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ABSTRACT DeFi, a decentralized financial service based on blockchain, not only provides innovative
financial services, but also poses various risks, such as the Terra Luna crash. Therefore, anomaly detection
in DeFi is necessary to ensure the safety and reliability of the DeFi ecosystem. However, this is very difficult
because of the complex protocol, interaction among smart contracts, and high market volatility. In this
study, we propose a novel method to effectively detect anomalies in DeFi. To the best of our knowledge,
this is the first study that utilizes deep learning to detect anomalies in DeFi. We propose a deep learning
model, anomaly VAE-Transformer, which combines the variational autoencoder to extract local information
in the short term, and the transformer, to identify dependencies between data in the long term. Based on a
deep understanding of DeFi protocols, the proposed model collects and analyzes various on-chain data of
Olympus DAO, a representative DeFi protocol, for extracting features suitable for anomaly detection. Then,
we demonstrate the superiority of the proposed model by analyzing four anomaly cases detected successfully
by the proposedmodel inOlympusDAO.Amalicious attack attempt and structural changes inDeFi protocols
can be identified quickly using the proposed method; this is expected to help protect the assets of DeFi users
and improve the safety, reliability, and transparency of the DeFi market. The dataset and codes are available
at https://github.com/fialle/Anomaly-VAE-Transformer

INDEX TERMS Anomaly detection, blockchain, deep learning, DeFi, Olympus DAO.

I. INTRODUCTION
Decentralized finance (DeFi) is a distributed finance service
implemented through smart contracts on a blockchain net-
work without using centralized financial institutions. DeFi
overcomes the limitations of traditional finance, such as
information asymmetry between users and institutions, high
transaction fees, and delayed transactions, while heightening
the transparency and accessibility of financial services and
inducing various financial innovations. According to DeFi
Llarma [1], the total value locked (TVL) deposited in DeFi
protocols peaked at approximately $180 billion at the end of
2021, 12 times higher than that compared to $15 billion at the
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end of 2020. The DeFi market has been stagnant in addition to
the overall decline of the cryptocurrency market that started
in the first half of 2022; the TVL of DeFi protocols is around
$46 billion as of May 2023.

The DeFi ecosystem is innovative and consistently grow-
ing through various financial services; however, there are also
risks of abnormal transactions and fraudulent practices such
as:

Flash loan attack on bZx protocol in 2020: The attacker
utilized a flash loan to manipulate the market price of wBTC
by exploiting a bug in bZx.

True Seigniorage Dollar (TSD) attack in 2021: The
attacker abused the principles of DAO, amassing TSD tokens
to gain voting power, then induced the DAO to upgrade the
smart contract with malicious code.
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Terra LUNA crash in 2022: This crash resulted from a
rapid UST sell-off, causing oversupply of Luna and a signif-
icant price drop. The primary cause was the vulnerability in
the algorithm designed to maintain the price of UST.

Smart contract attack on Yearn Finance in 2023: The
attacker exploited a hardcoded misconfiguration in Yearn
Finance’s smart contract code.

Therefore, anomaly detection in DeFi is extremely impor-
tant and necessary to protect users and improve the safety and
reliability of the DeFi ecosystem.

Anomaly detection refers to the process of detecting
an anomaly or outlier, which is a type of data represent-
ing patterns deviating from the normal category. In recent
years, notable advancements in deep learning technology
have been achieved in various fields including computer
vision, natural language processing, and voice recognition,
and therefore, numerous studies have focused on utiliz-
ing deep learning technology in the anomaly detection
field [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].

However, there remain numerous challenges to realizing
anomaly detection because of its distinctive characteristics.
Unlike general problems, an anomaly occurs very rarely and
cannot be predicted. In addition, it is defined differently based
on the domain, ranging from finance and medical to smart
manufacturing. Thus, a general anomaly detection model
cannot be easily applied to different domains.

Recently, the blockchain technology has been under the
spotlight over the past few years. Yet, the technology has
not fully matured and there is a completely different techno-
logical difficulty stemming from the nature of decentralized
peer-to-peer networks. Thus, research on anomaly detection
using deep learning technology in a blockchain network is
still in the early stages [13], [14], [15]. Past research focused
on the detection of a Ponzi scheme, which is a specific type of
fraud with a narrower scope than anomalies in a blockchain
network [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29].

Thus, there is lack of research on anomaly detection in
DeFi, which is a new type of a distributed financial ser-
vice implemented on a blockchain network. DeFi has the
technological burden of a complex structure where various
protocols and tokens interact based on blockchain and smart
contract technologies. Therefore, a thorough understanding
of the operation principle of a blockchain and the on-chain
data structure is required to analyze data related to DeFi.
In addition, the market volatility of DeFi is extremely high
because it is a financial ecosystem that is still in the early
stages, which causes normal transaction patterns to change
very rapidly or the line between abnormal and normal trans-
actions to become unclear. Given these abovementioned rea-
sons, detecting anomaly in DeFi is an extremely difficult
and unique challenge requiring active research to obtain a
solution.

In this paper, we propose an anomaly variational autoen-
coder (VAE)-Transformer, which is a new deep learning
model for anomaly detection in DeFi. The proposed model

combines a VAE for extracting local information in the short
term [30] and a transformer for identifying the dependency
between data in the long term [31]. The VAE encoder encodes
time series daily data into low-dimensional embedding and
sends it to the transformer. The transformer receives the
embedding sequence and generates contextualized embed-
dings; the output is sent to a VAE decoder, which inputs
the output of the transformer and reconstructs the daily data.
The proposed model uses the difference between original
and reconstructed data for anomaly detection. To the best of
our knowledge, our research is the first study utilizing deep
learning for anomaly detection in DeFi.

For evaluation, we applied the proposed model to Olym-
pus decentralized autonomous organization (DAO), which
is one of the largest DeFi at this moment. To this end,
we collected and analyzed the transactions of Olympus DAO
users related to staking, unstaking, bond creation, and bond
redemption activity, the internal transactions between smart
contracts invoked accordingly, and the event logs generated
as execution results. Based on the analyzed on-chain data,
12 features are extracted for use in the anomaly detection
model. This is unlike previous studies that detect fraud and
Ponzi schemes in a blockchain using only simple transac-
tions. Further, we calculate anomaly scores using the trained
anomaly VAE-Transformer and detect anomalies in Olympus
DAO. Moreover, we thoroughly analyze the four detected
anomaly cases of Olympus DAO. The analysis results con-
firm that the proposed anomaly VAE-Transformer model can
successfully detect different abnormal patterns and is suitable
for anomaly detection in Olympus DAO.

