
Received 5 August 2023, accepted 2 September 2023, date of publication 8 September 2023, date of current version 13 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3313425

A Novel Dynamic Pricing Approach for
Preemptible Cloud Services
HUIJIE PENG AND YAN CHENG
School of Business, East China University of Science and Technology, Shanghai 200237, China

Corresponding author: Yan Cheng (yancheng@ecust.edu.cn)

ABSTRACT Dynamic pricing for preemptible cloud services (DPPCS) is highly demanded to effectively
utilize the excess capacity in cloud computing. However, the dynamic nature of excess capacity exhibits high
non-stationarity, which is characterized by multi-temporal stochastic patterns with time-varying statistical
properties. The non-stationarity results in the DPPCS problem being a Non-Stationary Markov Decision
Process (NSMDP) with unknown transition probabilities. Moreover, DPPCS is constrained by a certain
maximum preemption rate, further complicating the DPPCS problem as a Constrained NSMDP (CNSMDP).
We transform the CNSMDP into a piecewise Lagrangian dual model, which converts the CNSMDP into an
unconstrained optimization problem. To solve the above problem, we propose a novel Q-Learning approach
for DPPCS. We first present estimation methods for the unknown environment parameters, including a
detection method for identifying temporal pattern changes, and a diffusion approximation method for
estimating the actual preemption rate. Then, we introduce a Lagrange multiplier updating method, which
can strike a balance between revenue and the preemption rate in the reward function. Building upon the
above methods, we develop a Constrained Non-Stationary Q-Learning (CNSQL) algorithm for DPPCS,
which dynamically adjusts its learning process to adapt to the multi-temporal patterns. Through simulated
experiments, we demonstrate the effectiveness of our proposed approach compared to state-of-the-art
algorithms. It performs well in improving revenue generated from excess capacity while maintaining the
actual preemption rate within the specified constraint.

INDEX TERMS Cloud computing, preemptible service, dynamic pricing, non-stationarity, Q-learning.

I. INTRODUCTION
Preemptible cloud services (PCS) are a type of low-priority
service offered by cloud operators (e.g., Amazon Web
Services) at a discounted price, without a Service Level
Agreement (SLA) guarantee [1]. These services allow cloud
operators to attract customers sensitive to service price
while keeping the right to reclaim capacities when nec-
essary. The primary goal of PCS is maximizing revenue
by utilizing excess capacity from the conflict between the
static capacity of computing resources and the volatile
workloads of high-priority services. High-priority services,
supported by SLAs, are mainstream offerings with fixed reg-
ular prices [2]. Resources required by high-priority services
must be provided whenever consumers need them to avoid

The associate editor coordinating the review of this manuscript and

approving it for publication was Abderrahmane Lakas .

SLA violations. Workloads of high-priority services typically
exhibit non-stationarity with specific temporal patterns such
as periodic diurnality, bursting, growing, and on/off, result-
ing from regular business behaviors or unexpected external
events [3], [4]. Due to the relatively fixed total capacity
of computing resources, the non-stationarity of workloads
for high-priority services also leads to corresponding non-
stationarity in excess capacity. This means that the excess
capacity not only fluctuates stochastically but also changes
with time-varying statistical properties. Therefore, a signifi-
cant amount of unused excess capacity occurs during off-peak
periods of workload [5]. The excess capacity can be utilized
by offering preemptible services at substantial discounts.
Conversely, during peak workload periods, capacity scarcity
occurs. Preemptible services that exceed the available capac-
ity can be preempted to prioritize high-priority services with
SLA guarantees.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 97807

https://orcid.org/0000-0003-0668-678X
https://orcid.org/0000-0001-7142-1556
https://orcid.org/0000-0003-4725-8634

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

In practice, a significant portion of tasks referred to
as fault-tolerance tasks,1 can tolerate service interruption.
Because of the flexible nature of these workloads, con-
sumers are willing to withstand preemptions in exchange
for a lower price. As a result, the preemptible services have
gained popularity among several well-known cloud opera-
tors,2 enabling the utilization of unused excess capacity by
fulfilling fault-tolerance computing tasks. Therefore, cloud
operators can effectively leverage the unused excess capacity
by implementing efficient pricing management strategies for
the preemptible cloud services.

Dynamic pricing is highly demanded in the operation of
PCS by adapting to the supply-and-demand dynamics [6].
This pricing strategy not only has the potential to maximize
revenue but also reduces the probability of being preempted.
In recent years, dynamic pricing has gained significant atten-
tion from cloud operators such as AWS and Ali Cloud [7].
Unfortunately, empirical evidence shows that the price fluc-
tuations in dynamic pricing lack effective theoretical and
methodological guidance, which leads to random price
changes within a tight price range [8], [9]. Currently, there is
a lack of academic research on dynamic pricing specifically
for preemptible cloud services. In contrast, dynamic pricing
for regular cloud services, which do not involve preemption,
has been extensively studied [10], [11], [12]. Cloud com-
puting is a perishable resource in which unused computing
resources cannot be carried over to future periods. Dynamic
pricing in cloud computing has often been studied using a
revenue management framework derived from economics.
This framework aims to optimize the pricing of perishable
resources, maximizing expected revenue from price-sensitive
customers. The dynamic pricing problem is generally formu-
lated as an MDP, and dynamic programming techniques are
used to solve the optimization problem. However, these stud-
ies assume a fixed resource capacity and model a stationary
MDP framework, where all elements of the stationary MDP
model are represented. These assumptions and solutions may
not be suitable for pricing the preemptible cloud services.

The dynamic pricing of preemptible cloud services
(DPPCS) entails two distinctive challenges. Firstly, the non-
stationarity exhibited by the excess capacity renders the
dynamic pricing problem as an NSMDP with unknown
transition probabilities. The excess capacity after satisfying
high-priority services, is an exogenous variable beyond the
control of the prices of preemptible service. As a result,
It leads to DPPCS being an NSMDP that has time-varying
transition probabilities [13]. Moreover, the occurrence of
random transitions across multiple temporal patterns, marked
by unknown changepoints, introduces uncertainty into the

1According toMSAzure, fault-tolerant tasks are ‘‘flexible workloads, like
large processing jobs, dev/test environments, demos, and proofs of concept’’.
https://azure.microsoft.com/en-us/blog/low-priority-scale-sets. Accessed on
March 13, 2023.

2Amazon Web Services (AWS), Alibaba Cloud (Ali Cloud), Microsoft
Azure (MS Azure), and Google Cloud Platforms (GCP). Netapp.
Excess capacity at AWS, Google, Azure and Alibaba cloud [EB/OL].
https://spot.io/what-is-excess-capacity/, 2022-04.

state transition probabilities within the NSMDP framework.
Secondly, the DPPCS is constrained by a maximum preemp-
tion rate, further complicating it as a Constrained NSMDP
(CNSMDP). Cloud operators often set and publicly disclose
a maximum preemption rate constraint to mitigate the per-
ceived uncertainty of interruption and attract consumers.3

In an MDP, we can effectively handle this constraint by
balancing the supply-and-demand dynamics. However, the
uncertainty within the NSMDP framework introduces the
risk of the actual preemption rate exceeding the maximum
constraint. This is attributed to the substantial variation in the
resulting actual preemption rate across different temporal pat-
terns, even when applying the same price policy under similar
supply-and-demand conditions. Consequently, to solve the
DPPCS problem, it is necessary to initially address the inher-
ent uncertainty in state transition probabilities within the
CNSMDP framework. This challenge becomes particularly
pronounced when attempting to utilize traditional dynamic
programming techniques and closed-form solutions.

However, Q-Learning (QL), as a model-free algorithm
in Reinforcement Learning (RL), has been widely used
for solving MDP [14]. It focuses on training an automatic
agent to learn how to make optimal decisions by interact-
ing with uncertain environments, without relying on explicit
knowledge of state transition probabilities. Driven by the
advantages of ‘‘no need for expert knowledge’’ and ‘‘model-
free’’, QL has become one of the important tools to optimize
dynamic pricing problems [15], [16], [17], [18]. However,
these approaches are designed for stationary MDPs with
constant state transition probabilities and rewards. In our
research, the CNSMDP problem not only involves non-
stationarity with time-varying state transition probabilities
and rewards, but also needs to achieve the maximum con-
straint. The traditional QL approaches may result in subop-
timal pricing policies and high preemption rates in solving
the DPPCS problem.

To address the above problem, we propose a novel QL
approach for DPPCS, which aims to adapt to the non-
stationarity while maintaining the maximum constraint. The
key idea behind our approach is to decompose the CNSMDP
into multiple CMDPs, and then each CMDP is transformed
into a Lagrangian dual problem. By extending the reward
function with the Lagrangian multiplier, the optimal value of
the Lagrangian multiplier and optimal policy can be learned
by the novel QL approach. Besides, there is another advan-
tage is that our approach can adapt QL to learn optimal
policies for different CMDP by embedded online detection
method. Thus, there is no need to re-learn the policy when the
temporal pattern changes. We only need to select an appro-
priate Lagrangian multiplier that makes its corresponding
optimal policy under the changed temporal pattern. It can
help our approach respond quickly to the various temporal

3AWS discloses different maximum preemption rates in public for dif-
ferent types of preemptible instances: 5%, 5-10%, 10-15%, and 15-20%.
https://aws.amazon.com/cn/ec2/spot/instance-advisor/, accessed on June 19,
2023.

97808 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

patterns in changing the excess capacity of cloud computing.
The contribution of this work is fourfold:

(1) We formulate the DPPCS as a CNSMDP model. The
CNSMDP model captures the uncertainty inherent in the
dynamic pricing process and incorporates realistic supply-
and-demand dynamics. We transform it into a piecewise
Lagrange dual problem, which converts the CNSMDP into
an unconstrained problem.

(2) A novel QL approach is proposed to solve the DPPCS
problem. The proposed approach consists of two parameter
estimation methods, and a policy learning method, in which
two parameter estimation methods are proposed to identify
the changed temporal patterns and estimate the actual pre-
emption rates.

(3) For the policy learning method, an improved QL
algorithm called CNSQL for DPPCS is proposed. CNSQL
combines the advantages of the bisection method and the
detection method of pattern change. It addresses the prob-
lem of automatically adjusting its learning process among
temporal patterns and striking a balance between maximizing
revenue and constraining the preemption rate.

(4) A series of experiments are conducted on the simulated
and real-world scenarios with non-stationarity to validate the
performance of the novel dynamic pricing approach. Com-
pared to baseline algorithms, the proposed approach performs
well in revenue maximization within a maximum constraint.

The remainder of the paper is organized as follows.
In Section II, the relatedworks on pricing strategies for excess
computing capacity and the RL approach for dynamic pricing
are reviewed. In Section III, we formulate the DPPCS as
CNSMDP, which is transformed into a piecewise Lagrangian
dual problem. To solve the above problem, we introduce
the novel dynamic pricing approach and present the detailed
algorithm in Section IV. Finally, a series of experiments on
synthetic and real-world scenarios are conducted to verify the
performance of our proposed approach in Section V and we
summarize the paper in Section VI.

II. RELATED WORK
In this section, we review the previous studies and identify the
research gaps. This paper is closely related to two streams
of literature. The first stream focuses on pricing strategies
for excess computing capacity. The second stream focuses on
Reinforcement Learning for solving dynamic pricing.

A. PRICING STRATEGIES FOR THE EXCESS
COMPUTING CAPACITY
The excess computing capacity refers to unused resources
after satisfying the high-priority services. To effectively uti-
lize the excess capacity, two common pricing strategies are
adopted in the cloud industry. The first strategy is static
pricing with a uniform preemption rule. The second strategy
is dynamic pricing with an auction-like preemption rule.
GCP and MS Azure both adopt static pricing with a uniform
preemption rule, where users are charged a uniform price and

a uniform preemption rate is implemented4,5. The uniform
price and preemption rate can be transparent, and predictable,
and everyone is treated equally. Chen et al. [1] examined a
fixed-pricing strategy based on a uniform preemption rate
and determined the context in which the pricing strategy
is suitable. However, the uniform price cannot adapt to the
varying supply-and-demand dynamics. On the contrary, AWS
and Ali Cloud adopt the dynamic pricing strategy with an
auction-like preemption rule6,7. In this strategy, consumers
bid for resources, and preemption occurs when the real-time
price exceeds their bids. Research on dynamic pricing with
auction-like mechanisms has gained broad attention. Agmon
Ben-Yehuda et al. [9] analyzed the dynamic price historical
traces publicized by AWS and found that usually, prices are
not market-driven, as sometimes previously assumed. Rather,
they are likely to be generated most of the time at random
from within a tight price range via a dynamic hidden reserve
price mechanism. Kumar et al. [19] and Deldari and Sale-
han [20] surveyed the related research about the auction-like
pricing for preemptible services, concluding that auction-
like spot pricing is unpredictable and not easy to understand
for users. Peng et al. [21] first considered the utilization of
excess capacity with non-stationarity and proposed a real-
time pricing method with a spot pricing scheme.

