUME 11, 2023



G. Huang et al.: Multi-UAV Cooperative Mission Assignment Based on Hybrid WAFC-RRAS Algorithm

FIGURE 3. Construction method of approximate flight cost.

FIGURE 4. Schematic of the mapping of N = M and N > M.

avoids UAVs assignment conflict from the perspective of
mathematics.

Figure 5 shows the mapping strategy for Model N = M
and N > M . In accordance with the distribution mecha-
nism of Model N = M , six UAVs [U1,U2,U3,U4,U5,U6]
are assumed to strike each of the six mission points
[M1,M2,M3,M4,M5,M6] distributed in different locations

in space. First, we calculate the approximate flight cost matrix
[C1,C2, . . . .,Cn] for UAVs based on the approximate flight
cost method. Then, the reference flight cost Cost , the ref-
erence flight cost matrix Cost and the auxiliary flight cost
matrix AuM1 are calculated for each column of the UAVs
based on the approximate flight cost, after the mutation strat-
egy of the difference evolution algorithm and the crossover
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FIGURE 5. Schematic of the mapping of N < M.

strategy. Similarly, the sequence of assignments under model
N > M can be obtained.
Figure 6 shows a schematic of the mapping for model N <

M , in which it is assumed that four UAVs [U1,U2,U3,U4]
strike six mission points [M1,M2,M3,M4,M5,M6] dis-
tributed at different locations in space. We need to add
auxiliary flight cost matrix AuM3, where AuM3 denotes the
flight cost between mission points. First, the sequence of
UAVs striking the mission point is obtained from the ref-
erence flight cost matrix Cost and the auxiliary range cost
matrix AuM1. Then, the sequence of UAVs being executed
at other mission points is calculated from the auxiliary flight
cost matrixAuM3. Algorithm 2 is the principle of themapping
strategy under different models.

IV. RRAS ALGORITHM
This section first describes the basic process of the differential
evolution algorithm. Then it describes the differential evolu-
tion algorithm for reducing redundant data.

A. DIFFERENTIAL EVOLUTION ALGORITHM
Population intelligence algorithms have received increasing
attention in solving various optimisation problems and have
been widely used in various applications. In the past decades,
many population intelligence algorithms have been devel-
oped, including Ant Colony Optimisation (ACO), Particle
Swarm Optimisation (PSO), Differential Evolution (DE),
Bacterial Foraging Optimisation (BFO) and Artificial Bee
Colony (ABC) [23]. Differential evolution algorithm (DE),
similar to many classical evolutionary algorithms, is a ran-
dom heuristic search algorithm, which is simple to use,
has strong robustness and global optimization ability, and
is widely used in multi-UAV cooperative mission planning
at present [24], [25], [26]. In the process of evolution, each
individual in the population corresponds to a solution vec-
tor, and new individuals are generated through different
mutation strategies. Crossover operators mix individuals and
target individuals to generate experimental individuals. The

selection operator determines the next generation individual
according to the fitness value of the test individual compared
with the fitness value of the target individual. Mutation oper-
ators, crossover operators and selection operators constitute
the main loop of DE.

1) INITIALIZE THE POPULATION
NP individuals are randomly and uniformly generated in the
solution space.{
X (0)|xLj,i≤xj,i(0)≤xUj,i; i = 1, 2, . . . ,NP; j = 1, 2, . . . .,D

}
× xj,i(0) = xLj,i + rand(0, 1) · (xUj,i − xLj,i) (17)

In equation (17), NP represents the size of the population,
D represents the dimension of the solution space, xLj,i and x

U
j,i

respectively represent the upper and lower bounds of the j-th
‘‘gene’’ of the i-th ‘‘individual’’ in the population, and xj,i(0)
represents the j-th ‘‘gene’’ of the i-th ‘‘individual’’ in the 0-th
generation.

2) MUTATION OPERATOR
After initialization of the population, the DE algorithm ran-
domly selects two individuals from the population for the
difference by the mutation operator, and the resulting differ-
ence vector is weighted and summed with a third individual
to produce the mutated individuals. The construction of the
mutation strategy not only affects the diversity and conver-
gence of the population, but also determines the effectiveness
of the algorithm. Therefore, a reasonable mutation strategy
construction method can effectively improve the efficiency
of the algorithm search. Five commonly used mutation strate-
gies are listed below.