The major contributions of this study are summarized
below.

• To the best of our knowledge, this is the first study on
anomaly detection in DeFi using deep learning technol-
ogy.

• With a deep understanding of the DeFi protocol, the pro-
posed model extracts features appropriate for anomaly
detection by collecting and analyzing transactions and
related various on-chain data.

• We propose the anomaly VAE-Transformer model that
combines a VAE for extracting local information in the
short term and a transformer for identifying dependency
between data in the long term for anomaly detection in
DeFi.

• The actual dataset of Olympus DAO is used. The
excellence of the proposed model is proved by care-
fully analyzing the four cases in which the anomaly
VAE-Transformer model successfully detects anomalies
in Olympus DAO.

The remainder of this manuscript is organized as follows:
In Section II, DeFi and Olympus DAO are examined in
detail and previous studies on anomaly detection using deep
learning are reviewed. In Section III, data collection and
feature extraction for anomaly detection in DeFi are ana-
lyzed, and the proposed anomaly VAE-Transformer model
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is explained. Section IV explains the implementation of the
proposed model and the experiment on anomaly detection
in Olympus DAO, and the results of anomaly detection are
analyzed in detail. Finally, Section V concludes the findings
of this research.

II. RELATED WORK
A. DEFI AND OLYMPUS DAO
DeFi, or decentralized finance, is a distributed finance ser-
vice implemented through smart contracts without using
centralized financial institutions on a blockchain network.
Blockchain is a type of distributed ledger technology where
anyone can read data but not manipulate it because the block
data are stored in a decentralized peer-to-peer storage sys-
tem. All nodes participating in a blockchain share the same
records, requiring agreement among all nodes. Therefore,
although a higher number of nodes in a blockchain results
in inefficiency, the essential nature of decentralization is
heightened because data are shared by more nodes. Thus,
a blockchain has the potential to offer diverse services that
differ from conventional centralized services because of the
decentralization of data, server, and decision making.

In traditional finance, centralized financial companies
manage and control the overall processes of financial ser-
vices. That is, financial companies plan financial services,
determine the terms of the offered products, and explain the
details of the services to customers. Then, financial services
are provided to customers by implementing the matters speci-
fied in terms and conditions. All processes are executed by the
independent systems of each financial company using which
all information including transaction history is recorded and
managed. Consequently, customers can only obtain very lim-
ited information compared to that accessible to financial
companies, and they end up paying high financial charges to
these companies. Further, the safety of financial companies,
where all information related to financial services is stored,
is directly related to the safety of financial services.

In contrast, DeFi enables direct financial transac-
tions among users without the need for a centralized
agency by using blockchain and smart contract technology.
A blockchain network plays the role of a platform in DeFi; on
this network, anyone can create financial services with their
own rules, and other uses who agree with such rules can freely
use the relevant service without the permission of the person
who created the services. All information related to DeFi
including financial transactions is transparently recorded in
the nodes of the blockchain network, and the DeFi service
is executed through smart contracts for which the rules of
the service are programmed. DeFi has been gaining consid-
erable research interest as an alternative to traditional finance
entailing structural issues such as information asymmetry
between users and financial companies, high transaction fees,
and delayed transactions.

The DeFi ecosystem provides traditional financial services
such as deposits, loans, trade, insurance, asset management,
and derivatives. Further, the DeFi ecosystem provides cre-

ative, innovative, and converged services by freely connect-
ing and utilizing other DeFi services. Some notable DeFi
services include MakerDAO, Compound, and Aave in the
credit/lending field, Uniswap in the decentralized exchange
(DEX) field, Yield and Synthetix in the derivatives field, and
Nexus Mutual in the insurance field.

Among the various DeFi services, Olympus DAO, which
is a representative service of DeFi 2.0, is examined in detail
in this study. Olympus DAO is an Ethereum-based decen-
tralized reserve currency protocol launched in March 2021,
and it first proposed protocol owned liquidity (POL), which
differentiates it from conventional DeFi services. Further,
Olympus DAO has recently received increasing attention as
an approach that can provide a higher yield than that of
traditional financial services, guarantee a minimum value
of OHM token as treasury owned assets, and participate in
decision making through a DAO.

The minimum value of an OHM token issued by Olympus
DAO is guaranteed by the assets deposited in the treasury.
In other words, the treasury of Olympus DAO is used to pro-
vide liquidity and guarantee the values of the OHM tokens.
The Olympus DAO treasury is operated by a DAO, and it
is safely managed against hacking attempts by applying the
multisignature wallet technology. The assets in the Olympus
DAO treasury can increase in value through certain activities
such as receiving rewards by providing liquidity when OHM
token transactions increase within DEX or by transferring
the difference between the sales and issuance prices of bonds
through bonding sales.

Staking and bonding are two core mechanisms of Olym-
pus DAO. The Olympus DAO participants can earn interest
through staking and purchase OHM tokens at a discounted
price through bonding. Further, the Olympus DAO protocol
can secure safety by directly owning liquidity and treasury
assets through staking and bonding.

Bonding plays an important role in increasing the assets
owned by the treasury. Bonders (bonding participants) can
purchase anOHM token at a discounted price from themarket
price. Further, bonders can participate in staking by owing
OHM tokens or earn profits by selling the token after a
certain period (five days by default). The protocol receives
assets from bonders and transfers them to the treasury assets.
Stakers stake OHM tokens in a protocol and receive the
rebase rewards. Olympus DAO provides a high yield to stak-
ers, thereby inducing the demands for OHM tokens. Stakers
receive sOHM once they stake OHM tokens, and the number
of sOHM tokens increases according to APY, which is a yield
given by a smart contract. Finally, stakers receive the same
amount of OHM tokens as sOHMwhen they unstake at a later
time.

B. ANOMALY DETECTION USING DEEP LEARNING
Anomaly detection refers to the process of detecting an
anomaly or outlier, which is a type of data representing
patterns deviating from the normal category. Anomaly detec-
tion has been actively researched over the past few decades
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in several fields including the detection and monitoring of
financial misdeeds such as the fraudulent use of credit cards,
financial transaction fraud, market manipulation, cyber secu-
rity, quality management, medical and healthcare risks, and
smart manufacturing [2], [3].