Theoretically, pricing the excess computing capacity
dynamically can generate a higher revenue than static pricing.
However, the auction mechanism makes the price fluctuate
highly and then leads to the preemption rate varying widely
and unpredictably. Also, consumers may engage in collab-
orative bidding to game the market. Currently, there is still
a debate over the practicability of pricing schemes for pre-
emptible services, due to the complexity of dynamic pricing
with auction mechanisms and economically inefficiency of
static pricing. Therefore, a more practical and efficient pric-
ing strategy for preemptible service is required.

Dynamic pricing with posted prices is an alternative
market-driven strategy for optimizing revenue in dynamic
pricing. The seller sets and publicly displays prices, taking
into account supple-and-market conditions and other relevant
factors. Consumers act as price-takers, accepting the prices
set by the seller. This strategy overcomes the limitations of
auctions and has recently gained attention from AWS and
Alibaba Cloud [8]. These operators are transitioning away
from dynamic pricing with auction mechanisms and instead
determining prices based on historical supply-demand trends,
with updates occurring at regular intervals, typically every
five minutes. The preemption rate in this pricing scheme
is disclosed by a uniform value for all users, rather than

4https://azure.microsoft.com/en-us/blog/low-priority-scale -sets,
accessed on May 21, 2023.
5https://cloud.google.com/compute/docs/instances/preemptible,
accessed on May 21, 2023.
6https://help.aliyun.com/document_detail/52088.html?spm=5176.

ecsnewbuy.help.dexternal.1fbd3675N6BQYb, accessed on June 10, 2023.
7https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/using-

spot-instances.html, accessed on June 10, 2023.

VOLUME 11, 2023 97809

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

through a bidding process. However, there is limited research
on this dynamic pricing strategy with a uniform preemp-
tion rate. Studies on dynamic pricing with posted prices
for perishable goods offer valuable theoretical insights. For
example, Harrison [22], Zhang and Weatherford [23], and
Den Boer [24], [25], provided excellent reviews of the the-
oretical models. Based on these studies, some researchers
have proposed dynamic pricing solutions for regular cloud
services. Xu and Li [10] developed a stationary MDP to
formulate the revenue maximization problem as a stochas-
tic dynamic program. Furthermore, Alzhouri et al. [11], [26]
further investigated dynamic pricing of stagnant resources
using MDP, and used linear programming to approximate the
stochastic dynamic programming.

However, existing pricing solutions heavily rely on tradi-
tional methods such as analytical models and deterministic
rules for perishable services. These approaches may not be
optimal and fail to adapt to the non-stationarity in the excess
capacity. Applying deterministic rules to ever-changing non-
stationary systems cannot guarantee optimality, and any
changes in variables may result in significant financial losses.
Additionally, the analytical models don’t consider the pre-
emption process, leading to potentially high preemption rates
when directly applied. In this paper, we propose a frame-
work to address these limitations on optimizing the dynamic
pricing strategy with a certain maximum constraint on the
preemption rate.

B. REINFORCEMENT LEARNING FOR DYNAMIC PRICING
Reinforcement Learning (RL) is a model-free algorithm that
uses simulation-based stochastic techniques to solve complex
optimization problems within the framework of MDPs [14].
It aims to learn the optimal policy for maximizing expected
total rewards over time through trial and error. RL is par-
ticularly advantageous in handling MDP with complex or
unknown transition mechanisms. It has become an important
tool for solving dynamic pricing in uncertain environments.
We focus on monopoly pricing, and these dynamic pric-
ing problems are usually formulated as MDP. For, example,
Raju et al. [27] used RL (e.g., QL algorithm) to price prod-
ucts dynamically with customer segmentation with limited
available demand information. They considered an infinite
horizon learning problem where there is no deadline for the
sale of stock. Cheng [28] applied a QL algorithm for RL to
solve dynamic pricing problems for selling a given stock with
a finite horizon. The study investigated the pricing process
and how an RL framework is used to set prices dynamically
to adapt to uncertain demand and large-scale states. Rana
and Oliveira [15], [16] proposed a model-free RL framework
to solve dynamic pricing problems with a given inventory
by a fixed deadline under inter-dependent and time-varying
demand. They found that QL with eligibility traces outper-
forms the standard QL algorithm in non-stationary demand.
Moreover, the QL algorithm also has been extensively uti-
lized in dynamic pricing for the smart grid [17], [18], [29].

They showed that through ongoing learning and adaption,
RL could be effectively employed to address the dynamic
pricing of electricity systems with uncertainty and flexibility
of users’ power load.

RL has gained significant attention in the cloud indus-
try, such as task scheduling [30], and resource alloca-
tion [31]. However, there has been limited research on using
RL for dynamic pricing of cloud computing. For example,
Cong et al. [32] studied the dynamic pricing of cloud com-
puting in a context where user-perceived values concerning
cloud services are dynamically changing and highly personal-
ized. They developed an RL-based cloud pricing mechanism
to learn sequential service pricing decision-making. How-
ever, cloud workloads typically exhibit constant and irregular
changes in an unknown and unpredictable manner, resulting
in non-stationary features. This poses challenges for RL,
leading to imprecise learning outcomes and convergence
issues.

To adapt to the non-stationary environment, we propose
an improved QL algorithm that incorporates change detec-
tion into the RL process, enabling real-time recognition of
pattern changes. By considering the deviation in interaction
experience between different patterns, the learned policy can
be improved. Additionally, focusing solely on revenue max-
imization may result in excessively high preemption rates.
Hence, based on the detected temporal pattern, each learned
pricing policy needs to adhere to the same maximum con-
straint on the preemption rate. To achieve this, the paper
introduces the Lagrange multiplier method to incorporate the
constrained preemption rate into the RL reward function.
A bi-section search is employed to iteratively update the
Lagrange multiplier until the optimal value that satisfies the
constraint is found.

III. MODEL FORMULATION
A. MODEL ASSUMPTIONS
In this study, we consider a cloud operator and focus on a
segment of customers who have fault-tolerant (interruptible)
tasks and are sensitive to service prices. We consider a finite
time horizon denoted as T , such as a 24-hour diurnal cycle
and use the continuous-time index t(0 ≤ t ≤ T) to represent
time within this horizon. For the sake of clarity, before delv-
ing into our model details, we present the assumptions that
are often aligned with the realistic operation of preemptible
services.

1) USER REQUEST MODEL
In the preemptible market, users have the flexibility to sched-
ule (add or eliminate) the PCS operating on fault-tolerant
tasks according to the change in the price of the PCS. In line
with previous studies [10], [11], we assume that consumers’
demand for PCS is determined by two independent Poisson
processes: an arrival process and a departure process. The
arrival process models the newly coming requests of PCS as

97810 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

a function of price, while the departure process corresponds
to the leaving of the existing requests due to price changes.

We assume pt represents the price per unit time one
instance of PCS at time t . As a low-priority service, the
price of PCS is lower than the price of the high-priority
services. We assume that the price pt can take any value
from an interval [0, pmax]. The existence of a maximum price
can be justified by the common-tiered service strategy in
practice. For cloud computing, vendors adopt a two-tiered
service strategy, that is, the regular service with the higher
priority of service quality and preemptible service with lower
priority. The price of a preemptible instance obviously cannot
be higher than the price of the regular service. Without loss
of generality, we let pmax = 1 throughout the paper.
Let f (pt) represent the Poisson arrival rate (expected

value of the newly arrived units of requests per time unit).
For ∀0 ≤pt≤ 1, we assume f (pt) satisfies the following
properties [10].

f (pt) ≥ 0, f ′ (pt) < 0,f
′′

(pt) < 0,f ′ (0)= 0,f ′ (1)

= −∞, and f (1)= 0 (1)

where 0 ≤ pt≤1. The above properties are consistent with
reality, where 1) the arrival rate never be negative; 2) decreas-
ing price pt will attract more new users to use PCS. The
Poisson departure process, denoted as g(pt), represents the
expected number of users who leave the system per time unit
at time t due to price adjustment. It quantifies the expected
impact of price adjustments on the user departures. The
departure process satisfies the following properties [10].

g (pt) ≥ 0, g′ (pt) > 0,g
′′

(pt) > 0,g′ (0)

0,g′ (1)= ∞, and g (0)= 0 (2)

We assume that the functions f (pt) and g (pt) can be
estimated using widely studied methods in the field of online
services. The specific details of the estimation methods are
not provided in our research. Additionally, we do not consider
preemptible risk and time factors in the demand functions.
This is because cloud operators typically publish a fixed
maximum constraint on the preemption rate for all users. This
allows customers to form a common belief about the average
preemption rate based on the disclosed level and historical
preemption frequency observed by a third party, such as
a cloud services consulting company. Furthermore, due to
the weak time sensitivity of fault-tolerant tasks, users who
have such tasks are highly price-sensitive. The price is the
dominant factor that directly influences whether consumers
choose to adopt the PCS, which leads to the demand for PCS
is primarily driven by the price of the service rather than the
specific arrival time of tasks.

2) NON-STATIONARY MODEL OF THE EXCESS CAPACITY
We partition the non-stationary stochastic process of excess
capacity into a piecewise stationary model [33]. Time
series analysis is widely used to model a non-stationary
stochastic process. In our research, the time series is a

sequence of observations of the unused capacity collected
over time. According to the time series analysis, the behav-
ior of a time series is studied as a function of its own
past data. We assume that the stochastic process c1:T =
⟨c1, c2, . . . , ct , . . . , cT ⟩ is the time series of the excess capac-
ity, where ct (0 ≤ ct ≤ C) denotes the excess capac-
ity in time t , e.g., unused CPU capacity. Let w1:T =

⟨w1,w2, . . . ,wt , . . . ,wT ⟩ denote the time series of the
stochastic process for the time-varying workload of the high-
priority service, wherewt represents workloads in time t, e.g.,
CPU usage. Thus, there is ct = R−wt , where R denotes the
total available capacity, e.g., the total capacity in one cluster
for the operator. We represent the time series of the excess
capacity as a Gaussian autoregressive (AR) model defined in
Equation (3).

ct = µt + φ × ct−1 + εt (3)

where φ(0 < φ < 1) is constant value. µt ∈ R+ is changing
with time t . We assume εt follows independent and identi-
cally Gaussian distribution with mean 0 and variance σ 2

t . The
mean and variance of this time series are E(ct) = µt/(1− φ)
and VAR(ct) = σ 2

t /(1− φ2).
Non-stationarity generally implies that the mean and/or

variance of a time series are non-constant and vary over time,
that is, they are dependent on time [33]. From the real-world
workload traces shown in [3], the structural breaks ((e. g. level
shifts or changing variances)) are common non-stationary
structures in cloud computing. The structural breaks hap-
pen at specific points in time, usually due to environmental
changes, such as unexpected marketing activities. We par-
tition the uncertain stochastic process in Equation (3) into
a piecewise stationary Gaussian AR model in Equation (4).
Each stationary process with the same mean and variance is
characterized as one pattern model. For notational brevity,
we let θk = (µk , φ, σk) denote the vector of unknown param-
eters of pattern θk , and let θ=(θ1, θ2, . . . ,θk , . . . ,θK) denote
the sequence set of unknown patterns in finite horizon T .
K is the total number of the patterns. tθk (1 ≤ k ≤ K)
denotes the changepoint from pattern θk to another pattern
θk+1. Herein, the time series of the excess capacity, c1:T =
(c1, c2, . . . , ct , . . . , cT), can be characterized as a piecewise
stationary Gaussian AR model shown in Equation (4).

ct =

µ1 + φ × ct−1 + ε1, 0 ≤ t < tθ1
µ2 + φ × ct−1 + ε2, tθ1 ≤ t < tθ2
. . .

µK + φ × ct−1 + εK , tθK−1 ≤ t < tθK

(4)

where µk and εk are constant values for each pattern θk , and
εk ∼N(0, σ 2

k). In Eq. (4), the mean and variance of the pattern
θk are E(ct) = µk/(1−φ) and Var(ct) = σ 2

k /(1−φ2). When
we get (µk , φ, σk), the mean and variance value of pattern θk
will be got. Take level shifts as an example, we set t1 to be the
changepoint of two stationary time series. If t ≤ t1, µt = µ1;
or else, µt = µ2. In this example, there are two different

VOLUME 11, 2023 97811

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

mean values E1 (ct) = µ1/(1− φ) and E2 (ct) = µ2/(1− φ)
with one same variance VAR (ct) = σ 2/(1− φ2).
However, because of the uncertainty of the workload of

high-priority service, decision-makers are unable to predict
when the current pattern shifts to another. For example,
when a sudden business activity occurs, excess capacity
will suddenly change into another unknown pattern model.
Therefore, wemake the following assumptions about the non-
stationarity: (1) the pattern models change at least once (that
is,K≥ 2), and the number of pattern modelK is finite; (2) the
pattern sequence set θ = (θ1, θ2, . . . , θk , . . . , θK), the vector
of model parameters (µk , φ, σk) of each pattern θk , and the
changepoint sequence set (tθ1 , tθ2 , . . . , tθk , . . . , tθK) are all
unknown to the decision-maker and need to be estimated with
ongoing time. The method of the detection of changepoint tθk
and the estimation of θk are described in detail in Section IV.