•DE/rand/1

vj,i(g+ 1) = xj,r1(g) + F × (xj,r2(g) − xj,r3(g)) (18)

•DE/best/1

vj,i(g+ 1) = xj,best (g) + F × (xj,r1(g) − xj,r2(g)) (19)
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FIGURE 6. Schematic of the process of eliminating redundant flight cost data.

•DE/rand/2

vj,i(g+ 1) = xj,r1(g) + F × (xj,r2(g)

− . . . − xj,r3(g) + xj,r4(g) − xj,r5(g)) (20)

•DE/best/2

vj,i(g+ 1) = xj,best (g) + F × (xj,r1(g)

− . . . − xj,r2(g) + xj,r3(g) − xj,r4(g)) (21)

•DE/current-to-best/1

vj,i(g+ 1) = xj,i(g) + F × (xj,best (g)

− . . . − xj,i(g) + xj,r1(g) − xj.r2(g)) (22)

In equations (18) to (22), r1, r2, r3, r4, r5 is the five
integers randomly selected in [1, N ], and i ̸= r1 ̸= r2 ̸=

r3 ̸= r4 ̸= r5. xj,i(g) represent the i-th individual in the g
generation population, xj,best (g) represents the best individual
in the g generation population, and vj,i(g + 1) represents the
mutant individual. Parameter F is the scaling factor, and the
value of F directly affects the global optimization ability of
the algorithm.

3) CROSSOVER OPERATOR
After themutation, DE usually performs a binomial crossover
operation where the crossover is determined by the crossover
rate CR and a partial exchange is made from xj,i(g) and
vj,i(g+ 1) to form a new trial vector uj,i(g+ 1).

uj,i(g+ 1) =

{
vj,i(g+ 1), if rand ≤ CR
xj,i(g), otherwise

(23)

In Formula (23),CR represents crossover rate, which deter-
mines the degree of exchange of individual genes between
offspring and parents. The larger the value of CR, the more
genes exchanged between individuals, and the increase of

population diversity, otherwise, the decrease of population
diversity, which is not conducive to global optimization.

4) SELECTION OPERATOR
DE uses a greedy algorithm to select individuals to enter the
next generation of the population, which selects the better
individual from the trial vector uj,i(g+1) and the parent vector
xj,i(g) to enter the next generation.

xj,i(g+ 1) =


uj,i(g+ 1),

if f (uj,i(g+ 1)) ≥ f (xj,i(g))
xj,i(g),

otherwise
(24)

In equation (24), f (x) represents the fitness function
constructed according to specific problems. The selection
operator determines whether an individual can enter the next
generation according to its fitness value. Algorithm 3 is the
framework of DE.