An anomaly can be categorized into various types such
as point, conditional, and group anomalies [4], [32], [33].
A point anomaly is an individual data point or sequence hav-
ing unusual values compared to other data. Examples include
an excessively high financial transactions or abnormal health
indicators of a patient’s health. A conditional anomaly refers
to an individual data point or sequence having unusual values
in a specific context. For example, a sharp decline in tem-
perature during the summer in seasonal temperature data is
a conditional anomaly. A group anomaly refers to a group
of data demonstrating unusual patterns compared to other
groups of data. Here, an individual data point belonging to
group anomaly can be normal. Examples of group anomaly
include transactions demonstrating strange patterns in con-
tinuous financial transactions or repetitions of normal system
logs at specific times.

Deep learning technology is being applied in numerous
fields because of the rapid developments in the artificial
intelligence field. Anomaly detection is an important issue
that is actively researched in various domains, and there-
fore, many studies have focused on using deep learning
technology in the anomaly detection domain. For exam-
ple, in [3], deep anomaly detection is categorized into the
following three types: (1) deep learning for feature extrac-
tion, (2) end-to-end anomaly score learning, and (3) learn-
ing feature representations of normality. In (1) deep learn-
ing and anomaly detection are separated completely where
deep learning is used only for feature extraction. Research
belonging to this type utilizes deep learning technology
for extracting low-dimensional feature representations from
high-dimensional data. These studies applied and imple-
mented pre-trained deep learning models; however, com-
pletely separating feature extraction and anomaly scoring can
interfere with deducing optimal results [34], [35], [36]. In (2),
deep learning and anomaly scoring module are integrated
completely, wherein a neural network that learns anomaly
scores in an end-to-end method is used. Research in this type
focuses on simultaneously learning feature representation
and anomaly scores. Because previous anomaly measures
are not used, loss functions with excellent performance must
be designed for anomaly score learning [37], [38], [39].
In (3), deep learning and anomaly scoring module are not
completely separated, and thus, it aims to learn normality
effectively. Studies on autoencoders [8], [40], [41], genera-
tive adversarial networks [42], [43], [44], and predictability
modeling [45], [46], [47] belong to this category.
Time-series anomaly detection refers to detecting abnor-

mal data, or anomaly (point anomaly, conditional anomaly,
and group anomaly), in time-series data arranged in a chrono-
logical order among various types of data. Data are con-

stantly generated in real time in many application fields; thus,
detecting and responding to anomaly in early stages by mon-
itoring the time-series data are significant for heightening
the efficiency and safety of a relevant domain. Therefore,
time-series anomaly detection is extensively researched in
a variety of domains including finance, medical, environ-
ment, andmanufacturing process.Most studies on time-series
anomaly detection using deep learning technology belong to
learning feature representations of normality among the dif-
ferent categories of deep anomaly detection. With respect to
anomaly detection methods, research on time-series anomaly
detection can be categorized into reconstruction, forecasting,
and dissimilarity methods [2], [3], [4], [5].

Reconstruction methods involve reconstructing data and
detecting anomalies using the difference between original
and reconstructed data. Autoencoder (AE) [40], [48], [49],
VAE [8], [9], [10], [11], [12], [50], and transformer based
models [5], [6], [7], [51], [52] use such reconstruction errors.
In [50], a semi-supervised framework is introduced, employ-
ing a VAE and a one-class support vector machine for the
detection of structural anomalies. In [51], a transformer-
based generative adversarial network(GAN) framework is
presented for time series anomaly detection. Reference [52]
proposes an adversarial transformer model designed for
detecting anomalies inmultivariate time series data. Forecast-
ing methods involve predicting the future state based on past
and present states and detecting anomaly using the difference
between the predicted and observed values [45], [53], [54].
Dissimilarity methods detect an anomaly by measuring the
dissimilarity of data distribution or the distance from clusters
where similar data are clustered [55], [56], [57].

VAE-LSTM [8] uses both a VAE module for identify-
ing local features of a short window and an LSTM mod-
ule for estimating the general correlation in the long term.
An encoder in the VAE module generates low-dimensional
embedding for a short window, the LSTM receives the gener-
ated embedding as an input and predicts the next embedding,
and the decoder receives the predicted embedding as an input
and reconstructs the original window. The reconstruction
error is the anomaly detection score of VAE-LSTM.Anomaly
transformer [5] presents a new anomaly attention module
that simultaneously calculates prior association focusing on
nearby data and series association that identifies association
from the perspective of entire data. Prior association applies
the learnable Gaussian kernel, while series association func-
tions similar to the self-attention of a general transformer.
In addition, the anomaly transformer amplifies the difference
between normal and abnormal data by applying minimax
association learning.

Anomaly detection still has numerous challenges to over-
come because of its distinctive characteristics. Unlike other
common problems, anomaly detection occurs very rarely and
cannot be predicted [3]. Most datasets have a significantly
greater amount of normal data and extremely small amounts
of anomalies. Due to this class imbalance, it is challenging
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or even impossible to obtain labeled data. Further, normal
data can be misrecognized as anomaly due to noise, which
is a type of error that can irregularly occur in the process
of collecting and processing data. In addition, anomaly is
frequently associated with factors that cannot be known in
advance such as financial fraud or cyberattacks. Anomaly is
defined differently and has varying characteristics for each
domain, and therefore, a general anomaly detection model
cannot be applied identically to different domains.

The blockchain technology has recently been under the
spotlight; however, this technology has not matured and there
is a completely different technological difficulty arising from
the nature of a decentralized peer-to-peer network. Thus,
research on anomaly detection in a blockchain network using
deep learning technology is still in its early stages [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].
For blockchain networks, research is more actively con-

ducted on a specific type of fraud, or a Ponzi scheme, which
has narrower scope than anomaly detection [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29].
A Ponzi scheme is a traditional financial investment fraud
that lures users by guaranteeing high profits. A Ponzi scheme
on a blockchain network can induce more serious damages
because of the anonymity of a blockchain and the unchange-
able and unstoppable execution characteristics of a smart
contract [16], [17].

In [16], smart contracts having the features of a Ponzi
scheme were detected and analyzed to examine the dataset
of 184 Ponzi schemes. The results of analyzing inflow and
outflow transaction, life span, volume of payment, and pay-
ment inequality of 184 Ponzi schemes are presented. In [18],
features were extracted from the opcode of user accounts
and smart contracts, and then, a Ponzi scheme was detected
using data mining and machine learning methods. In [21],
172 Ponzi schemes and 3,203 non-Ponzi smart contracts were
used as a dataset, and a Ponzi detection model based on data
mining to which opcode feature and behavior-based features
are applied was proposed.