3) CONSTRAINED PREEMPTION RATE MODEL
Once the number of running preemptible instances exceeds
the available excess capacity, the exceeded preemptible
instances will be preempted, to alleviate service congestion
and avoid the violation of the high-priority services. In our
paper, we define ρ as the expected value of the actual pre-
emption rate over the entire time horizon T . It represents the
ratio of preempted instances to the total number of actively
running instances at any given time. Let qt (pt) represent the
number of preempted instances at time t , and dt (pt) represent
the number of running preemptible instances at time t . The
actual preemption rate, ρ, is subject to a maximum constraint,
as indicated by Equation (5).

ρ = E

[∫ T
0 qt (pt)dt∫ T
0 dt (pt)dt

]
≤ ϕ (5)

Here, ϕ represents the maximum constraint on the actual
preemption rate. This constraint sets an upper threshold on the
allowed preemption rate. This constraint can help the oper-
ators control the high uncertainty in the actual preemption
caused by the non-stationarity described in the above Section.
The estimation method for the actual preemption rate, ρ,
is described in Section IV.

B. CNSMDP MODEL FOR THE DPPCS
The objective of DPPCS is to determine the best price of the
PCS to maximize the revenue generated from excess capacity
within amaximumpreemption rate constraint, in a given hori-
zon T . Sequential decision-making problems with constraint
are mostly formulated as Constrained Markov Decision Pro-
cess (CMDP) [34]. Based on the CMDP, we formulate our
problem as a family of CMDPs denoted as {Mθk }θk∈θ

, where
Mθk =

〈
θk , S,A,Pθk ,Rθk , πθk , ϕ

〉
. When K≥ 2, we refer

to this model {Mθk }θk∈θ
as a Constrained Non-Stationary

MDP (CNSMDP). The CNSMDP comprises multiple CMDP
models. For eachMθk of CMDP models, the components are
in general defined as follows. θk represents one specific tem-
poral pattern. S is the set of states.A is the set of actions.Pθk is

the transition probability function. Rθk is the reward function,
which maps a state-action pair (s, a) to a real-valued reward.
πθk is the stationary policy for making decisions. ϕ is the
constraint factor. An optimal policy π∗θk can be found for each
CMDPmodel. This optimal policy aims to maximize revenue
of each pattern θk while satisfying the given constraints.
The detailed definitions of these elements in CNSMDP

with discrete decision epochs are described as follows:

1) DECISION EPOCH N
We divide the time horizon T into N discrete epochs at which
prices for the services are updated. Let 1t(0 < 1t < T) be
the interval for each decision epoch. Let n(n = 1, 2, . . . , N)
denote the index of the decision epoch. N is the last time a
price can be changed and at the end of this epoch, the unused
capacity in horizon T cannot be stored and reused for later
consumption. Discretizing the continuous-time environment
has twomain reasons. The first reason is that similar states are
expected to have similar optimal price decisions and similar
value functions. This simplification can make the pricing
problem more tractable and computationally efficient. The
second reason is that this discretization is more in line with
practical applications, e.g., AWS and Ali Cloud update the
price every five minutes.

2) PATTERN SET θ

θ=(θ1, θ2, . . . ,θk , . . . , θK) denotes the sequence set of
unknown temporal patterns within a finite horizon T , e.g.,
θ=(θ1, θ2, θ3), where K = 3 The value K denotes the total
number of temporal patterns. Each temporal pattern θk is rep-
resented as θk = (µk , φ, σk). The set ϒ =

{
tθk
}
1≤k≤K is the

set of changepoints among the temporal patterns within the
finite horizon T . If the detected changepoint tθk falls within
the interval [(n− 1) ∗ 1t, n ∗ 1t], where 1t represents the
time interval, then the value of n is considered as the discrete
index that corresponds to the specific changepoint tθk .

3) STATE SPACE S
The state set sn = (cn, dn) is defined to capture the supply-
and-demand dynamics which can be observed before taking
action. cn represents the current available excess capacity
(after satisfying the high-priority service) for the preemptible
market at the initial epoch n. dn represents the current running
preemptible instances at the initial epoch n.

4) ACTION SET A
The action set A represents a set of discrete action an(n = 1,
2, . . . ,N). When t ∈ [(n−1)×1t, n×1t], there is pt = an.
That is, action an is static in the interval [(n− 1)×1t, n×1t].
As a low-priority service, the price of preemptible service is
lower than the price of the high-priority service. We assume
that the maximum preemptible price pmax =1. The price of
preemptible services an is in [0, pmax]. This is in line with
the real-world applications, where the cloud vendors can only
select prices from a finite list of admissible prices that are

97812 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

lower than the low-priority service, e.g., A = {0.1, 0.2, . . . ,
0.9, 1}.

5) TRANSITION PROBABILITY FUNCTION Pθk

Pθk = Pr (sn+1|sn, an) models the uncertain supply-and-
demand evolution of the discrete states of the system based
on the adopted action. It represents the probability from
the observed supply-and-demand state sn = (cn, dn) to the
next observed supply-and-demand state sn+1 = (cn+1, dn+1).
However, the transition probability from sn to sn+1 is
unknown. For the supply part cn in state sn, when cn and
cn+1 are in different temporal patterns, the transition from
cn to cn+1 is unknown, especially since this transition is
affected by external variables, not the price, which makes
it difficult to estimate the probability of changed supply
cn+1. For the demand part dn in state sn, as the running
preemptible instances, after adopting the price decision an,
the changed demand dn+1 has an infinite possible number,
which is because multiple arrivals and departures occur in
each decision epoch n. Based on the above analysis, the
transition probability Pr (sn+1|sn, an) is hard to present with
a mathematical model and is assumed to be unknown in our
research.

6) ONE-STEP REWARD FUNCTION Rn,θk

: Rn,θk (πθk) refers to the one-step reward which is used for
evaluating the quality of each pricing decision. Under the
condition of a fixed preemption rate constraint, the higher rev-
enue generated from the excess capacity after taking the price
decision, the better the taken price decision. We adopt the
immediate revenue generated from the excess capacity as the
reward for guiding price decisions. dn (an) denotes the total
requested preemptible instances in epoch n. qn,θk (an) refers
to the total expected value of the number of instances being
preempted in decision epoch nwithin interval1t.Rθk (sn, an)
is calculated by Equation (6).

Rθk (sn, an) = an ×
[
dn (sn, an)− qn,θk (sn, an)

]
×1t

= an × [dn +M [f (an)]−M [g (an)]

−qn,θk (sn, an)
]
×1t (6)

The higher the revenue Rθk (sn, an), the more encouraged
to take the price decision an. Note that qn,θk (an) is unknown to
the decision-maker, which needs to be estimated when mak-
ing the price decision an. M [f (an)] is calculated by arrival
rate f (an), and M [g (an)] is calculated by departure rate
g (an). f (an) and g (an) can be estimated and then assumed
to be known by the decision-maker.

7) MAXIMUM PREEMPTION RATE CONSTRAINT
We define ϕ(0 ≤ ϕ < 1) as the maximum constraint
on the probability of a running preemptible instance being
preempted per unit of time. It represents the allowable max-
imum probability of an instance being preempted. In the
realistic operation of the preemptible service, the value of
ϕ is generally prescribed and disclosed by cloud operators.

For example, AWS discloses different maximum values for
the preemption rate in public for different types of pre-
emptible instances: 5%, 10%, 15%, and 20%.8 Ali Cloud
prescribes the range of the preemption rate between 0 and
3% in all geographical regions published on the cloud trade
platforms.9

8) PRICING POLICY SET π

π = {πθ1 ,πθ2 , . . . ,πθk , . . . ,πθK represents the set of random-
ized decision rules in the entire horizon T .πθk is the short of
πθk (an|sn), which denotes the probability of making a price
decision an in state sn at the k’th temporal pattern θk . The
decision-maker might have to vary the pricing decision rule
in different temporal patterns of the excess capacity being in.
For example, it is instinctive that a high-pricing policy can
be adopted in a temporal pattern where the excess capacity
exhibits low expectation and high variance. Instead, a low-
pricing policy can be adopted in a temporal pattern where the
excess capacity exhibits high expectations and low variances.

The objective of the CNSMDP problem is to obtain an opti-
mal pricing policy set π∗

=(π∗θ1 , π
∗
θ2

, . . . , π∗θK). It maximizes
the expected total revenue generated from the excess capacity
while satisfying the maximum constraint ϕ. Let J (π) rep-
resents the expected total revenue in the whole horizon T .
Therefore, the objective of the CNSMDP can be formulated
as Equation (7).

max
π⊂5

J (π) = max
an∈A,θ∈θ

E
[∑N

n=0
γ n × Rθ (sn, an)

]
s.t. ρ(π) = Eπθ

[∑N

n=0
ρn (πθ)

]
≤ ϕ (7)

where γ ∈ [0, 1] is the discount factor, 5 is the set of
all pricing policies. E is the expected value of the total
revenue generated from excess capacity. The CNSMDP in
Equation (7) is a constrained optimization problem. It is
subject to a specified maximum constraint ϕ, which requires
ensuring that the actual preemption rate caused by pricing
policies π satisfies the specified constraint level. To convert
the constrained optimization problem into an unconstrained
one, we transform the CNSMDP problem into a piecewise
Lagrangian dual problem.

C. PIECEWISE LAGRANGIAN DUAL MODEL
The CNSMDP in Equation (7) is composed of multiple
CMDPs that are partitioned based on temporal patterns θ .
Each CMDP belongs to an action CMDP. This is because
the action, which is the price decision made in each state
sn and temporal pattern θk , is constrained by the maximum
value ϕ. This kind of problem is commonly formulated
as a Lagrangian problem [34]. Therefore, the CNSMDP in

8https://aws.amazon.com/cn/ec2/spot/instance-advisor/, accessed on
June 19, 2023.

9https://help.aliyun.com/document_detail/52088.
html?spm=5176.ecsnewbuy.help.dexternal.bbbc3675thWZtr, accessed
on June 19, 2023.

VOLUME 11, 2023 97813

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

Equation (7) can be converted into a piecewise Lagrangian
problem defined in Equation (8).

max
λθ∈λ,πθ∈π

L (πθ , λθ)

= max
λθ∈λ,πθ∈π

J (πθ)− λθ × [ρ (πθ)− ϕ] (8)

where λθ (λθ ∈ R+) represents the Lagrangian multi-
plier variable associated with the temporal pattern θ . Here,
θ is a shorthand notation for θk , indicating the specific
temporal pattern. λ is a vector denoted as λ = (λθ1 ,

λθ2 , . . . , λθk , . . . , λθK). It represents the set of the Lagrangian
multiplier variables for the entire horizon T . Similarly, π is a
vector denoted asπ D (πθ1 (λθ1), πθ2 (λθ2), . . . , πθk (λθk), . . . ,
πθK (λθK)), where πθk (λθk) ∈ 5. It represents the set of
the corresponding optimal pricing policy associated with
each specific temporal pattern θk and Lagrangian multiplier
value λθk .
According to assumptions 1 and 2 in Appendix A, an opti-

mal policy π∗θ exists and constraint ρ (πθ)≤ ϕ is satisfied.
These assumptions are true in the real world; otherwise,
the preemptible services will not be allowed to be offered.
Since Assumptions 1 and 2 in Appendix A, the Slater’s
condition [34] holds. Therefore, the problem of Equation (8)
is equivalent to its Lagrangian dual problem, which can be
expressed as Equation (9).

min
λθ∈λ

max
πθ∈π

L (πθ , λθ)

= min
λθ∈λ

max
πθ∈π

J (πθ)− λθ × [ρ (πθ)− ϕ] (9)

By solving for the Lagrange multiplier λθ and corresponding
pricing policy πθ in Equation (9), we can identify the
optimal solution (λ∗,π∗) that satisfies the constraint con-
ditions and maximizes the expected total revenue in
the DPPCS problem stated in Equation (7). The opti-
mal solution is denoted as λ∗=(λ∗θ1 , λ

∗
θ2

, . . . , λ∗θK) and

π∗
=(π∗θ1

(
λ∗θ1

)
, π∗θ2

(
λ∗θ2

)
, . . . , π∗θK (λ

∗
θK
)). The proof of the

existence of the solution to the Lagrangian dual problem of
Equation (9) is provided in Appendix A.

D. ADAPTING REINFORCEMENT LEARNING
MODEL TO DPPCS
We adopt Reinforcement Learning and utilize its model-free
advantage to solve the DPPCS model without knowledge of
state transition probabilities. The DPPCS contains multiple
CMDPs, where each CMDP corresponds to a specific tempo-
ral pattern θk . The unknown changepoints between temporal
patterns result in unknown transitions between CMDPs. Fur-
thermore, the transition probabilities of each CMDP are hard
to be presented. Therefore, closed-form solutions and tradi-
tional dynamic programming techniques can not be adopted
to solve the DPPCS.We convert the Lagrangian dual problem
into the RL model, thereby incorporating the constraint con-
ditions into the reward function. Equation (10) represents the
conversion process. Nθ denotes the total number of decision

epochs for each temporal pattern θ .