B. METHOD FOR REDUCING REDUNDANT DATA
From the DE evolution process in Part IV, Section A, it is
known that individuals in the population calculate the fitness
value based on the mutation operator and the crossover oper-
ator, and then use the greedy algorithm to obtain the optimal
solution based on the selection operator [27], [28], [29], [30].
In the MUCMA planning process, we usually think of a
UAV as a prime, and a prime is an individual in a popu-
lation. The population represents the candidate assignment
schemes of UAVs. As the number of populations and the
number of iterations increase, a large number of duplicate
candidate assignment schemeswill be generated, i.e. the same
assignment scheme appears repeatedly in the same set of
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Algorithm 2 Schematic of the Mapping Strategies for Differ-
ent Models
Input: Number of UAVs: N ; Number of mission points: M ;
Auxiliary flight cost matrix: AuM1, AuM2, and AuM3.
Output: Assignment sequence [Ui,Mj] and flight cost C(i,j)
corresponding to the different model UAVs and mission
points.
First model N = M .
Construct the auxiliary flight cost matrix AuM1.
1 for i = 1 : N
2 difference = min(min(abs(AuM1(i) − Cost(i)))).
/∗ Compare the size of the reference flight cost with the
auxiliary flight cost∗/
3 [row,column] = find(abs(AuM1(i) − Cost(i)) == dif-
ference).
4 newU (i) = row(1); newM (i) = column(1). /∗ Output
modelN = M sequence of UAVs and mission point assign-
ments ∗/
5 newC(i) = obj.AuM1(newU (i),newM (i)). /∗ Output
model N = M UAV with the corresponding flight cost of the
assignment sequence of mission points ∗/
6 AuM1(row(1),:) = [ ]. AuM1(:,column(1)) = []. /∗ Delete
exported assignment sequence ∗/
7 end
Second model N > M .
Construct separate auxiliary flight cost matrices AuM1 and .
AuM2..
8 for i = 1 : M
9 Repeat steps 1-7. /∗ Output equivalent sequence of UAVs
and mission points assignments∗/
10 end
11 for j = (M + 1) :N /∗Calculate the assignment sequence
for other UAVs. ∗/
12 difference 1 = min(min(abs(AuM2(i) − Cost(j)))).
13 [row,column] = find(abs(AuM2(i)−Cost(j)) == dif-
ference1).
14 newU (j) = row(1); newT (j) = column(1).
15 newC(j) = obj.AuM2(newU (j),newT (j)). /∗ Output
model N > M UAV with the corresponding flight cost of the
assignment sequence of mission points ∗/
16 AuM2(row(1),:) = 0.
17 end
Third model N < M .
Construct the auxiliary flight cost matrix AuM1 andAuM3.
18 for i = 1 : N
19 Repeat steps 1-7.
20 end
21 for i= (N + 1): M
22 difference 2 = min(min(abs(AuM3(i) − Cost(j)))).
23 [row,column] = find(abs(AuM3(i) − Cost(j)) ==

difference2).
24 newU(i) = row (1); newT (i) = column(1).
25 newC(i) = obj.AuM3(row(1), newT (i)). /∗ Output
model N < M UAV with the corresponding flight cost of the
assignment sequence of mission points∗/
26 end

Algorithm 3 Framework of the DE Algorithm
Input: Population: NP; Dimebison: D; Genetation: Gen.
Output: The best vector(solution).
1 t = 1
2 Initialize the population X (0) by equation (17).
3 while t ≤ Gen
4 fori =1 to NP
5 for j = 1 to D
6 vj,i(g+ 1) = Mutation(xj,i(g)). /∗ Mutant individuals are
generated by equations (18)-(22) or other mutation strategies.
∗/
7 uj,i(g + 1) = Crossover(vj,i(g + 1), xj,i(g)). /∗ The trial
individuals were generated by equation (23). ∗/
8 endfor
9 if f (uj,i(g + 1)) ≥ f (xj,i(g)) then /∗ The more adapted
individuals were selected by equation (24). ∗/
10 xj,i(g+ 1) = uj,i(g+ 1).
11 else
12 xj,i(g+ 1) = xj,i(g).
13 endif
14 endfor
15 t = t + 1.
16 endwhile

assignment sequences, and the redundancy of the assignment
schemes will lead to anomalies in the assignment sequences
of UAVs, so the redundant assignment schemes must be dealt
with.

In recent decades, researchers have designed various meth-
ods to eliminate redundant data or extract data features for
large-scale data optimization. These methods include the
relevant-redundant weight-based feature criterion [31], joint
multi-objective optimization method for feature selection
and classifier design [32], and binary differential evolution
with self-learning [33]. These methods have demonstrated
good performance in handling irrelevant and redundant data.
However, MUCMA requires solving the optimal assignment
solution in a short time, and it would be impractical to opti-
mize both the diversity of the populations and the redundancy
of the data with the main research objective of improving the
accuracy of the assignment solution. The reason is that a part
of the population will be added to the next generation cycle
as a feasible solution during the iterative process. Therefore,
a method for reducing redundant data based on fitness values
is proposed in this section, and the schematic diagram of the
algorithm is shown in Figure 7.