In [23], exploit transactions and attacker EOAs were ana-
lyzed for understanding attacks toward decentralized appli-
cations (Dapps) on Ethereum, and DEFIER, which is a tool
for investigating new Dapps attacks, was proposed. In [24],
several features such as the time difference between the first
and last transactions, entire Ether balance, and minimum
value of the received Ether were used, and a model was
proposed to detect illicit accounts on the Ethereum network
based on transaction history.

DeFi is growing continuously as it continues to provide
innovative financial services based on a blockchain. DeFi is
overcoming the limitations of traditional financial systems
and substantially contributing to heightening the accessibility
and transparency of financial services. However, abnormal
transactions and fraudulent practices are present in the DeFi
ecosystem, and there is a lack of research on anomaly detec-
tion in DeFi, whereas research on the overall security of
DeFi is still in the rudimentary stages. Thus, research on

FIGURE 1. Overall process of anomaly detection in Olympus DAO.

anomaly detection in DeFi is inevitable for protecting users
and enhancing the safety and reliability of the DeFi ecosys-
tem.

III. PROPOSED MODEL
This study proposes an anomaly VAE-Transformer model
that is newly designed for anomaly detection in DeFi. This
study targeted Olympus DAO, which is a popular DeFi pro-
tocol, and the proposed model can be applied to other DeFi
protocols through minor modifications. Fig. 1 shows the
process of anomaly detection in Olympus DAO. Data related
to Olympus DAO are collected from on-chain data saved
in the Ethereum blockchain, and then, they are analyzed to
extract appropriate features. In the subsequent step, such data
are used to train the proposed anomaly VAE-Transformer
model. Finally, the trained model is used to detect anomaly
in Olympus DAO, and the detection results are analyzed.

In the time-series data analysis, data are aggregated by the
specific time interval (minute, hour, day, etc.) to be used.
Hourly data are the most appropriate for Defi analyses. The
frequency of data generation is insufficient to conduct the
analysis on a minute basis considering the time required for
the blockchain consensus or the transaction period of users.
Daily data cannot properly reflect the high volatility of the
DeFi market, and therefore, large fluctuations that occur for
a day can be missed. The proposed model utilizes the hourly
data for anomaly detection; the method for collecting the
appropriate data based on understanding Olympus DAO and
extracting appropriate features to constitute hourly data is
explained in Section III-A.
For performing anomaly detection in DeFi, various types

of data must be analyzed and high-dimensional data need to
be examined because of the complexity of DeFi. Although
hourly data are examined in this study, fairly long time
sequence (e.g., one month) data need to be inspected instead
of the data of a few hours to capture long-term dependency
between data and to increate detection accuracy. Considering
these circumstances, we propose an approach to combine
the VAE and the transformer. Unlike traditional RNNs such
as LSTM, the transformer has an outstanding capability to
process long-term dependency in long-sequence data because
of the self-attention mechanism. However, the transformer
entails a high computational cost when utilizing extremely
long sequences or high-dimensional data because it requires
quadratic computational complexity. Further, VAE reduces
the complexity of high-dimensional data and projects data
onto a low-dimensional latent space for better representation.
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The proposed anomaly VAE-Transformer model detects
anomaly in a high-dimensional long data sequence based
on the integration between the VAE and the transformer.
The proposed model uses VAE to encode the sequence into
low-dimensional embedding and the transformer to capture
long-term dependency among embeddings in the embedding
sequences. The proposed model uses reconstructions errors
of both the VAE and the transformer for anomaly detection.
The reconstruction error of the transformer reflects the extent
of data anomaly from the long-term perspective, whereas
the reconstruction error of VAE reflects the extent of data
anomaly from the short-term perspective. The detailed archi-
tecture of the proposed method as well as the training and
anomaly detection methods are provided in Section III-B.

A. DATA COLLECTION AND FEATURE EXTRACTION
Using diverse types of data plays a crucial role in anomaly
detection and improving detection accuracy. This principle
applies to anomaly detection targeting Olympus DAO. Data
diversity helps detect anomalies in different scenarios or
patterns; however, using an excessive amount of different
data types can also lead to problems. Excessive data diver-
sity causes overfitting of the detection model and lowers
the detection accuracy for new data. High-dimensional data
induce the curse of dimensionality, which increases the com-
putational amount and reduces the performance of the model.
If data types are too diverse, the quality of a specific data
type may be too poor or inconsistent, and this will lower
the accuracy of a model. Thus, an appropriate level of data
diversity should be maintained by selecting highly relevant
data for anomaly detection.

The types of data related to Olympus DAO include treasury
balance, OHM price, yield (APY), and OHM market capi-
talization. We focused on the flow of OHM tokens coming
into Olympus DAO from outside or those taken out externally
as indicated by the solid red lines in Fig. 2. The proposed
model monitors the following events and detects anoma-
lies in Olympus DAO: an event where an external OHM
token comes into Olympus DAO because of a user’s staking,
an event where an OHM token owned by Olympus is taken
out externally because of unstaking, an event where a new
OHM token is minted because of bond creation, and an event
where the OHM token is sent to external users because of
bond redemption.

Treasury balance and OHM market capitalization are
closely related to staking and bonding activities, and APY
is changed based on the pre-determined policy according to
the total OHM supply. Therefore, closely observing the flow
of OHM tokens enables changes in the Olympus DAO state
to be identified, which in return, help detect anomalies. The
OHM price is associated with the status of Olympus DAO;
however, it is insufficient to detect an anomaly in Olympus
DAO because the OHM price is highly volatile depending on
the overall cryptocurrency market atmosphere. Transactions
and transfer activities between OHM token holders are not
related to anomalies in Olympus DAO.

FIGURE 2. Flow of OHM tokens based on user activity (solid red lines).
In addition to the simplified architecture of Olympus DAO, the flow of
incoming/outgoing OHM tokens attributed to staking, unstaking, bond
creation, and bond redemption is shown in this figure. In the case of
bond creation, a new OHM token is minted internally.

We collected the users’ staking, unstaking, bond cre-
ation, and bond redemption activities; these activities are
performed when transactions generated and propagated by
users are triggered. These transactions can be collected easily
through transparency and integrity, which are advantages of a
blockchain. However, unlike previous research on fraud and
Ponzi schemes in Bitcoin and Ethereum, it is difficult to grasp
the specific meaning of activities for DeFi such as Olympus
DAO based only on the information of collected transac-
tions. A user’s transaction becomes a starting point in DeFi
protocols. However, numerous complicated smart contracts
interact simultaneously, which requires a deep understanding
of the relevant DeFi protocol. Furthermore, DeFi platforms
generate and use their own custom tokens such as OHM
tokens, and the transfer information of these tokens is not
specified in transactions unlike how the amount of trans-
ferred ETH is specified in the transactions. Therefore, the
users’ transactions, internal transactions among smart con-
tracts invoked accordingly, and event logs generated as the
result were collected and analyzed to identify the specific
meaning of each action.