L (πθ , λθ) = J (πθ)− λθ × [ρ (πθ)− ϕ]

= Eπθ

[∑
n∈Nθ

Rn (πθ)
]

− λθ ×

[∑
n∈Nθ

qn(πθ)∑
n∈Nθ

dn(πθ)
− ϕ

]

= Eπθ

{∑
n∈Nθ

[
Rn (πθ)− λθ ×

qn (πθ)

dn (πθ)

]}
+ ϕ × λθ

= Eπθ

[∑
n∈Nθ

Rλθ
n (πθ)

]
+ ϕλθ (10)

where Rλθ
n (πθ) = Rn (πθ) − λθ × ρn,θ (πθ) is the reward

function of the RL framework, which subsumes ρn,θ (πθ)

into the revenue generated from excess capacity defined
in Equation (6). Here, the Lagrange multiplier λθ is used
to balance the revenue Rn (πθ) and the preemption rate
ρn,θ (πθ). Different from the common RL problem, there is
a Lagrangian multiplier variable λ in the reward function of
the RL model for DPPCS presented in Equation (11).

max
λ⊂�,π⊂5

J (λ, π) = max
an∈A,θ∈θ

E
[∑N

n=0
γ n × Rλθ

n (sn, an)
]

(11)

Therefore, the optimal policy changes with the value of λ.
The objective of the DPPCS can be achieved by finding
the optimal λ∗θ and optimal pricing policy π∗θ to maxi-

mize Eπθ

[∑
n∈Nθ

Rλθ
n (πθ)

]
while satisfying constraint ϕ.

We view this RL problem as illustrated in Figure 1, where
the changes between temporal pattern θ1, θ2, . . . , θK dynam-
ically. By solving this RL problem in the entire hori-
zon T , we can obtain the optimal Lagrange multiplier
set λ∗=(λ∗θ1 , λ

∗
θ2

, . . . , λ∗θK) and optimal pricing policy set

π∗
=(π∗θ1

(
λ∗θ1

)
, π∗θ2

(
λ∗θ2

)
, . . . , π∗θK (λ

∗
θK
)).

FIGURE 1. The interactions between the RL agent and the pricing
environment.

Unfortunately, the epochs at which the temporal patterns
changes θ occur are unknown to the RL agent. The RL
agent can’t perceive the temporal pattern change. In this case,
to solve the RL problem, the RL is required to depend on

97814 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

the sequence of all the historical states and actions observed
up to epoch n, denoted as hn = (s0, a0, s1, . . . , an−1, sn),
where hn ∈ Hn, and Hn is the set of all possible histories
at epoch n. The algorithms designed to solve the RL problem
presented in Equation (11) need to learn a policy π (an|Hn)
that maximizes the long-term expected total rewards, denoted
as E

[∑N
n=1 γ nRλ

n (π (an|Hn)) |H0 = h0
]
, for all initial histo-

ries h0 ∈ H0. However, multiple issues arise when solving
the DPPCS compounded by the lack of model information.

(1) Due to the RL agent’s inability to observe the changes
in temporal patterns, the pricing policy only considers the
current supply-and-demand state may not be optimal and will
fall into constant oscillations. Thus, any algorithm for solving
the DPPCS is needed to search over the space randomized
history-dependent policies which is an intractable problem.

(2) Due to the maximum constraint on the preemption rate,
the RL agent needs to identify the optimal Lagrange multi-
pliers. It can strike a balance between maximizing revenue
and adhering to the preemption rate constraint. Furthermore,
accurately estimating the actual preemption rate is crucial
because the RL agent cannot directly observe it.

IV. THE PROPOSED APPROACH
In this section, we explore the above issues and provide
solutions to address them. We present the framework of the
proposed novel dynamic pricing approach shown in Figure 2.
The framework includes two main parts. The first part is the
estimation methods for the unknown environment parame-
ters, including a detection method for identifying temporal
pattern changes, and a diffusion approximation method for
estimating actual preemption rate. The second part is the
Constrained Non-Stationary Q-Learning (CNSQL) algorithm
for DPPCS, including updating the Lagrangian multiplier,
learning the pricing policy given each Lagrangian multiplier,
and evaluating the learned policy by estimating the actual
preemption rate.

FIGURE 2. The framework of the novel dynamic pricing approach.

The proposed approach aims to learn the optimal
Lagrangian multiplier set λ∗ and optimal pricing policy
π∗, which can maximize the revenue generated from the
excess capacity within the maximum constraint. By applying
the detection method, the CNSQL algorithm can identify
the change in the temporal pattern and adaptively update the
learned pricing policy πθk (λθk) for each pattern θk (k = 1,
2, . . . ,K). The CNSQL learns the optimal pricing policy

under each given Lagrangianmultiplier λθk . Then, the learned
policy π∗θk (λθk) will be evaluated to identify whether the

resulting actual preemption rate ρ
[
π∗θk (λθk)

]
exceeds the

maximum constraint or not. If ρ
[
π∗θk (λθk)

]
exceeds the con-

straint, the Lagrangian multiplier will be updated, and then
repeat the algorithm until the constraint is satisfied.

A. ESTIMATION METHODS FOR THE ENVIRONMENT
PARAMETERS
1) DETECTION METHOD FOR ESTIMATING TEMPORAL
PATTERN CHANGE
To assist the RL agent in identifying changes in the tem-
poral pattern, we propose a detection method to estimate
when a temporal pattern transitions into a different pattern,
as well as the specific changed pattern model. The detec-
tion method incorporates a Bayesian Online Changepoint
Detection (BOCD), and a Maximum Likelihood Estimation
(MLE). BOCD is to identify whether the pattern changes.
Then, MLE is adopted to estimate the model of the changed
pattern. The changed pattern model is inputted into the QL
algorithm to enable it to adapt to environmental change.

The BOCD proposed by Adams and MacKay [35] is the
most popular sequential changepoint algorithm. The BOCD
does not rely on the asymptotic assumptions about test statis-
tics that are presented in the frequentist algorithm. Further-
more, the Bayesian approach can ignore the occasional abrupt
peak or valley points and other abnormal points that do not
affect the pattern change, but are extremely sensitive to the
pattern change, which is well matched with the highly non-
stationary workload [3]. Let τt denote the time length from
the last changepoint to the current time t . Let c1:t represent
the set of observed data from the beginning of the time series
data to the current time t . Having observed previous data
points c1:t−1, the run length τt−1 indicates whether the new
datum ct still belongs to the same pattern. If ct still belongs
to the same pattern, then τt = τt−1+1, otherwise, τt = 0 and
time t is a changepoint. The probability of τt based on the
historical observed data c1:t at every time t is calculated by
Equation (12).

Pr(τt , c1:t)

=

∑
τt−1

Pr (τt |τt−1)Pr
(
wt |τt−1, crt

)
Pr (τt−1, c1:t−1)

(12)

where Pr(τt , c1:t) includes two kinds of probabilities which
are Pr(τt = 0, c1:t) and Pr(τt = τt−1+1, c1:t). Pr(τt = 0, c1:t)
is the rate of being a changepoint in time t , and Pr(τt =
τt−1+ 1, c1:t) is the rate of not being a changepoint in time t .
In Equation (11), joint distribution Pr(τt , c1:t) is calculated by
a recursive message-passing algorithm, which is constructed
by two parts: (1) Pr (τt |τt−1) is calculated by hazard function,
which is assumed as a discrete exponential distribution with
timescale ϱ; (2) Pr

(
ct |τt−1, crt

)
is the prediction probability

over the newly-observed datum ct , give the data since the last
changepoint cτ

t .

VOLUME 11, 2023 97815

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

We adopt MLE to obtain the latest changed pattern model
θ =

(
µ̂, φ̂, σ̂

)
by using the observations of the current

changed pattern. We choose a sample of size L from the
latest detected pattern to estimate the unknown parameters.
According to section III, each stationary structure is modeled
as Gaussian AR, that is, ct = µ + φ × ct−1 + ε. The
log-likelihood for observations size L from the Gaussian AR
process is presented in Equation (13).

L (θ) = −
1
2
log(

σ 2

1− φ2)−

{
ctθ −

[
µ

1−φ

]}2
2σ 2

1−φ2

−
L
2
log (6.28)

−(
L − 1
2

) log
(
σ 2
)
−

L∑
l=1

[
(ct+l+1 − µ− φct+l)2

2σ 2

]
(13)

We need to estimate the vector θ =
(
µ̂, φ̂, σ̂

)
to maximize

the log-likelihood L (θ). However, the partial derivatives of
the argmax(L (θ)) in each parameter of vector θ are nonlinear,
making it difficult to give analytical solutions of the pattern
model θ =

(
µ̂, φ̂, σ̂

)
by using a sample of size L. Therefore,

we adopt numerical maximization to approximately obtain
the estimated pattern model θ =

(
µ̂, φ̂, σ̂

)
by grid search

method.
The full algorithm is shown in Algorithm 1. The pos-

terior probability distribution is calculated online based on
the recursion message passing algorithm with the real-time
generated stream data. Because it is very hard to correctly
evaluate a change and the changed patternmodel after a single
sample of a new distribution, we instead set ‘‘delayed length’’
for L samples and evaluate the probability of a change
happening L samples prior. The value of delayed samples
depends on the characteristics of the non-stationary structure.
If the non-stationary structure changes significantly, the value
of L can be set smaller.

Algorithm 1 Detection algorithm for the temporal pattern
changes of the excess capacity
1: Input: Time horizon T , time series data c1:T = [c1, c2, . . . , cT];
prior probability distribution of the τt ; hazard function; threshold η;
delayed samples L.
2: Output ϒ, θ :Changepoint set ϒ D

{
tθk
}
1≤k≤K and pattern set

θ D (θ1, θ2, . . . ,θK).
3:for ct in c1:t do
4: Pr

(
τt |τt−1

)
← Evaluate the hazard function

for each possible τt from Bayesian inference;
5: Pr

(
ct |τt−1, crt

)
← Evaluate the predictive distribution for

new datum ct from Bayesian inference;
6: Pr(τt , c1:t)← Determine posterior joint probability

distribution for each possible τt using Equation (12);
7: if Pr(τt , c1:t) > η then
8: Returnchangepoint, tθk = t − L

9: θ̂k =
(
µ̂k , φ̂, σ̂k

)
←

Estimate θ̂k with data ct−L:t using Equation (13)
10: else
11: No changepoint, Return

2) DIFFUSION APPROXIMATION METHOD FOR
ESTIMATING PREEMPTION RATE
To help the RL agent balance the cloud revenue and actual
preemption rate, we adopt the diffusion approximation tech-
nique to estimate the actual preemption rate ρn,θ (πθ) in
discrete decision epoch. The preemption occurs, once the
demand of preemptible instances exceeds the excess capacity
offered, and the preempted instances can be resumed later
when resources become available. The preemption process
is a continous-time and is at a finer time granularity, com-
pared to the discrete decision epoch at which the price is
determined. The preemption rate needs to be calculated by
considering two stochastic processes, that is, the time-varying
excess capacity and the demand for the preemptible services.

The preemption process is considered a priority-queueing
system with preemption, which is continuous and intractable
with large demand and supply. Therefore, an appropriate
diffusion process, called reflected Brownian motion process,
is adopted to simulate the preemption process. The modeling
framework is developed by Harrison [22]. It is commonly
used to approximate the behavior of G/G/C queues under
heavy traffic conditions [36].

For each discrete epoch n, we set continuous time t ′ to be
in [0, 1t]. We first calculate the mean and variance of the
stochastic process of excess capacity. Based on the estimated

pattern model θ =
(
µ̂, φ̂, σ̂

)
, we can get the mean and

variance of the current pattern:E(ct ′) andVar(ct ′). LetCθ

(
t ′
)

be the cumulative excess capacity in the interval [0, t ′] for
pattern θ . Therefore, themean and variance ofCθ

(
t ′
)
in [0, t ′]

is as follows.
E
[
Cθ

(
t ′
)]
=

µ̂(
1− φ̂

) t ′
Var

[
Cθ

(
t ′
)]
=

σ̂ 2

(1− φ̂2)
t ′

(14)

Let Dn
(
t ′
)
be cumulative running preemptible instance in

the interval [0, t ′]. So, the mean and variance of Dn
(
t ′
)
in

[0, t ′] are as follows.{
E
[
Dn
(
t ′
)]
= dnt ′ + [f (πθ)− g (πθ)] t ′

Var
[
Dn
(
t ′
)]
= [f (πθ)− g (πθ)] t ′

(15)

where πθ is short of πθ (an|sn), dn is the running preemptible
instances at the initial epoch n. We set Bn,θ

(
t ′
)
as a stochastic

process. Bn,θ
(
t ′
)
= Dn

(
t ′
)
− Cθ

(
t ′
)
. The mean E

[
Bθ

(
t ′
)]

is calculated as E
[
Dn
(
t ′
)]
− E

[
Cθ

(
t ′
)]
, and the variance

Var
[
Bθ

(
t ′
)]

is calculated as
[
Dn
(
t ′
)]
+ Var

[
Cθ

(
t ′
)]
. The

values of E
[
Bθ

(
t ′
)]

and Var
[
Bθ

(
t ′
)]

are presented as fol-
lows.