In WAFC-RRAS, the entire population is randomly
divided into four populations with the same number of indi-
viduals, and an archive of mutation strategies (AMS) is
constructed to store four mutation strategies with different
characteristics. Next, in accordance with the data redundancy
reduction rule, the voyage cost of each individual is calcu-
lated, and whether the redundancy rate of individuals in the
subpopulation exceeds the specified value (30% or 40%) is
determined through the flight cost. When the redundancy
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FIGURE 7. Schematic of the process of eliminating redundant flight cost data.

TABLE 1. Parameter selection in the mutation strategies.

rate exceeds its regular value, the corresponding mutation
strategy is changed, and the update is continued iteratively;
otherwise, a new population set of qualified individuals is
produced.

At the same time, we use an intergenerational variation
mechanism instead of random coverage to improve popu-
lation diversity. The reason is that the fitness value of the
optimal solution is low during the evolutionary process and
likely to be overwritten as the number of iterations increases,
leading to a waste of computational resources. Therefore,
in this study, individuals that are better than the others are
retained. This approach effectively changes the evolutionary
direction of the population and increases population diversity.

The parameter settings (Fand CR) of the mutation strate-
gies are shown in Table 1, and the redundancy rate of flight
cost reduction is shown in Algorithm 4.

C. EXECUTION PROCESS OF MULTI-UAV COOPERATIVE
MISSION ASSIGNMENT BASED ON WAFC-RRAS
ALGORITHM
Figure 8 depicts the specific flow of multi-UAV cooperative
mission assignment based on the WAFC-RRAS algorithm.

V. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the effectiveness and stability of MUCMA based
on WAFC-RRAS, this study conducts three sets of simula-
tion experiments in MatlabR2016b. In Experiment 1, small
numbers of UAVs and mission points are selected to verify
the effectiveness of WAFC-RRAS. In Experiment 2, large
numbers of UAVs and mission points are selected to verify
the stability of WAFC-RRAS. Meanwhile, in Experiment 3,
the performance of WAFC-RRAS is compared with that of
other algorithms.

A. EXPERIMENT 1: SELECTING SMALL NUMBERS OF UAVs
AND MISSION POINTS TO VERIFY THE EFFECTIVENESS OF
THE ALGORITHM
Table 2 shows the parameter information for each UAV
and mission point under the three assignment models.
Start,Mission, and Radar denote the coordinates of the
UAVs, the mission points, and the radar scanning area in the
3D simulation environment, respectively. MaxDis refers to
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Algorithm 4 Reduce the Redundancy Rate
Input: Population: Pn; Mutation strategies: I, II, III, and IV.
Output: Output the redundant data occupancy Ocrd and the
better set of individuals of the population.
1 Determine the size of the population and divide it randomly
into 4 populations: offspr1,, offspr3 and offspr4.
2 Calculate the fitness values for the various populations and
determine the occupancy of redundant data.
3 fori =1: Np/4
4

vj,i(g+ 1) = xj,r1(g) + F × (xj,r2(g) − xj,r3(g))

+ . . . + F × (xj,r4(g) − xj,r5(g)).

5 fitness(i) = FliDCost(i) + FliTCost(i) + VioBCost(i).
/∗ Calculate the fitness values for individuals in the popula-
tion separately ∗/
6 end
7 ReC= tabulate(fitness). /∗ Output repeated fitness values
and output the proportion of that number repeated ∗/
8 if ReC >30%
9

vj,i(g+ 1) = xj,i(g) + F × (xj,best (g) − xj,i(g))

+ . . . + F × (xj,r1(g) − xj,r2(g)).

10 else
11 Export eligible individuals to TEP1.
12 for i = Np/4+1: Np/4∗2
13

vj,i(g+ 1) = xj,best (g) + F × (xj,r1(g) − xj,r2(g))

+ . . . + F × (xj,r3(g) − xj,r4(g)).

14 fitness (i) = FliDCost(i) + FliTCost(i) + VioBCost(i).
15 end
16 ReC = tabulate(fitness).
17 if ReC >30%
18

vj,i(g+ 1) = xj,i(g) + F × (xj,r1(g) − xj,i(g))

+ . . . + F × (xj,r2(g) − xj,r3(g)).