Table 1 summarizes the number of transactions collected
and analyzed by activity and number of related smart con-
tracts. Olympus DAO has a relatively shorter active period;
however, the several occurrences of updates and changes
took place during which new smart contracts were generated
and used. Therefore, there are 3 versions of smart contracts
for staking, and 18 types of smart contracts for bonding.
We analyzed smart contract codes and the transactions sent to
these contracts for obtaining the OHM tokens transferred by
each transaction. In this process, the list of transactions was
obtained with the help of Etherscan, which is an Ethereum
block explorer, and Infura was used to obtain the details
of transactions and corresponding receipts to be analyzed.
Algorithm 1 shows the pseudocode for obtaining redemption
activity information of OHM / DAI Bond V4. A total of
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TABLE 1. Summary of collected and analyzed transactions.

Algorithm 1 Obtaining Redemption Activity Information of
OHM/DAI Bond V4
Input: addr ▷ contract address of OHM/DAI Bond V4
Output: R ▷ set of (transaction, OHM amount) pairs
1: / * get transactions of the contract from Etherscan */
2: TxList ← GetTxsFromAddress (addr)
3: R← ∅
4: for all tx ∈ TxList do
5: if tx.s tatus= error then continue
6: end if
7: if tx.m ethod is redeem then
8: /∗ get receipt of tx via Infura * /
9: receipt ← GetTxReceipt (tx)
10: for all event ∈ receipt.logs do
11: if event.name is BondRedeemed then
12: /∗ get OHM token amount inevent ∗ /
13: amount← GetOHMAmount (event)
14: R← R ∪ {(tx, amount)}
15: end if
16: end for
17: end if
18: end for
19: return R

459,451 transactions were analyzed, and the detailed infor-
mation is provided in Appendix.

We collected and analyzed the data generated from March
2021 to December 2022. Among them, the data from April
2021 were used for anomaly detection because the Olympus
DAO was started in March 2021 and the activity patterns
in the very beginning differed from the normal patterns of
a later time. Only data up to April 2022 were used for the
anomaly detection because bonding, which is one of the core
ideas of Olympus DAO, was terminated at the end of April
2022 after its last transaction. Then, inverse bonding with an
opposite concept of previous bonding was introduced, and
it demonstrated completely different patterns from previous
bonding activities. Therefore, we decided to exclude the data
after May 2022.

These time-series data were resampled by hour to extract
features to be used in the anomaly detection model. The
following features were extracted every hour for each staking,

unstaking, bond creation, and bond redemption activity, and
a total of 12 features were obtained.

• Amount of transferred OHM tokens: The amount of
OHM tokens transferred from Olympus DAO to out-
side or from outside into Olympus DAO in an hour.

• Number of transactions: The number of transactions
generated and normally executed by users’ activities in
an hour.

• Number of active users: The number of active users
who submitted new transactions in an hour is obtained
by the number of unique addresses of the senders of
transactions generated during this period.

B. ANOMALY VAE-TRANSFORMER
1) OVERALL ARCHITECTURE
The proposed anomaly VAE-Transformer model combines
VAE for extracting local information in the short term and
a transformer for identifying the dependency between data
in the long term. Fig. 3 shows the overall architecture of the
proposed model. The VAE model consists of an encoder and
a decoder. The VAE encoder encodes daily data (sequence
of hourly data of 24 hours) among time series data into
low-dimensional embedding, and the VAE decoder receives
the output of the transformer as an input to reconstruct the
daily data. The transformer was designed by referring to the
standard transformer suggested in [31] and the informer sug-
gested in [58]; it consists of three encoders which use stacked
attention and feed-forward layers. The transformer receives
the encoding value of q non-overlapping daily data, and it
generates q contextualized embeddings as an output, which
is then transferred to the VAE decoder. The proposed model
calculates the anomaly score using the difference between the
original and reconstructed data, and it is determined as an
anomaly if the anomaly score exceeds the threshold.

For time series X = {x1, x2, . . . , xN }, xt ∈ Rm repre-
sents m-dimensional data observed at time t . In this study, xt
represents hourly data at time t for m features of the DeFi
protocol extracted in Section III-A. Fig. 4 shows that this
study applies the overlapped sliding window technique to
time-series X and generates daily data, or the sequence of
hourly data of 24 h (window size p = 24), to be used as an
input. A total of (N − p+ 1) daily data are generated from N
hourly data, and the daily data at time t is expressed as dt =[
xt , xt+1, . . . , xt+p−1

]
. Therefore, xi, which is the hourly data

at time i, is overlapped with p number of daily data, which
needs to be considered when calculating the anomaly score at
time i. (However, for xi where 1 ≤ i < por (N − p) < i ≤ N ,
the number of overlapped daily data is less than p.)

2) TRAINING THE ANOMALY VAE-TRANSFORMER
The proposed anomaly VAE-Transformer model is trained
in an unsupervised method in which VAE is trained first
followed by the transformer, which is trained using the pre-
viously trained VAE.
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FIGURE 3. Overall architecture of anomaly VAE-Transformer model.

FIGURE 4. Generating daily data from the sequence of hourly data.

For training the VAE, the VAE encoder receives dt =[
xt ,xt+1, . . . , xt+p−1

]
where dt ∈ Rp×m, which is the daily

data at time t, and it encodes this data into low-dimensional
embedding et .

et = VAE_Encoder(dt ), (1)

where et ∈ Rk and k represents the latent space dimension.
The VAE decoder receives the VAE encoder’s output et as an
input, and it decodes this into reconstructed daily data d̂t .

d̂t = VAE_Decoder(et ), (2)

where d̂t ∈ Rp×m. For minimizing the reconstruction error or
the difference between the original daily data dt and recon-
structed daily data d̂t , VAE is optimized using ELBO loss.
For VAE training, (N − p+ 1) number of overlapped daily
data generated by time-series X = {x1, x2, . . . , xN } are used.
For training, the transformer takes Et which is the value

encoded from q non-overlapping daily data Dt by the VAE

encoder as an input, and it generates q number of contextual-
ized embeddings as output Zt .