E
[
Bθ

(
t ′
)]
= dnt ′ + [f (πθ)− g (πθ)] t ′ −

µ̂(
1− φ̂

) t ′
Var

[
Bθ

(
t ′
)]
= [f (πθ)− g (πθ)] t ′ +

σ̂ 2

(1− φ̂2)
t ′

(16)

97816 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

According to the literature [22], the stochastic process
Bθ

(
t ′
)
can be described as Brownian motion with float-

ing terms. The stochastic differential equation of Bθ

(
t ′
)
is

dBθ

(
t ′
)
= µθ,bdt ′+σθ,bdW (t ′), whereW (t ′) is the standard

Wiener process, µθ,b is the drifting term of Brownian motion
Bθ

(
t ′
)
, and σθ,m is the standard variance of Brownian motion

Bθ

(
t ′
)
. Then, the drifting term and the standard variance of

Brownian motion Bθ

(
t ′
)
are as follows

µn,θ = [f (πθ)− g (πθ)]−
µ̂(

1−φ̂
) + dn

σn,θ =

√
[f (πθ)− g (πθ)]+ σ̂ 2

(1−φ̂2)

(17)

Let qθ

(
t ′
)
be the amount of preempted instances (and

to be resumed later) at the point of time t, has been
proven to be a reflected Brownian motion given Bθ

(
t ′
)
, also

known as a Brownian motion modified by a lower reflect-
ing barrier at zero given Bθ

(
t ′
)
. The simple derivation is:

qθ

(
t ′
)
= Bθ

(
t ′
)
− Lθ

(
t ′
)
, where Lθ

(
t ′
)
= [Bθ (x)]− =

−min [Bθ (x) , 0]−. If qθ

(
t ′
)

< 0, no preemption occurs; If
qθ

(
t ′
)

> 0, preemption occurs. The higher of qθ

(
t ′
)
, then

the higher amount being preempted. Based on the Brownian
motion theory in literature [22], the cumulative distribution
function of qn,θ is as follows.

Pr
[
qn,θ ≤ q

]
= 8

(
q− µn,θ t ′

σn,θ
√
t ′

)

− e

2µn,θ ∗q

σ2n,θ 8

(
−q− µn,θ t ′

σn,θ
√
t ′

)
(18)

where 8 (·) is the cumulative distribution function of a stan-
dard normal distribution. When the value t ′ is high, the
probability distribution of the amount of preempted instances
is equal to the following equation.

Pr
[
qn,θ

(
t ′
)
≤ q

]
→

 1− e

2µqn,θ

(σn,θ)
2
, µn,θ < 0

0, µn,θ ≥ 0
(19)

It can be seen from Equation (18) that when µn,θ < 0,
Pr
[
qn,θ

(
t ′
)
≤ q

]
is an exponential distribution. If, on aver-

age, the total workload of the fault-tolerant jobs exceeds the
surplus capacity (e.g.,µn,θ ≥ 0), then the amount of workload
preempted goes to infinity in the long run. This is not a
relevant case. We thus focus on the case in which µn,θ < 0.
The average value of the amount of preempted instances
per unit time at decision epoch n is shown respectively in
Equation (20).

E
[
qn,θ

]
=

[f (πθ)− g (πθ)]+ σ̂ 2

(1−φ̂2)

2
{

µ̂

(1−φ̂)
− dn − [f (πθ)− g (πθ)]

} (20)

The actual amount of preempted instances will be simu-
lated by exponential distribution with rate parameter esti-
mated in Equation (20). Therefore, the expected value of
the actual preemption rate per unit time at epoch n, ρn.θ ,

is estimated using the ratio E[qn,θ]
E[dn,θ] . The calculation of ρn.θ

is as follows:

ρn.θ

=

[f (πθ)− g (πθ)]+ σ̂ 2

(1−φ̂2)

2
{

µ̂

(1−φ̂)
− dn − [f (πθ)− g (πθ)]

}
[dn + f (πθ)− g (πθ)]

(21)

B. CNS-QL ALGORITHM FOR DPPCS
We present the details of the proposed CNSQL algorithm,
which aims to find the optimal Lagrangian multiplier λ∗θ and
the corresponding optimal pricing policy π∗θ (λ

∗
θ). π∗θ refers

to how to make price decisions in each pattern θ , which can
maximize the revenue generated from excess capacity within
maximum constraint ϕ in finite horizon T .

1) LAGRANGIAN MULTIPLIER UPDATING METHOD
A bisection method for updating Lagrangian multiplier is
applied to find the optimal value λ∗θ satisfying the con-
straint ϕ. This method is based on the theoretical deductions
(see Theorem 1 in Appendix A that the actual preemption
rate ρ [πθ (λθ)] is monotonic with Lagrangian multiplier λθ .
That is, for each pattern θ , the higher the value of λθ , the lower
the value of ρ [πθ (λθ)]. We set the lower bound λlθ and upper
bound λuθ of λθ . In the bisection method, the Lagrangian mul-
tiplier λmθ is calculated by the middle point of λlθ and λuθ . If the
expected value of the actual preemption rate, ρ

[
π∗θ (λ

m
θ)
]
,

is beyond the constraint condition. The Lagrangian multiplier
will be updated as presented in Equation (22).

λmθ ←

λlθ + λmθ

2
, if ρ

[
π∗θ (λ

m
θ)
]

< ϕ − ζ

λmθ + λuθ

2
, if ρ

[
π∗θ (λ

m
θ)
]

> ϕ

(22)

where ϕ − ζ denotes the lower bound of the preemp-
tion rate. When the expected preemption rate ρ

[
π∗θ (λ

m
θ)
]

satisfies the maximum constraint, the algorithm ends and
outputs the optimal pricing policy set π∗ and Lagrangian
multiplier λ∗.

2) ALGORITHM DESIGN
The detailed steps of the proposed CNSQL algorithm for
DPPCS are presented in Algorithm 2. The algorithm mainly
includes outer and inner loops. The outer loop is to update the
Lagrangian multiplier to find the optimal Lagrangian multi-
plier with the updating process presented in Equation (22).
The inner loop is for learning the optimal pricing policy of
each given Lagrangian multiplier, and evaluating the learned
pricing policy.

As depicted in Algorithm 2, the initial step involves
providing a time series dataset denoted as c1:T . The data
points represent observations collected over a specific hori-
zon T . The time series data has a pattern sequence θ1 →

θ2 →. . .→ θK , where θk represents the parameter vector
of the k’th pattern. Note that the RL agent doesn’t know the

VOLUME 11, 2023 97817

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

sequence pattern set, θ = {θ1, θ2, . . . , θk , . . . , θK } and the
changepoints ϒ = (tθ1 , tθ2 , . . . , tθk , . . . , tθK). However, the
RL agent can know the total number of pattern types, denoted
as I . The agent needs to learn θ and ϒ with newly obtained
data. In addition, we input the demand information, f (an)
and g (an). The initial Q-value Q (θi, s, a), as well as the
lower and upper bounds

(
λlθi , λ

u
θi

)
, are set for each pattern

i (i∈ (1, 2, . . . ,I)). i refers to the type of temporal pattern.
When the algorithm ends, it outputs the optimal pricing policy
π∗ and optimal Lagrangian multiplier λ∗.
The outer loop from Step 3 to Step 24 shows the

Lagrangian multiplier updating process. Step 3 identi-
fies the updated Lagrangian multiplier λmθi calculated by
Equation (21). When the expected value of the actual pre-
emption rate ρ

[
π∗θ (λ

m
θ)
]
, satisfies the maximum constraint,

the algorithm ends and outputs the optimal pricing pol-
icy π∗θi and Lagrangian multiplier λ∗θi for each pattern θi
(i= 1, 2, . . . , I). If the current Lagrangianmultiplier λmθi is not
within the constraint, the next move to update the Lagrangian
multiplier is identified according to Equation (21). In this
updating process, π∗θ (λ

m
θ) is learned from Steps 4 to 18, and

ρ
[
π∗θ (λ

m
θ)
]
is estimated from Step 19-Step 24.

The policy learning part of the inner loop is from Step 4 to
Step 18. It aims to learn the optimal pricing policy under
each updated Lagrangian multiplier λmθi . The policy learning

phase outputs the converged Q∗
(
θi, λ

m
θi
, s, a

)
or the pric-

ing policy π∗θi (λ
m
θi
). Based on the QL algorithm (presented

in Appendix B), the agent is combined with the detection
method of pattern change (presented in Algorithm 1), the
estimation method for the preemption rate (Equation (21)),
and the updated Lagrangian multiplier λθ . The estimated
Q-value with a specific λθ for each pattern, θ , is modified
as Equation (23)

Q (θ, λθ , πθ)← Q (θ, λθ , πθ)

+ δ
[
Rλθ (πθ)+ γQ (θ, λθ , πθ)− Q (θ, λθ , πθ)

]
(23)

where πθ is short of πθ (an|sn). Once the changepoint of the
temporal pattern is detected by algorithm 1, the learning pro-
cess of theQ-valuewill change into the next pattern. Then, the
Q-value table of the changed patternwill be learned according
to the experience (e. g. Rλθ (πθ)) from the changed pattern.
If the changed pattern has already appeared in the historical
epochs, then the Q-value table will be updated based on the
learned Q-value table in historical epochs without affecting
the Q-values of other patterns.

The policy evaluation part of the inner loop is from
Step 19 to Step 24. It aims to evaluate the expected value
of the actual preemption rate, ρ

[
π∗θ (λ

m
θ)
]
calculated by

Equation (24).

ρ
[
π∗θ (λ

m
θ)
]
=

∑
n∈Nθ

ρn
(
π∗θ (λ

m
θ)
)

Nθ ×Mmax
(24)

If the ρ
[
π∗θ (λ

m
θ)
]
is within the maximum constraint,

λmθ will be the optimal value. If ρ
[
π∗θ (λ

m
θ)
]
is beyond

the maximum constraint, λmθ will be updated according to
Equation (22). Then, a newLagrangianmultiplier is obtained,
and repeat the policy learning process (Step 4-Step 18) until
the agent finds the optimal Lagrangian multiplier λ∗θ which
can satisfy the maximum constraint.

Algorithm 2 CNSQL algorithm for DPPCS
1: Input: Time series data c1:Twith pattern sequence θ1 →

θ2 →. . .→ θK , f (an), g (an), Q (θi, s, a) = 0, λlθi
, λuθi

,
i = (1, 2, .., I), maximum preemption rate ϕ, epoch size N .
2:Output: Optimal pricing policy set π D {π∗θi

(
λ∗θi

)
}
1≤i≤I

and

Lagrangian multiplier set λ = {λ∗θi }1≤i≤I .
3:Repeat:Identify the updated Lagrangian multiplier according to

Equation (22). # Policy learning phase
4: forepisode = 1 to Mmaxdo
5: Reset state s0, θ , ϒ, i, k
6: for n= 1 to N do
7: Select an action an according to epsilon-greedy.

Execute an
and obtain revenue Rn by Equation (6);

8: Estimate the ρn,θi by Equation (21), and calculate
reward Rλθi = Rn − λmθi

× ρn,θi . Go into the next state sn+1;

9: Update the Q
(
θi, λ

m
θi
, sn, an

)
according to Equation (23);

10: Identify tθk+1 and θk+1 according to Algorithm 1.
11: iftθk+1 is not Null then
12: Increment θk+1 into θ , and increment nθk+1 into ϒ.
13: if θk+1 is in θ then
14: θi′ = θk+1;
15: i = i′.
16: else
17: θi+1 = θk+1;
18: i = i+ 1.

Policy evaluation phase
19: forepisode = 1 to Mmaxdo
20: Reset state s0, n.
21: for n = nθk to nθk+1 do

22: Choose action an from learned policy π∗θi

(
λmθi

)
from

policy learning phase;
23: Execute an and estimated the ρn,θi according to

Equation (21).
24: Calculate ρ

[
π∗θi

(λmθi)
]
of each pattern θi according to

Equation (24), then go to Step 3.

According to the proposed CNSQL algorithm in a non-
stationary environment, the optimal dynamic pricing π∗θ and
optimal Lagrangian multiplier λ∗θ of each pattern, θ , are
learned. The learned optimal policies π∗θ are stored in a
pattern-policy library. In the real-world pricing environment,
the agent can access the learned pricing policy π∗θ stored in
the pattern-policy library without re-learn the policy when the
temporal pattern changes.

V. EXPERIMENTS
In this section, we mainly conduct experiments to verify the
performance of our proposed approach. We mainly study
three questions: (1) Does the proposed detection method
of temporal pattern change in our research can recognize
the pattern change online and estimate the changed model
accurately? (2) How does the proposed CNSQL algorithm

97818 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

perform on the expected total revenue and actual preemption
rate in comparison with other baseline algorithms? (3) How
does the proposed CNSQL algorithm in different temporal
patterns affect the expected total revenue and actual pre-
emption rate? To answer these questions, a set of exper-
iments were conducted on both synthetic and real-world
non-stationary scenarios.