19 else
20 Export eligible individuals to TEP2.
21 And so on, output TEP3 and TEP4.
22 TEP = [TEP1; TEP2; TEP3; TEP4]. /∗ Combine individ-
uals from eligible populations∗/
23 Improve the convergence performance of the algorithm.
24

vj,i(g+ 1) = xj,best (g) + F × (xj,r1(g) − xj,r2(g))

+ . . . + F × (xj,r3(g) − xj,r4(g)).

25 Output the set of optimal solutions.
end

the maximum flight of each UAV. SpeFli is the minimum
and maximum flight speeds of each UAV. WeiMis denotes
the weight of each mission point. OrdMis indicates the time

sequence in which each mission point is executed, andWaitS
is the waiting time of each UAV.

The algorithm parameters for the three assignment models
in Experiment 1 were set as follows: NP=500, NP is the size
of the population. Gen=1000, Gen is the number of evolu-
tionary iterations. As the differential evolution algorithm is
somewhat stochastic, in order to better show the stability of
the algorithm in this paper, the experiment will be repeated
continuously for the same model, and Num sets the number
of repetitions, Num=20.

Figure 9 shows the results of the assignment of UAVs to
missions in Experiment 1. The yellow circles and yellow
pentagrams represent the positions of UAVs and mission
points in 3D space, respectively. The yellow hemispheres
indicate the radar scanning range, and the black solid lines
represent the relationship between UAVs and the mission
point assignment. As can be seen in Figure 9, the planning
system was able to follow the UAVs assignment mechanism
without assignment conflicts for the different assignment
models, while the approximate flight cost method was able
to efficiently calculate the distance between the UAVs and
each mission and the UAVs did not cross the obstacles.

Table 3 shows the results of the assignment of MUCMA
under different models for Experiment 1. UAV and Mis-
sion represent the UAV sequence and mission assignment
sequence, respectively. Tcost represents the total flight cost
of the UAV to execute the mission, and Time represents the
algorithm’s running time. As can be seen from the assignment
results in Table 3, accurate approximate flight costs can be
solved for both UAVs and mission points, while MUCMA
can solve the assignment scheme in a short time.

Figure 10 shows a comparison of the single convergence
and average convergence curves of the MUCMA fitness
values for Experiment 1. The solid blue and red lines in
Figure 10 indicate the single and average convergence curves,
respectively, while the red circles and blue asterisks indicate
the optimal solution solved by the WAFC-RRAS algorithm
and the optimal solution searched for by the intergenerational
variation during the iterative process, respectively. The single
convergence curve shows that each assignment model finds
as many assignment solutions as possible in the beginning
of the iteration. As the number of iterations increases, the
different assignment models converge quickly to the optimal
solution. The average convergence curve indicates that the
convergence trend is relatively smooth and similar to that of
the single convergence curve. As a result, the WAFC-RRAS
algorithm has good diversity and convergence, and is highly
effective in solving MUCMA for a small number of UAVs
and missions.

B. EXPERIMENT 2: SELECTING LARGE NUMBERS OF UAVs
AND MISSION POINTS TO VERIFY THE STABILITY OF
WAFC-RRAS
In Experiment 2, large numbers of UAVs and mission points
are selected to verify the stability of WAFC-RRAS, and the
simulation environment and algorithm parameters are the
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FIGURE 8. Simulation diagram of UAVs and mission assignment in Experiment 1.

TABLE 2. Experimental initial data for UAVs and mission points.

same as in Experiment 1. The performance metrics include
average time Taverage, average cost value Caverage, optimum

cost value Coptimum, constraint violation Cviolation, optimum
solution rate Roptimum and redundancy rate Rredundancy.
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FIGURE 9. Single and average convergence curves for each model in Experiment 1.

TABLE 3. Results of MUCMA assignment and running times in experiment 1.

Figure 11(a), Figure 11(b) and Figure 11(c) show the
UAVs and mission assignment results for Experiment 2,
respectively. Figure 11(d), Figure 11(e) and Figure 11(d) hide
the mountainous model and it can be seen more clearly that
the approximate flight cost takes full account of the influence
of obstacles on the planning system during the planning
process, and it can also be seen that although the number
of UAVs and missions is increased, the UAVs do not suffer
from assignment conflicts and strictly follow the assignment
mechanism of each assignment model.