Dt =
[
dt , dt+p, dt+p×2, . . . , dt+p×(q−1)

]
, (3)

Et =
[
et , et+p, et+p×2, . . . , et+p×(q−1)

]
, (4)

Zt = Transformer (Et)

=

[
ztt , z

t
t+p, z

t
t+p×2, . . . , z

t
t+p×(q−1)

]
, (5)

where Dt ∈ Rq×p×m,Et ∈ Rq×k , zti ∈ Rk ,Zt ∈ Rq×k , and
the transformer is optimized to minimize the reconstruction
loss of Et and Zt . In this training, all sequences of the q non-
overlapped daily data generated from time-series X are used.

3) ANOMALY SCORE
After training, the proposed model can detect anomalies.
When time-series X = {x1, x2, . . . , xN } where xt ∈ Rm is
given, the anomaly score Si for xi at time t is calculated, and
it is detected as an anomaly if this value exceeds the threshold
θ .

For the given time-series X, the daily data at time t is
expressed as dt =

[
xt ,xt+1, . . . ,xt+p−1

]
, dt ∈ Rp×m. In our

model, Dt , the sequence of q non-overlapping daily data
starting at time t is taken as an input.

Dt =
[
dt , dt+p, dt+p×2, . . . , dt+p×(q−1)

]
, (6)

where Dt ∈ Rq×p×m. The VAE encoder encodes q non-
overlapping daily data separately, and delivers Et , which is
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a set of q low-dimensional embeddings to the transformer.

et = VAE_Encoder(dt ), (7)

Et =
[
et , et+p, et+p×2, . . . , et+p×(q−1)

]
, (8)

where et ∈ Rk ,Et ∈ Rq×k .
The transformer receives Et as an input and generates q

contextualized embeddings as a set of output Zt , which is then
delivered to the VAE decoder.

Zt = Transformer (Et)

=

[
ztt , z

t
t+p, z

t
t+p×2, . . . , z

t
t+p×(q−1)

]
, (9)

where Zt ∈ Rq×k , zti ∈ Rk .
The VAE decoder receives the transformer output Zt as an

input, and decodes q number of zti separately; as a result, Ot ,
a set of q reconstructed daily data are generated.

oti = VAE_Decoder
(
zti

)
=

[
x̂ ti , x̂

t
i+1, . . . , x̂

t
i+p−1

]
, (10)

Ot =
[
ott , o

t
t+p, o

t
t+p×2, . . . , o

t
t+p×(q−1)

]
, (11)

where oti ∈ Rp×m,Ot ∈ Rq×p×m. Here, oti rep-
resents the reconstructed daily data of di, which is
the daily data at time i among the sequence Dt =[
dt , dt+p, dt+p×2, . . . , dt+p×(q−1)

]
, which started at time t . x̂ ti

represents the reconstructed hourly data at time i.
LossH t

i is calculated using the mean squared error (MSE)
of the original hourly data xi and reconstructed hourly data
x̂ ti .

LossH t
i = MSE

(
xi, x̂ ti

)
. (12)

As explained above, since each hourly data xi is duplicated
in the p daily data, the anomaly score Si at time i is obtained by
calculating the average of LossH t

i where (i− p+ 1) ≤ t ≤ i.

Si = Average
(
LossH t

i
)
=

1
p

∑i

t=i−p+1
LossH t

i . (13)

Fig. 5 shows the process of calculating the anomaly score;
if this score exceeds a certain threshold, xi is judged as
an anomaly. All steps of finding anomalies are depicted in
Algorithm 2.

IV. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION AND EXPERIMENTS
The dataset used in the experiment and analysis was gen-
erated through data collection and feature extraction, and it
consists of hourly data from 00:00 on April 1, 2021 to 24:00
on April 30, 2022. Each data has 12 features, and the total
number of data is 9,480. This dataset was divided into two
datasets; the first one with 3,600 data until 24:00 on August
28, 2021 was used for training, while the remaining 5,880
data were used for inference and analysis.

Unsupervised learning is generally applied for anomaly
detection. Abnormal data are extremely rare compared to
the number of normal data, and therefore, it is extremely

FIGURE 5. Process of computing the anomaly score from the output of
the anomaly VAE-Transformer.

Algorithm 2 Finding Anomaly in Time Series
Input: X ▷ time series X = {x1, x2, · · · , xN }
Output: Anomaly ▷ set of detected anomalies
1: Anomaly← ∅
2: for t = 1 to N − pq+ 1 do
3: /* compose a sequence of daily data
4: where dt =

[
xt , xt+1, · · · , xt+p−1

]
*/

5: Dt ←
[
dt , dt+p, · · · , dt+p×(q−1)

]
6: /* get VAE embedding*/
7: Et ← VAE_Encoder (Dt)
8: /* get Transformer output*/
9: Zt ← Transformer (Et)
10: /* get reconstructed sequence of daily data
11: Ot =

[
ott , o

t
t+p, · · · , o

t
t+p×(q−1)

]
12: where oti =

[
x̂ ti , x̂

t
i+1, · · · , x̂

t
i+p−1

]
*/

13: Ot ← VAE_Decoder (Zt)
14: /* calluilate reconnstruction error */
15: LossH t

i ← MSE
(
xi, x̂ ti

)
∀i, t ≤ i < t + pq

16: end for
17: for i = 1 to N do
18: /* calculate anomaly score at timei*/
19: Si← 1

p

∑i
t=i−p+1 LossH

t
i

20: if Si > threshold then
21: Anomaly← Anomaly ∪ {xi}
22: end if
23: end for
24: return Anomaly

challenging to obtain enough labeled abnormal data. Fur-
thermore, the patterns of anomaly vary significantly, and
it is difficult to identify future patterns from the past pat-
terns. Thus, unsupervised learning is suitable for learning
the patterns of normal data and for detecting the patterns of
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FIGURE 6. Training loss and validation loss of VAE (dimension of latent
space = 64, size of hidden layers = [512, 512]).

anomaly. We adopted unsupervised learning, and the training
process of the proposed anomaly VAE-Transformer model
was divided into 1) VAE training and 2) transformer training
using the trained VAE.

VAE is a generative model that can infer the generation
factors of training data and provide excellent anomaly detec-
tion results for data within a short window. The VAE of the
proposed model is implemented using the base version of
TimeVAE [11], which is appropriate for handling the time-
series data. We used the VAE to encode the sequence of
hourly data of a day (24 h) into low-dimensional embedding,
and we performed decoding to reconstruct the data of one
day from the transformer output into daily data. The training
method of VAE is as follows.