A. ENVIRONMENT SETUP
To simulate the demand process for the preemptible services,
we adopt properties assumed in Section III. The demand
functions are assumed to be known by the decision-maker.
Without loss of generality, we set the arrival rate f (an) to
be f (an) = η(1 − aκ

n)
ω, and the departure rate g (an) to

be g (an) = ϑ − ϑ(1 − aκ
n)

ω. η represents the potential
maximum value of arrival rate per time unit. ϑ represents the
maximum value of the departure rate per time unit. Note that
when an = 0, the lowest price, then f (0) = η and g(0) = 0.
f (0) = η represents that all of the fault-tolerant tasks in the
preemptiblemarket will use preemptible services with no pay.
At the same time, the departure rate g(0) = 0 theoretically
shows that there is no incentive for consumers to leave pre-
emptible services. But when an =1, the highest price, the f
(1) = 0 and g (1) = ϑ . f (1) = 0 and g (1) = ϑ represent
that when the price of preemptible service is equal to the
price of the high-priority service, no tasks are running on the
preemptible service. We set discrete action set A to be {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, that is, the decision at
each epoch n, denoted as an, can take on one of ten possible
values.

We simulate the resource supply model by Gaussian AR
assumed in Section III. We set the total capacity to 100.
Two types of temporal pattern models are simulated: one
is ct = 30 + 0.1ct−1 + ε1, where 0≤ t ≤ 34 and
81< t ≤100. The Gaussian noise term ε1 follows N (0, 102);
The other one is ct =80+0.1ct−1+ε2, where 34< t ≤81. The
Gaussian noise term ε2 follows N (0, 52). In the first pattern,
the mean and variance of ct are as follows: E1 (ct) = 77.7 and
VAR1 (ct) = 10.01. In the second pattern, the mean and
variance of ct are as follows: E2 (ct) = 22.4 and VAR2 (ct) =
5.05. The values of the demand parameters are simulated as
follows: η =50, ω =3, κ =0.5, ϑ =50. Additionally, the
number of decision epochs, N , is equal to 20.

Furthermore, we evaluate the practicability of our proposed
approach by adopting real-world data from the widely-used
Google CPU usage Trace dataset.10 The reasons for using
the cluster-usage dataset are as follows: (1) The dataset con-
tains a time series for the resource usage of the high-priority
service, spanning 29 days within a cluster. This dataset can
be utilized to calculate the excess capacity after satisfying
the workload of the high-priority service; (2) CPU utilization
is the key significant metric for the workload on instances
and it exhibits extreme non-stationarity [3]. Then, the excess

10Google, 2016. Google cluster dataset. URL: https://github.com/
google/cluster-data.

capacity of the CPU is calculated as ct = R−wt , which is
described in Section III. The values of the demand parameters
are simulated as follows: η = 2000, ω = 5, κ = 2.5, ϑ =

2000. The number of decision epochs, N , is equal to 15.

B. BASELINES AND EVALUATION METRICS
To investigate the proposed approach, several alternatives
are used to demonstrate the advantages and disadvantages of
different approaches, which are briefly introduced as follows:

(1) Baseline non-stationary QL algorithms without con-
sidering changepoint detection method. We compare our
proposed algorithm with two state-of-the-art algorithms,
QL with eligibility traces [15], and Repeated Updated QL
(RUQL) [37]. QL with eligibility traces has been validated
that it has a better performance than classical QL in a non-
stationary environment. Repeated Updated QL (RUQL) is a
variant of the QL algorithm, which essentially repeats the
updates to the Q-values of a state-action pair inversely pro-
portional to the rate of choosing that action. RUQL has also
been confirmed from experiment and theoretical perspectives
that RUQLoutperforms classical QL algorithms in noisy non-
stationary environments. To ensure a fair comparison, we add
preemption rate constraints into these baseline non-stationary
methods respectively.

(2) Baseline QL algorithms without considering maximum
constraint. These experiments are to examine the effective-
ness and necessity of our proposed bisection method on the
constraint. We compare our proposed algorithm with the
baseline algorithms, classical QL and NSQL. Classical QL
is a basic Q-value learning process without a changepoint
detection method and maximum constraint. NSQL is a non-
stationary QL algorithm that incorporates the changepoint
method but does not consider the maximum constraint.

To evaluate our method, we need a performance metric.
In the classical case of stationary MDPs, a stationary optimal
policy is learned by the RL algorithm. The RL algorithm will
be evaluated based on the average cumulative reward (the sum
of all of the rewards received in the finite horizon) and the
learned policy yield when it is used to control the stationary
MDP. The higher the average cumulative reward, the better
performance of the RL algorithm.

The DPPCS problem in our research has a big difference
from the traditional MDPs. To measure the performance of
our proposed approach, we not only need to consider the
expected total revenue garnered by the proposed CNSQL
algorithm, but also need to consider the preemption rate
resulting from the learned optimal policy. In addition, because
of the fluctuation of the non-stationary environment, we also
consider their standard variance respectively, which repre-
sents the robustness of the proposed CNSQL algorithm in
the non-stationary environment. In our paper, the perfor-
mance of the proposed CNSQL algorithm can be consid-
ered better if it achieves higher expected total revenue with
lower standard variance within a maximum preemption rate
constraint.

VOLUME 11, 2023 97819

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

C. EXPERIMENTS RESULTS
1) DETECTION RESULTS ON MULTI-TEMPORAL
PATTERN CHANGE
To answer question (1), we analyze the results of the detected
changepoints as shown in Figure 5. This figure presents the
outcomes of the changepoint detection for both simulated and
real-world non-stationary traces. In Figure 5, the black line
represents the time-varying excess capacity, which indicates
the available capacity for preemptible services at continuous-
time index t . The red line indicates the probability of a
specific time point being identified as a changepoint. The
X-axis represents the time variable, denoted as t . The left
Y-axis represents the excess capacity. The right Y-axis repre-
sents the probability of each time point being a changepoint.
By examining this visualization, we can gain insights into the
identified change points and their corresponding probabilities
over the given horizon T = 100 and T = 150.

FIGURE 3. The non-stationary traces and changepoints detection results.

In Figure 3-a, the sample size of the delay time (L) is set
to 2 time units. Two changepoints are detected: tθ1 = 34 and
tθ2 = 81. The probability of these detected changepoints is
represented by the red line. By analyzing these probabilities,
we can observe that the first changepoint is identified with
a probability of Pr(τ35 = 0) = 0.99, while the second
change point has a probability of Pr(τ 82 = 0) = 0.98. This
demonstrates the high predictive capability of the Bayesian
changepoint detection method in non-stationary contexts.
The change points are accurately detected between two adja-
cent patterns when the sample size of the delay time is L = 2.
In Figure 3-b, we observe the non-stationary traces in

a real-world scenario, which exhibit more irregular and

unpredictable workload patterns. To handle the irregular and
volatile nature of the real-world scenario, a threshold of 0.3 is
set to identify changepoints. Specifically, when the probabil-
ity Pr(τ t = 0) >0.3, time t is considered as a changepoint.
The delay time (L) is set to 5-time units in this case. Based
on the experimental results, two estimated changepoints and
three estimated pattern models are identified. The first pattern
model is estimated as wt = 2500 + 0.32wt−1 + ε1, where
ε1 ∼ N (0, 3.92). The first changepoint is located at tθ1 = 33
with probability Pr(τ 33 = 0) = 0.31. The second pattern is
estimated as wt = 2700 + 0.48wt−1 + ε2, where ε2 ∼ N
(0, 7.52). The second changepoint is located at tθ2 = 90
with a probability Pr(τ 90 = 0) = 0.82. The third pattern
model is estimated as wt = 3100 + 0.21wt−1 + ε3, where
ε3 ∼ N (0, 2.82).
From the detection results shown in Figure 3, signifi-

cant pattern shifts rather than instantaneous changes can be
detected quickly and accurately with low delay time. The
results demonstrate the effectiveness of the detection method
for the non-stationary trace in cloud workload.

2) COMPARISON RESULTS WITH BASELINES
To answer question (2), we compare the proposed algorithm
with state-of-the-art algorithms. First, we compare with two
non-stationary algorithms: QL-eligibility traces [15], and
RUQL [37]. To ensure a fair comparison, all three algo-
rithms are subjected to the same constraints. As presented in
Figure 4, the experimental results demonstrate the average
revenue and its standard variance, as well as the average
preemption rate and its standard variance, as the number of
learning steps increases. The solid lines in Figure 4 represent
the average values of the results over five runs, while the
dashed lines represent the corresponding standard deviations.
The experiment results are conducted with different maxi-
mum constraints, ϕ = 5% and 20%.
As is shown in Figure 4, it can be observed that the aver-

age preemption rate for CNSQL converges to the maximum
constraint of 5% with lower error compared to the CQL-
eligibility traces and CRUQL algorithms. This is because of
the algorithm’s ability to perceive changes and update the
Lagrangian multiplier λθ1 and λθ2 respectively. The optimal
Lagrange multipliers vary depending on the different pat-
terns, with λ∗θ1 =244, and λ∗θ2 =219. By adjusting these
Lagrange multipliers, CNSQL can make the actual preemp-
tion rate satisfy the maximum constraint on each pattern
θk (k = 1,2), thereby satisfying the maximum constraint
over the entire time horizon. Although QL-eligibility traces
achieve higher average revenue than CNSQL, they exhibit
a higher standard deviation of average revenue. The higher
standard deviation arises from the non-stationarity for the
excess capacity.

As is shown in Figure 5, the average preemption rate
caused by CNSQL converges to around 20% with a standard
deviation of 0.04. The optimal Lagrangian multipliers for
each temporal pattern are λ∗θ1 =162, and λ∗θ2 =121. Compar-
ing these values to the optimal Lagrangian multipliers under

97820 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

FIGURE 4. Comparison results of CNSQL, CQL-eligibility traces, and
CRUQL when ϕ is 5%.

a maximum constraint of ϕ = 5%, it can be observed that as
the maximum constraint ϕ increases, the optimal Lagrangian
multipliers λ∗θk decreases. Furthermore, the average revenue
obtained with a maximum constraint of ϕ = 20% is sig-
nificantly higher than the average revenue obtained with a
maximum constraint of ϕ = 5%. Additionally, the average
value of the total revenue obtained by CNSQL converges to
around 3000, which is the highest compared to QL-eligibility
traces and RUQL. This difference in revenue can be attributed
to the fact that the CNSQL algorithm can effectively uti-
lize a larger amount of excess capacity to serve preemptible
services, particularly when operating under a more relaxed
preemption rate constraint.

We compare CNSQL with two baselines, NSQL and QL,
which aim to demonstrate the effect of using changepoint
detection and maximum constraints on the total revenue and
preemption rate. The results in Table 1 show the mean value
and standard deviation of the total revenue and actual pre-
emption rate based on five independent runs.

As is shown in Table 1, the baselines (NSQL and QL)
without maximum constraints result in an extremely high pre-
emption rate, reaching close to 100%. This high preemption
rate makes these algorithms impractical for real-world appli-
cations, despite achieving higher average revenue compared
to CNSQL. In the QL algorithm, the standard deviation of
the total revenue accrued by QL is high. This stems from
its inability to detect the changes in patterns and update the
pricing policy accordingly. QL only relies on the current

FIGURE 5. Comparison results of CNSQL, CQL-eligibility traces, and
CRUQL when ϕ is 20%.

TABLE 1. Comparison results of CNSQL, NSQL, and QL when ϕ is 5%
and 20%.

observed state taking actions and updates a single Q-value
table using experience from all patterns. TheNSQL algorithm
exhibits a higher revenue compared to QL. NSQL can detect
pattern changes and learn the optimal pricing policy for
each pattern model. This pattern awareness contributes to the
higher average revenue achieved by NSQL. However, NSQL
has a high preemption rate due to without considering the
maximum constraint.

In contrast, CNSQL leverages changepoint detection and
adapts to the pricing policy based on the detected patterns.
This approach allows for more accurate modeling of the
environment and dynamically adjusting the pricing strategy

VOLUME 11, 2023 97821

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

accordingly with maximum constraint. As a result, our pro-
posed algorithm achieves a balance between revenue maxi-
mization and preemption rate, making it more practical and
effective for real-world applications.

Then, we conduct experiments on the real-world trace
to verify the practicality of our framework. We adopt the
dataset in Figure 5(b) which is much more complicated with
irregular change patterns. The comparison results of the total
revenue and actual preemption rate with different maximum
constraints of ϕ = 5% and 20% are shown in Table. 2.

TABLE 2. Comparison results of the total revenue and actual preemption
rate when ϕ is 5% and 20%.