Figure 12 shows the single and average MUCMA con-
vergence curves for Experiment 2. The graph shows that
although the numbers of UAVs and mission points are
increased, the WAFC-RRAS algorithm is still able to search
a wider solution space at the beginning of the iteration and
converges quickly to the optimal assignment solution later in
the iteration.

Meanwhile, the convergence curve is analyzed using a box
line plot, as shown in Figure 13. A boxplot is a statistical
plot that uses five statistics (minimum, upper quartile, mean,
lower quartile, and maximum) to describe the data.

Figure 13 randomly selects five convergence curves in the
different assignment models as the object of analysis. With
Model N = M convergence curve A as an example, the
black diamond points in the figure indicate the data outliers
(20686.8, 20134.8). The outliers show a large difference in

a set of data relative to other convergence values. In the
MUCMA assignment system, the outliers indicate that at
the beginning of the iteration, WAFC-RRAS can search a
broad population space. The rectangles denote concentrated
convergence data, and the squares denote the mean of the
convergence curve. As can be seen from the boxplot of con-
vergence curveA, convergence curveA can search for a wider
solution space in the early iteration, search for more optimal
solutions near the optimal solution in the middle iteration,
and converge to the optimal solution quickly in the late
iteration.

Table 4 presents the data on the cooperative assignment of
UAVs for Experiments 1 and 2, and six evaluation metrics are
selected to analyze the performance of WAFC-RRAS.

• Average time: Taverage =

n∑
i=1

Ti/Num, where Ti denotes

the time of the i-th algorithm run and Num denotes the
number of times the system is run.

• Average cost: Caverage =

n∑
i=1

TCi/Num, where TCi

denotes the total flight cost of the i-th UAVs. This metric
measures the stability of the algorithm.

• Optimum cost: Coptimum = min[TC1,TC2, . . . ,TCn],
where TCn represents the minimum generation value in
the number of iterations. It measures the ability of the
algorithm to find the optimal solution.
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FIGURE 10. UAVs and mission assignment results for Experiment 2.

FIGURE 11. Single and average convergence curves for each model in Experiment 2.

• Constraint violation: Cviolation = max[Conv(i)/
T cos t(i)], where Conv(i) denotes the amount of viola-
tion in generation i and T cos t(i) is the total flight cost
in generation i. This metric measures the cooperative
performance of WAFC-RRAS.

• Optimum solution Roptimum: It indicates the number of
times of falling into a local optimum and the number of
times that are currently better than the average cost as a
percentage of the total number of experiments.

• Redundancy rate Rredundancy: It indicates the repetition
rate of the UAV assignment scheme at the beginning
of the algorithm iteration, which is usually considered
to be the first 30% of iterations at the beginning of the
iteration.

The following conclusions are drawn from the data in
Table 4.
Conclusion 1: In Experiment 1, the average time of the

cooperative mission assignment of a small number of UAVs
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FIGURE 12. Data analysis of convergence curves under different assignment models.

TABLE 4. Statistics on the assignment results for Experiments 1 and 2.

under the different models is short, the difference between
the average and optimal cost values is small, the violation
constraint is small, the optimal solution rate is high, and
the redundancy rate is low. These results indicate that the
proposed WAFC-RRAS can effectively deal with the few
cooperative mission assignment problem of UAVs under dif-
ferent assignment models.

Conclusion 2: In Experiment 2, although the number of
UAVs and mission points is increased, resulting in a long
average time, the difference between the average and opti-
mal cost values is still small, indicating that the algorithm
has strong stability. The low violation constraint and high
optimization rate indicate that the algorithm has strong coop-
erative performance, and the redundancy rate is increased but
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FIGURE 13. Convergence curves of average fitness values for different algorithms.

still does not exceed the limited requirements. This result
shows that the proposedWAFC-RRAS can effectively handle
the cooperative mission assignment problem.