The window size is set to 24 and 3,577 input windows
are generated from 3,600 training data using the sliding
window technique. After shuffling these windows, 20% of
the windows are used for validation, and the windows are
optimized using the ELBO loss. Grid search is employed to
find the optimized values for the dimension of a latent space
and the number of hidden layers in VAE. The grid for the
dimension of a latent space is defined as [2, 4, 8, 16, 32,
64, 128, 256, 512], and the grid for the number of layers is
defined as [1], [2], and [3]. Subsequently, after generating
all possible combinations of these values, each combination
is applied to train the model, and the results are evaluated.
The experiment is conducted by varying the dimension of
a latent space and the number of hidden layers in VAE;
specifically, the most outstanding performance is obtained
when the dimension of the latent space is 64 and the number
of hidden layers is 2. Fig. 6 shows the relevant losses, and
Fig. 7 shows the visualization result of arbitrarily selecting
three input windows and inputting them in the trained VAE
to generate reconstructed output. The reconstructed output is
highly similar to the original data.

The transformer can help sequential data processing, and
it has been widely useful for finding the long-range temporal

FIGURE 7. Visualized comparison between the original and
VAE-reconstructed data. Three arbitrary data are selected where the
reconstructed data (bottom) is highly similar to the original data (top).

TABLE 2. Hyperparameters of proposed Anomaly VAE-Transformer.

dependency of time-series data. The transformer part of the
proposed model is implemented based on the informer [58]
and anomaly transformer [5] using the standard transformer
provided by PyTorch. In the proposed model, the data of
28 days (approx. one month) are input in the transformer, and
the input data are composed of embeddings in the unit of days
generated by the pre-trained VAE encoder. The transformer
reconstructs the data of 28 days from this input and delivers
the data to the subsequent step.

We proceeded with the training as explained below to
ensure that the transformer adequately reconstructs the input.
A total of 2,929 windows with a size of 672 were generated
using the sliding window technique from 3,600 training data.
Windowswith a size of 28 were newly generated by gathering
embeddings created by inputting in the VAE encoder for
every 24 data in each window. 80% of the windows in the
front were used for training, while 20% the backwere used for
validation. Training was performed to minimize the MSE of
input data and reconstruct the data using Adam optimization.
The training process is stopped within 100 epochs with a
batch size of 16. Table 2 presents the hyperparameters used
in the experiment.
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TABLE 3. Elapsed time of each process in Anomaly VAE-Transformer.

FIGURE 8. Anomaly score calculated for each time period (from 00:00 on
August 29, 2021 to 24:00 on April 30, 2022; threshold = 32.3).

The experiments were conducted on a machine equipped
with Intel Core i7-12700F CPU and NVIDIA GeForce
RTX 3060 GPU and 32GB DDR4 RAM. We measured the
time required for training both VAE and transformer, as well
as the time taken for calculating anomaly scores using the
trained model. The results of system performance are sum-
marized in Table 3.

B. ANALYSIS
Sometimes data without accurate labels or ground truth are
analyzed in the studies on anomaly detection. In such cases,
it is difficult to use traditional performance indicators such
as F1 score or confusion matrix. This limitation becomes
more prominent during anomaly detection in DeFi. In this
case, the detection performance of a model is proved through
various case studies to determine the suitability of the model.
To the best of our knowledge, no anomaly detection case has
been officially reported for Olympus DAO. Thus, this study
aims to prove through case studies that the proposed anomaly
VAE-Transformer can successfully detect various abnormal
patterns in the Olympus DAO.

For anomaly detection, the anomaly score is calculated for
every hour from 00:00 on August 29, 2021 to 24:00 on April
30, 2022 using the trained anomaly VAE-Transformer. Fig. 8
shows the anomaly score of each period, while Fig. 9 shows
the log scale of the distribution of anomaly score values.

TABLE 4. Detected anomalies (in descending order of anomaly score).

FIGURE 9. Log scale distribution of anomaly scores. Most normal data are
clearly distinguished from certain anomaly data, and the threshold is 32.3.

Most periods have low scores; however, certain periods have
abnormal scores, which indicate that an anomaly has occurred
in those periods. We set the threshold θ for distinguishing
between normal and abnormal scores as 32.3 to allow the
periods with the top 0.1% scores to become an anomaly.

Table 4 presents the detected anomaly periods. If the con-
tinuous periods are combined (#1 and #6, #3 and #4), there
are a total of five periods; the top four cases are analyzed to
verify whether anomaly detection is properly executed.

Case 1: Sudden increase in user activity (2022-04-20
23:00–2022-04-21 01:00)

Fig. 10 shows the results of visualizing the changes in
12 features in the detected (marked with red) and adjacent
periods. As shown in the figure, the staking, unstaking, and
redemption activity of the OHM tokens varied significantly
in the red-colored periods. In the case of staking and unstak-
ing, the numbers of active users and transactions suddenly
increased, which led to a significant increase in the token
amount. In terms of bond redemption, only one transaction
occurred in the period; however, a substantially large trans-
action amount of 59,000 OHM tokens was involved in the
redemption process, which is very likely to be an abnor-
mal transaction. Similarly, seven features showed significant
changes from adjacent values, and thus, this period received
high anomaly score and it was detected as anomaly. Unfor-
tunately, the reason for such an abnormal activity in this
period remains unknown; however, this period was a few days
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FIGURE 10. (Case 1) Graphs of 12 features in the detected anomaly period (2022-04-20 23:00∼2022-04-21 01:00) and adjacent periods. Red
parts indicate anomaly. Features related to staking, unstaking, and bond redemption activities sharply increased.

FIGURE 11. (Case 2) Graphs of 12 features in the detected anomaly period (2022-01-26 11:00 - 12:00) and adjacent periods. Red parts indicate
anomaly. The amount of staked OHM tokens and unstaked OHM tokens significantly increased, but no noticeable changes occurred in other
features.

before the inverse bond started, which is a notable change in
Olympus DAO. The anticipation and anxiety stemming from

recent price drop and introduction of new inverse bond are
assumed to have caused the anomaly.
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FIGURE 12. (Case 3) Graphs of 12 features in the detected anomaly period (2022-10-15 04:00–06:00) and adjacent periods. Red parts
indicate anomaly. Staking and unstaking activities sharply increased in which the number of transactions and unique addresses
(number of active users) is particularly high. In contrast, bond creation and redemption activities are extremely low.

FIGURE 13. (Case 4) Graphs of 12 features in the detected anomaly period (2022-04-28 09:00–10:00) and the adjacent periods. Red
parts indicate an anomaly. User activity is extremely low.