Table.2 shows the values of the mean and standard vari-
ance for the total revenue in the real-world non-stationary
environment. It is evident that the baselines, CQL with eli-
gibility traces, CQL, and CRUQL, fail to achieve higher
revenue compared to CNSQL. The main reason is that they
fail to make dynamic adjustments to adapt to different pat-
tern changes. Moreover, the preemption rate of baseline
algorithms (CQL, CRUQL, and CQL with eligibility trace)
exceeds the maximum constraint, indicating that their perfor-
mance is not well-suited for a non-stationary environment.
The updating strategy of the Lagrangian multiplier λθ is not
effective under non-stationary conditions without change-
point detection, and the bisection search struggles to obtain
the optimal Lagrange multiplier. CQL has the worst perfor-
mance because it doesn’t consider dynamic pattern change
and maximum constraint. The results in Table.2 also show
that the average total revenue for a maximum constraint
of 20% is higher than the average revenue compared to
5%. We can see that CNSQL exhibits a more remarkable
revenue-generating capability when the maximum constraint
is relaxed to a higher value.

From the above results presented in Figure 4 and Figure 5,
Table 1, and Table 2, we can conclude that setting an appro-
priate maximum constraint (ϕ) has a significant impact on
the revenue. It is observed that a higher maximum value of
ϕ leads to higher average revenue. However, it is essential
to consider that a higher maximum value also corresponds to
a higher probability of being preempted, which may require
a higher level of fault tolerance for service interruption
from consumers. Operators need to carefully investigate the
sensitivity of consumers to service interruption. If consumers

are more sensitive to service price than service interruption,
it may be beneficial to set a higher maximum value of ϕ

to obtain higher revenue. On the other hand, if consumers
are more sensitive to service interruption than service price,
it would be advisable to set a lower maximum value of ϕ

to attract more consumers and then maintain the potential
demand for preemptible services.

3) ABLATION STUDY
To answer question (3), we investigate how the values of
the Lagrangian multipliers for different pattern models affect
the total revenue and preemption rate achieved by CNSQL
algorithm. In this experiment, we set λθ1 = 130 and vary the
value of λθ2 from 0 to 1000. Similarly, we set λθ2 = 130 and
vary the value of λθ1 from 0 to 1000. The expected value of
total revenue and preemption rate are presented in Figure 6.

FIGURE 6. Effect of λθ on the average revenue and preemption rate
accrued by our proposed approach.

In Figure 6-a, we observe the effect of varying Lagrangian
multipliers on the expected value of the total revenue in the

97822 VOLUME 11, 2023

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

entire horizon. When the values of λθ1 and λθ2 are at their
minimum, the revenue is maximized. It means the operator
prioritizes the revenue generated from excess resources over
the risk of preemption. As λθ1 or λθ2 increase, the operator
becomes more concerned about the preemption risk, resulting
in a decrease in revenue generated from excess capacity,
which eventually converges to a stable value. However, there
is a significant difference in the convergence of revenue for
different values of λθ1 and λθ2 . For example, as λθ1 increases
and reaches λθ1 = 239, the expected value of revenue J
converges to around 349.1. But, as λθ2 increases and reaches
λθ2 = 173, J converges to around 3230.8. This difference
arises from the disparity in the mean and variance of the
excess capacity. The pattern θ1 with higher mean and lower
variance leads to significantly higher revenue compared to
pattern θ2 with lower mean and higher variance. Specifically,
as the values of λθ1 or λθ2 increase, pattern θ1 or θ2 becomes
no longer suitable for preemptible services, and as a result,
the converged revenue obtained from pattern θ2 is lower than
the revenue obtained from pattern θ1.
In Figure 6-b, we observe the effect of varying Lagrangian

multipliers on the expected value of preemption rate ρ result-
ing over the entire horizon. When λθ1 is fixed and λθ2

increases, the value of ρ decreases and ultimately converges
to 0.21. But, when λθ2 is fixed and λθ1 increases, the value of
ρ initially decreases and then increases eventually converging
to 0.42. Indeed, the reasons for the difference in the observed
trends are consistent with the difference in the total revenue
presented in Figure 6-a. The sensitivity of the Lagrangian
multipliers on the preemption rate is much higher in excess
capacity patterns with low mean and high variance compared
to patterns with high mean and low variance. Specifically,
when λθ1 is fixed, ρθ1 is fixed which is significantly lower
than ρθ2 caused in pattern θ2 at the initial value of λθ2 . As λθ2

increases, ρθ2 decreases significantly and quickly converges
to zero. Consequently, the value of ρ exhibits a decreasing
trend and converges to ρθ1 . On the contrary, when λθ2 is fixed,
ρθ2 is relatively higher than ρθ1 (λθ1 =130). As the value of
λθ1 increases, the value of ρθ1 decreases. This decrease causes
ρθ1 to be gradually lower than ρθ2 , resulting in an overall
decrease in the preemption rate. However, when λθ1 increases
to 239, the excessively high value of λθ1 makes pattern θ1 no
longer suitable for adopting preemptible services. As a result,
the preemption rate increases and returns to ρθ2 .
Figure 6-c displays the effect of the Lagrangian multipliers

on the expected value of the preemption rate, ρθ1 and ρθ2 ,
which is obtained over pattern θ1 and θ2 respectively. The
results validate Lemma 1 in Appendix A, which suggests that
a higher value of the Lagrangian multiplier λθ1 or λθ2 leads
to a lower preemption rate ρθ1 or ρθ2 . It helps strike a balance
the trade-off between maximizing revenue and minimizing
the preemption risk, resulting in an appropriate preemption
rate for each pattern. This result also demonstrates that the
bisection method can assist the agent in finding the optimal
Lagrangian multiplier with low computational complexity
and fewer iterations.

VI. CONCLUSION
Our research focuses on studying how to dynamically price
preemptible services to maximize the revenue generated from
excess capacity while satisfying a maximum preemption
rate constraint. To solve the DPPCS, we first formulate the
DPPCS problem as CNSMDP. Then, we transform the CNS-
MDP as a piecewise Lagrangian dual problem to overcome
the constraint. This transformation allows the constrained
preemption rate to be converted into the reward function
within the RL framework. To solve the Lagrangian dual
problem, we propose a novel dynamic pricing framework
that is capable of learning a piecewise optimal pricing pol-
icy and the corresponding optimal Lagrangian multiplier.
We first propose the estimation methods of the unknown
environment parameters, including a detection method for
identifying temporal pattern changes, and a diffusion approx-
imation method for estimating the actual preemption rate.
It enables us to continuously estimate the unknown change-
points among muti-temporal patterns, and the unknown
model of changed temporal patterns. The proposed diffusion
approximationmethod can approximate the complex preemp-
tion process with a priority-queueing system as a reflected
Brownian motion process. Building on the above estima-
tion methods, we then develop a CNSQL algorithm with
a bisection method for updating the Lagrangian multiplier.
This algorithm can perceive pattern changes in the non-
stationary environment and automatically adjusts the learning
process of the QL algorithm in response to these changes.
If a changed pattern has been encountered in the past, the
updated learning process can improve upon the policy learned
before.

Experiment results demonstrate the proposed dynamic
pricing approach outperforms the classic QL algorithm and
other non-stationary RL algorithms. It performs well in max-
imizing the revenue generated from excess capacity while
satisfying the maximum constraint. In addition, we recom-
mend the operators focus on reducing users’ sensitivity to
service interruption by improving their resilience to such
interruptions. If users exhibit high sensitivity to service inter-
ruption, operators should consider lowering the maximum
constraint on the preemption rate. It is important to strike
a balance in setting preemption constraints, as overly strict
constraints can negatively impact revenue from preemptible
services and may even render them unsuitable for adoption
by operators.

Although the proposed approach in this paper effectively
ensures revenue maximization within the given constraint,
there is still considerable room for designing an efficient
algorithm for adapting to the non-stationary cloud envi-
ronment. For example, instead of real-time pattern recog-
nition, leveraging deep learning (e.g., Long Short-Term
Memory, LSTM), which can memorize temporal patterns
in time series data, could be advantageous to identify non-
stationary temporal patterns in cloud computing. This would
enable the approach to adapt to more complex non-stationary
structures.

VOLUME 11, 2023 97823

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

APPENDIX A
In the following, we first prove the existence of a solution for
the Lagrangian dual problem in Equation (9) in Section III.
Secondly, we derive the expected value of the preemption rate
for each pattern θ , ρn,θ , is monotonic to the Lagrangianmulti-
plier λθ , which proves a bisection method is a faster and more
efficient method to determine the optimal Lagrangian multi-
plier λ∗θ . Before proceeding into the proof of the existence of
the Lagrangian dual problem in Equation (9), we need to give
basic definitions and assumptions that our proof relies on.
Definition 1: π∗θ (λl) = argmaxaρθ (s, a): The lowest-

preemption policy always chooses higher prices at every state
s. π∗θ (λh) = argmaxaρ (s, a): The highest-preemption policy
always chooses lower prices in every state s.
Assumption 1: The maximum constraint under the lowest-

preemption policy π∗θ (λl) is strictly feasible: ρ
[
π∗θ (λl)

]
< ϕ.

Assumption 2: The actual preemption rate exceeds the
maximum constraint under the highest-preemption policy
π∗θ (λh): ρ

[
π∗θ (λh)

]
> ϕ.

The above assumptions are reasonable, and we give the fol-
lowing example to explain the rationality of the assumptions.
When the value of λh is close to zero, it indicates that the
operator has little constraint on the preemption rate. In this
case, the optimal policy π∗θ (λh) places greater emphasis on
maximizing revenue and less emphasis on preemption risk.
As a result, the preemption rate exceeds the constraint value
ϕ. On the contrary, when the value of λl approaches infinity,
the optimal pricing policy π∗θ (λl) places greater emphasis on
reducing the preemption rate and less emphasis on maximiz-
ing revenue. Then, the actual preemption rate ρ

[
π∗θ (λh)

]
will

tend to zero, then the actual preemption rate ρ
[
π∗θ (λh)

]
will

be lower than the constraint value ϕ.
Proposition 1: (Existence of Solutions). When constraint

satisfies assumptions 1 and 2, then the optimal value of
Lagrangian multiplier λ∗θ and optimal pricing policy πθ (λ∗θ)
for each pattern θ always exists that satisfies the constraint
ρ
[
πθ (λ∗θ)

]
< ϕ, where λ∗θ > 0.

Proof. Under assumption 1, a policy that doesn’t exceed
the constrained preemption rate exists, and therefore the
pricing policy π∗θ (λθ) and Lagrangian multiplier λθ always
have a strictly feasible solution. Under assumption 2, it’s
obvious that there always exists a positive optimal Lagrangian
multiplier λθ which penalizes the preemption. If the average
preemption rate of high-preemption policy doesn’t exceed the
constraint ϕ, then the CNSMDP problem degrades into MDP
without constraints, and the optimal Lagrangian multiplier
λθ is always zero. In conclusion, based on the two natural
assumptions which hold in practical problems, we have the
above proposition.
Theorem 1: ρ

[
π∗θ (λθ)

]
is monotonically non-increased

with the increase of λθ . e.g., if λl < λh, then
ρ
[
π∗θ (λl)

]
≥ ρ

[
π∗θ (λh)

]
, where π∗θ (λl) = argmaxπL

(πθ , λl), π∗θ (λh) = argmaxπL (πθ , λh).
Proof. According to the definition of π∗θ (λθ), we have:

V
[
π∗θ (λl)

]
− λl

{
ρ
[
π∗θ (λl)

]
− ϕ

}
≥ V

[
π∗θ (λh)

]
− λl

{
ρ
[
π∗θ (λh)

]
− ϕ

}
(25)

V
[
π∗θ (λh)

]
− λh

{
ρ
[
π∗θ (λh)

]
− ϕ

}
≥ V

[
π∗θ (λl)

]
− λh

{
ρ
[
π∗θ (λl)

]
− ϕ

}
(26)

By adding the two sides of the two inequalities, Equation
(25) and Equation (26), then

V
[
π∗θ (λl)

]
− λl

{
ρ
[
π∗θ (λl)

]
− ϕ

}
+ V

[
π∗θ (λh)

]
− λl

{
ρ
[
π∗θ (λh)

]
− ϕ

}
≥ V

[
π∗θ (λh)

]
− λh

{
ρ
[
π∗θ (λh)

]
− ϕ

}
+ V

[
π∗θ (λl)

]
− λh

{
ρ
[
π∗θ (λl)

]
− ϕ

}
(27)

Then, after eliminating the same terms on both sides of
Equation (27), we have:

(λl − λh)
{
ρ
[
π∗θ (λh)

]
− ρ

[
π∗θ (λl)

]}
≥ 0 (28)

because λa < λb, which leads to the following conclusion:

ρ
[
π∗θ (λl)

]
≥ ρ

[
π∗θ (λh)

]
(29)

Proof finishes.

APPENDIX B
Q-learning is a classical algorithm for solving RL problems
by learning the optimal policy modeled as stationary MDP.
The basis of this method is to calculate the quality in state s
using action a by trial-and-error by defining a state-action-
value function Q (s, a):

Q (s, a) = Eπ∼(s,a)

[∑N−n

i=0
γ iRn+i (π) |(an = a|sn = s)

]
(30)

where π is short of π (a|s), which is the probability distri-
bution for choosing action a in state s. Rn+i (π) is one-step
revenue at the n+i th period. γ is the discount factor. Accord-
ing to Equation (30), the higher the value of Q (s, a) is, the
more beneficial it is for long-term revenue to adopt a pricing
policy π . Then, the optimal pricing policy π∗ learned means
that in state s, according to policy π∗, adopting price a can
obtain the highest long-term expected revenue and satisfies
Q (π∗) = Q (π). For stationaryMDP, the state-value function
V (s) can be precisely predicted by the repeatedly learning of
agent through Equation (30), and the relationship between the
two is: V ∗ (s) = Q∗ (π (a|s)). It has been theoretically proved
that when the agent interacts with a stationary environment
according to Equation (31), the optimal policy π∗(a|s) for the
finite horizon, T, can be obtained.