C. EXPERIMENT 3: COMPARISON OF THE PERFORMANCE
OF WAFC-RRAS AND OTHER ALGORITHMS
This section compares WAFC-RRAS’s performance with
that of the self-adaptive weighted DE approach (SaWDE),
discrete mapping DE (DMDE), two-level parameter
cooperation-based population regeneration (TPPR), hybrid
artificial potential field and ant colony(HAPF-ACO), and
feature selection-based decision model(FSDM).

The SaWDE algorithm adopts six mutation strategies and
10 selection mechanisms to improve the diversity of data
features and reduce the redundancy rate of data, and it is
suitable for large-scale data feature extraction and appli-
cation [34]. The DMDE algorithm uses a unified genetic
coding approach and an evolutionary algorithm framework to

handle different assignment models, and it employs dynamic
cross-rate and hybrid differencing strategies during evolution
to improve the search efficiency of discrete differencing algo-
rithms [21]. The TPPR algorithm adopts a two-layer paramet-
ric framework to cooperate continuous space optimization
problems, thereby reducing population stagnation and early
convergence problems [35]. The HAPF-ACO algorithm fully
considers multiple UAV constraint types, and constructs
target attraction and threat repulsion zones for environment
cognition through HAPF, focusing on multi-UAV execu-
tion efficiency and obstacle avoidance performance [8]. The
FSDM algorithm proposes a new feature selection-based
decision-making model to improve multi-UAV recognition of
the simulated environment, while the superior search capabil-
ity of the A∗ algorithm is used to improve the efficiency of
multi-UAV cooperative mission assignment [36]. The differ-
ent model parameters and algorithm performance are shown
in Table 5.
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TABLE 5. Comparison of the performance metric data of different algorithms.

Table 5 summarizes the comparative data on the perfor-
mance metrics of the algorithms under different assignment
models. It can be seen from the data that the WAFC-RRAS
algorithm is significantly better than the other three algo-
rithms in the two metrics of optimal flight cost, and average
flight cost for the same model. The average time is slightly
higher than the SaWDE algorithm, but the difference is
smaller.

The solid lines with different colors in Figure 4 rep-
resent the convergence trend of the average fitness val-
ues of the six algorithms. As can be seen from model
N = M , WAFC-RRAS and SaWDE can search a wide solu-
tion space at the beginning of the iteration, but WAFC-RRAS
can find more superior solutions at the end of the iteration.
The diversity and convergence of WAFC-RRAS are superior
to those of the five other algorithms. As can be seen from
model N > M , all algorithms search a wide solution space
early in the iteration, FSDM and WAFC-RRAS convergence
trends are consistent, butWAFC-RRAS can converge quickly
to the optimal assignment scheme in the middle of conver-
gence. In model N < M , all six algorithms converge to the
optimal solution, butWAFC-RRAS has amuch better optimal
solution than the three other algorithms. In summary, WAFC-
RRAS outperforms the other algorithms in terms of diversity
and convergence under the different models, and it can search
for a good assignment solution within a short time.

VI. CONCLUSION
In this study, a Multi-UAV cooperative mission assign-
ment optimization method based on an auxiliary flight cost
matrix is proposed. The method maps the flight cost of
discrete-space UAVs to a physically meaningful continuous
space and designs main order matching and auxiliary cost
matrix methods under different assignment models to prevent
UAVs assignment conflicts. Then, an RRAS is proposed to
simplify the complexity of reducing redundant data by fusing
different mutation strategies. The method ensures the diver-
sity of the population and speeds up the convergence to the
improved assignment scheme. Simulation experiments show
that the method can effectively and quickly solve the problem
of cooperative mission assignment of UAVs under different
models.

Our next research will focus on the impact of commu-
nication security and communication delay on MUCMA.
As the number of UAVs in the cooperative operation sys-
tem increases, the communication signal strength weakens.
A common method to improve the communication perfor-
mance of UAVs is to increase the signal strength and extend
the communication range. However, this procedure causes
new communication security and communication delays.
Communication security and avoidance of communication
delays are prerequisites to ensure stable and reliable informa-
tion interaction in UAVs. Therefore, investigating MUCMA
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in environments involving communication security and com-
munication delay environment is necessary.
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