Case 2: Abnormal activity of a specific user (2022-01-26
11:00–12:00)

Fig. 11 shows that other features did not fluctuate sig-
nificantly in this period; however, the amounts of staked
OHM tokens and unstaked OHM tokens increased consid-

erably compared to the adjacent values. Despite a large
increase in the amount, the number of transactions and
active users did not vary noticeably, and therefore, it can be
inferred that a small number of users executed staking and
unstaking for OHM tokens on a large scale in this period.
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TABLE 5. Description of Olympus DAO transactions collected.

We thoroughly investigated staking and unstaking transac-
tions that occurred in this period, and we discovered one
suspicious transaction. A user with the Ethereum address 0×
41339.9825963515 e5705df8d3b0ea98105ebb1c unstaked a
large amount of 79844 OHM tokens and then immediately
staked them again. After a few minutes, the same amount of
OHM tokens was unstaked and immediately staked again.
Repeatedly executing unstaking and staking within a short

period of time does not allow users to gain any benefit and
only causes losses from transaction fees, which raised sus-
picion behind their actions. Such an action may be part of a
more complicated attack on DeFi which could be analyzed
with the timestamp attack model in [59], or an attempt to
find the vulnerability of the staking code, or a simple mistake
of the user. The proposed model cannot identify the purpose
of this action; however, it can detect the period in which
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this action has a high probability of abnormal transactions.
The effectiveness of this model was confirmed because the
detection result induces further investigation for preventing
more serious incidents.

Case 3: Structural changes in Olympus DAO (2021-10-
15 04:00–06:00)

In this period, activities related to staking and unstaking
significantly increased, while those related to bond creation
and redemption greatly decreased, as shown in Fig. 12.
A notable aspect is that the number of staking and unstaking
transactions is extremely high; the value is the highest in the
entire analysis dataset. This result indicates that the anomaly
in this period was caused by a large number of normal users
affected by a specific incident rather than by a small number
of certain individuals. In this period, the Olympus DAO V2
to which new governance and bonding policy are applied was
announced officially. The anticipation and anxiety for the new
version and a sudden increase in the OHMprice caused active
staking and unstaking activities among normal users. Fur-
thermore, previous bonding related activities were subsided
because the significant changes in bonding were forecasted.
As shown here, the proposed model can adequately detect
sudden anomalies of normal users arising from changes in
the Olympus DAO itself.

Case 4: Extremely low user activity (2022-04-28 09:00–
10:00)

As shown in Fig. 13, this period has very low activities
compared to those in other periods. The amount and trans-
action number of staking and unstaking activities were both
lower than those of the adjacent values. For bond creation,
no new bonding activities were observed since 43 h before
this period. Unlike previous periods of active participation,
low activities increased the anomaly score in this period. Fur-
ther, one transaction with a noticeable amount of redemption
raised the anomality of this period. This period experienced
a transition where the existing bond mechanism ended and a
new inverse bond mechanism started. Uncertainty about the
future led users to restrain from participating in new activities.
The redemption of existing tokens occurred in preparation for
terminating existing bond service, and new bonding activities
were not observed.

The analysis results showed that all four cases had a
period in which an anomaly occurred, ultimately proving that
the proposed model can accurately detect anomaly periods.
In case 1, an anomaly period was successfully detected where
multiple features demonstrated sudden changes; in case 2, the
anomaly of a specific user caused by malicious activities or
mistakes was detected. In case 3, anomaly was detected when
numerous normal users intensively participated in activities
because of the changes in the Olympus DAO. In contrast,
in case 4, the anomaly of a stagnant state was detected in
which the activities of normal users were decreased sub-
stantially. These analysis results confirmed that the proposed
anomaly VAE-Transformer model successfully detected var-
ious anomaly patterns, and it is a suitable model for anomaly
detection in the Olympus DAO.

V. CONCLUSION
This study proposed a new methodology for anomaly detec-
tion in DeFi. First, on-chain data of Olympus DAO, which is a
popular DeFi protocol, were collected and analyzed to extract
12 features that can identify the flow of OHM tokens. In addi-
tion, we proposed a new deep learning model, the anomaly
VAE-Transformer model, which consists of a transformer
that captures dependency between data in the long term, and
VAE, which extracts local information in the short term. This
model was used to perform anomaly detection in theOlympus
DAO based on an actual dataset, and the four anomaly cases
with the highest anomaly scores in the detection results were
analyzed further to prove the effectiveness of the proposed
model.

DeFi has high technological complexity because of a com-
plex protocol structure, interactions among various smart
contracts, and diverse token transactions, which has been
causing difficulty in performing anomaly detection. In partic-
ular, DeFi protocols such as Olympus DAO have extremely
high volatility, which makes it difficult to monitor and man-
age potential risks. The proposed method overcomes such
limitations and enables anomaly detection to be conducted
effectively. The proposed method helps not only the gover-
nance of DeFi but also general users participating in DeFi.
From the perspective of DeFi governance, anomaly detec-
tion can be considered an opportunity to find errors or the
vulnerability of the DeFi protocol and to identify malicious
attack attempts of an attacker. From the perspective of gen-
eral users, anomaly detection can help promptly recognize
important structural changes of the DeFi protocol they are
participating in, changes in user trends, and sudden issues.
These advantages can help the stakeholders make decisions
based on relevant information. In addition, anomaly detection
using the proposed method protects users’ assets, raises the
transparency of the DeFi market, and provides trust required
for new investors and enterprises to participate in the DeFi
ecosystem. Thus, this study is expected to contribute to pro-
moting the development of the DeFi market.

The suggested method is applicable to Olympus DAO, but
it can also be applied to other DeFi protocols through slight
modifications. However, the expansion and application of
the proposed method cannot be easily automated and require
assistance of experts. The data collection and extraction of
appropriate features is the most difficult to automate because
DeFi protocols have their own unique concept and architec-
ture. In future studies, latest machine learning techniques will
be researched to overcome the abovementioned limitations,
and new methods will be explored to easily automate the
proposed method for various DeFi protocols.

APPENDIX
COLLECTED TRANSACTION DATA
In our study, we collected transaction data pertaining to user
activities such as staking, unstaking, bond creation, and bond
redemption to train and analyze the anomaly detectionmodel.
As can be observed in Table 5, these transactions amounted
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to a total of 459,451 instances across 21 smart contracts. The
fragmentation, as a result of supporting bonding with vari-
ous cryptocurrencies like DAI, necessitated numerous smart
contracts. Further, with every upgrade, due to the inherent
nature of blockchain technology, new versions of smart con-
tracts were deployed for use. Utilizing block explorers like
Etherscan, transactions related to the specific smart contract
addresses mentioned in Table 5 can be observed.
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