Q (s, a)← Q (s, a)+ δ
[
R(s, a)+ γQ

(
s′, a′

)
− Q (s, a)

]
(31)

where δ is the learning rate.

REFERENCES
[1] S. Chen, K.Moinzadeh, andY. Tan, ‘‘Discount schemes for the preemptible

service of a cloud platform with unutilized capacity,’’ Inf. Syst. Res.,
vol. 32, no. 3, pp. 967–986, Sep. 2021, doi: 10.1287/isre.2021.1011.

[2] S. Yuan, S. Das, R. Ramesh, and C. Qiao, ‘‘Service agreement tri-
fecta: Backup resources, price and penalty in the availability-aware
cloud,’’ Inf. Syst. Res., vol. 29, no. 4, pp. 947–964, Dec. 2018, doi:
10.1287/isre.2017.0755.

97824 VOLUME 11, 2023

http://dx.doi.org/10.1287/isre.2021.1011
http://dx.doi.org/10.1287/isre.2017.0755

H. Peng, Y. Cheng: Novel Dynamic Pricing Approach for Preemptible Cloud Services

[3] J. Maghakian, J. Comden, and Z. Liu, ‘‘Online optimization in the non-
stationary cloud: Change point detection for resource provisioning (invited
paper),’’ in Proc. 53rd Annu. Conf. Inf. Sci. Syst. (CISS), Baltimore, MD,
USA, Mar. 2019, pp. 1–6, doi: 10.1109/CISS.2019.8692890.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010,
doi: 10.1145/1721654.1721672.

[5] J. Barr. (Jun. 5, 2015). Cloud Computing, Server Utilization, & the
Environment| AWS News Blog. Accessed: Nov. 11, 2022. [Online].
Available: https://aws.amazon.com/blogs/aws/cloud-computing-server-
utilization-the-environment/

[6] A. N. Avramidis andA. V. D. Boer, ‘‘Dynamic pricingwith finite price sets:
A non-parametric approach,’’ Math. Methods Oper. Res., vol. 94, no. 1,
pp. 1–34, Aug. 2021, doi: 10.1007/s00186-021-00744-y.

[7] L. Lin, L. Pan, and S. Liu, ‘‘Methods for improving the availability of spot
instances: A survey,’’ Comput. Ind., vol. 141, pp. 1–18, Oct. 2022, doi:
10.1016/j.compind.2022.103718.

[8] G. George, R. Wolski, C. Krintz, and J. Brevik, ‘‘Analyzing AWS spot
instance pricing,’’ in Proc. IEEE Int. Conf. Cloud Eng. (IC2E), Prague,
Czech Republic, Jun. 2019, pp. 222–228, doi: 10.1109/IC2E.2019.00036.

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, ‘‘Decon-
structing Amazon EC2 spot instance pricing,’’ ACMTrans. Econ. Comput.,
vol. 1, no. 3, pp. 1–20, Sep. 2013, doi: 10.1145/2509413.2509416.

[10] H. Xu and B. Li, ‘‘Dynamic cloud pricing for revenue maximization,’’
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171, Jul. 2013, doi:
10.1109/TCC.2013.15.

[11] F. Alzhouri, A. Agarwal, and Y. Liu, ‘‘Maximizing cloud revenue
using dynamic pricing of multiple class virtual machines,’’ IEEE
Trans. Cloud Comput., vol. 9, no. 2, pp. 682–695, Apr. 2021, doi:
10.1109/TCC.2018.2878023.

[12] D. M. Davidow, ‘‘Analyzing Alibaba cloud’s preemptible instance pric-
ing,’’ M.S. dissertation, Dept. Comput. Sci., Univ. Haifa, Haifa, Israel,
2021.

[13] E. Lecarpentier and E. Rachelson, ‘‘Non-stationary Markov decision pro-
cesses, a worst-case approach using model-based reinforcement learning,
extended version,’’ Jan. 2020, arXiv:1904.10090. Accessed:May 18, 2022.

[14] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2017.

[15] R. Rana and F. S. Oliveira, ‘‘Real-time dynamic pricing in a non-stationary
environment using model-free reinforcement learning,’’ Omega, vol. 47,
pp. 116–126, Sep. 2014, doi: 10.1016/j.omega.2013.10.004.

[16] R. Rana and F. S. Oliveira, ‘‘Dynamic pricing policies for inter-
dependent perishable products or services using reinforcement learn-
ing,’’ Expert Syst. Appl., vol. 42, no. 1, pp. 426–436, Jan. 2015, doi:
10.1016/j.eswa.2014.07.007.

[17] R. Lu, S. H. Hong, and X. Zhang, ‘‘A dynamic pricing demand response
algorithm for smart grid: Reinforcement learning approach,’’Appl. Energy,
vol. 220, pp. 220–230, Jun. 2018, doi: 10.1016/j.apenergy.2018.03.072.

[18] L. Zhang, Y. Gao, H. Zhu, and L. Tao, ‘‘A distributed real-time pricing strat-
egy based on reinforcement learning approach for smart grid,’’ Expert Syst.
Appl., vol. 191, pp. 1–12, Apr. 2022, doi: 10.1016/j.eswa.2021.116285.

[19] D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, ‘‘A survey on
spot pricing in cloud computing,’’ J. Netw. Syst. Manage., vol. 26, no. 4,
pp. 809–856, Oct. 2018, doi: 10.1007/s10922-017-9444-x.

[20] A. Deldari and A. Salehan, ‘‘A survey on preemptible IaaS cloud instances:
Challenges, issues, opportunities, and advantages,’’ Iran J. Comput. Sci.,
vol. 4, no. 3, pp. 1–24, Sep. 2021, doi: 10.1007/s42044-020-00071-1.

[21] H. Peng, Y. Cheng, and X. Li, ‘‘Real-time pricing method for spot cloud
services with non-stationary excess capacity,’’ Sustainability, vol. 15, no. 4,
p. 3363, Feb. 2023, doi: 10.3390/su15043363.

[22] J. M. Harrison, BrownianModels of Performance and Control. Cambridge,
U.K.: Cambridge Univ. Press, 2013.

[23] D. Zhang and L. Weatherford, ‘‘Dynamic pricing for network rev-
enue management: A new approach and application in the hotel indus-
try,’’ INFORMS J. Comput., vol. 29, no. 1, pp. 18–35, Jan. 2017, doi:
10.1287/ijoc.2016.0713.

[24] A. V. D. Boer, ‘‘Dynamic pricing and learning: Historical origins, current
research, and new directions,’’ Surv. Oper. Res. Manage. Sci., vol. 20, no. 1,
pp. 1–18, Jun. 2015, doi: 10.1016/j.sorms.2015.03.001.

[25] A. V. D. Boer, ‘‘Tracking the market: Dynamic pricing and learning in a
changing environment,’’ Eur. J. Oper. Res., vol. 247, no. 3, pp. 914–927,
Dec. 2015, doi: 10.1016/j.ejor.2015.06.059.

[26] F. Alzhouri, A. Agarwal, Y. Liu, and A. S. Bataineh, ‘‘Dynamic pricing for
maximizing cloud revenue: A column generation approach,’’ in Proc. 18th
Int. Conf. Distrib. Comput. Netw., Hyderabad, India, Jan. 2017, pp. 1–9,
doi: 10.1145/3007748.3007756.

[27] C. V. L. Raju, Y. Narahari, and K. Ravikumar, ‘‘Learning dynamic prices
in electronic retail markets with customer segmentation,’’ Ann. Oper. Res.,
vol. 143, no. 1, pp. 59–75, Mar. 2006, doi: 10.1007/s10479-006-7372-3.

[28] Y. Cheng, ‘‘Dynamic packaging in e-retailing with stochastic demand over
finite horizons: A Q-learning approach,’’ Expert Syst. Appl., vol. 36, no. 1,
pp. 472–480, Jan. 2009, doi: 10.1016/j.eswa.2007.09.050.

[29] B.-G. Kim, Y. Zhang, M. van der Schaar, and J.-W. Lee, ‘‘Dynamic
pricing and energy consumption scheduling with reinforcement learning,’’
IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2187–2198, Sep. 2016, doi:
10.1109/TSG.2015.2495145.

[30] K. Siddesha, G. V. Jayaramaiah, and C. Singh, ‘‘A novel deep reinforce-
ment learning scheme for task scheduling in cloud computing,’’ Cluster
Comput., vol. 25, no. 6, pp. 4171–4188, Dec. 2022, doi: 10.1007/s10586-
022-03630-2.

[31] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya, andG.Min, ‘‘Adap-
tive resource allocation and provisioning in multi-service cloud environ-
ments,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 31–42,
Jan. 2018, doi: 10.1109/TPDS.2017.2748578.

[32] P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, and S. Hu, ‘‘Developing
user perceived value based pricingmodels for cloudmarkets,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 12, pp. 2742–2756, Dec. 2018, doi:
10.1109/TPDS.2018.2843343.

[33] R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, and E. Ogasawara,
‘‘Nonstationary time series transformation methods: An experimental
review,’’ Knowl.-Based Syst., vol. 164, pp. 274–291, Jan. 2019, doi:
10.1016/j.knosys.2018.10.041.

[34] Y. Zhang, B. Tang, and Q. Yang, ‘‘BCORLE(λ): An offline reinforce-
ment learning and evaluation framework for coupons allocation in e-
commerce market,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 20410–20422.

[35] R. P. Adams and D. J. C. MacKay, ‘‘Bayesian online changepoint detec-
tion,’’ Oct. 2007, arXiv:0710.3742. Accessed: Jun. 30, 2022.

[36] X. Liu, ‘‘Diffusion approximations for double-ended queues with reneging
in heavy traffic,’’ Queueing Syst., vol. 91, nos. 1–2, pp. 49–87, Feb. 2019,
doi: 10.1007/s11134-018-9589-7.

[37] S. Abdallah and M. Kaisers, ‘‘Addressing environment non-stationarity
by repeating Q-learning updates,’’ J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1582–1612, 2016.

HUIJIE PENG was born in Shandong, China,
in 1990. She received the B.S. degree in finan-
cial management from Zao Zhuang University,
Shandong, in 2013, and the M.S. degree in corpo-
rate management from the Shanghai University of
Engineering and Technology, Shanghai, in 2017.
She is currently pursuing the Ph.D. degree in man-
agement science and engineering. Her research
interests include cloud computing, dynamic pric-
ing, and reinforcement learning.

YAN CHENG received the B.S. degree in manage-
ment science from the Nanjing University of Sci-
ence and Technology, Nanjing, China, in 1990, and
the M.S. degree in engineering and Ph.D. degree
in management science from the Harbin Institute
of Technology, Harbin, China, in 1997 and 2001,
respectively. He is a Professor with the Depart-
ment of Management Science and Engineering,
East China University of Science and Technology,
Shanghai. He has authored or coauthored about

40 scientific articles. His research interests include information management
and information systems, data science, and revenue management.

VOLUME 11, 2023 97825

http://dx.doi.org/10.1109/CISS.2019.8692890
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/s00186-021-00744-y
http://dx.doi.org/10.1016/j.compind.2022.103718
http://dx.doi.org/10.1109/IC2E.2019.00036
http://dx.doi.org/10.1145/2509413.2509416
http://dx.doi.org/10.1109/TCC.2013.15
http://dx.doi.org/10.1109/TCC.2018.2878023
http://dx.doi.org/10.1016/j.omega.2013.10.004
http://dx.doi.org/10.1016/j.eswa.2014.07.007
http://dx.doi.org/10.1016/j.apenergy.2018.03.072
http://dx.doi.org/10.1016/j.eswa.2021.116285
http://dx.doi.org/10.1007/s10922-017-9444-x
http://dx.doi.org/10.1007/s42044-020-00071-1
http://dx.doi.org/10.3390/su15043363
http://dx.doi.org/10.1287/ijoc.2016.0713
http://dx.doi.org/10.1016/j.sorms.2015.03.001
http://dx.doi.org/10.1016/j.ejor.2015.06.059
http://dx.doi.org/10.1145/3007748.3007756
http://dx.doi.org/10.1007/s10479-006-7372-3
http://dx.doi.org/10.1016/j.eswa.2007.09.050
http://dx.doi.org/10.1109/TSG.2015.2495145
http://dx.doi.org/10.1007/s10586-022-03630-2
http://dx.doi.org/10.1007/s10586-022-03630-2
http://dx.doi.org/10.1109/TPDS.2017.2748578
http://dx.doi.org/10.1109/TPDS.2018.2843343
http://dx.doi.org/10.1016/j.knosys.2018.10.041
http://dx.doi.org/10.1007/s11134-018-9589-7

