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ABSTRACT Vascular vertigo/dizziness is a complex clinical syndrome involving multiple disciplines and
specialties, such as neurology and psychiatry. Due to the intricate etiology and the similarity between causes
and symptoms, traditional diagnostic methods based on clinical symptoms and signs are often inaccurate.
This study aims to establish an effective and accurate intelligent diagnostic method for vascular dizziness
to address this issue. Initially, we collected patients’ medical history and biochemical indicators as research
indices. To tackle the sample imbalance issue in clinical data, we employed an improved SMOTE(ISMOTE)
algorithm to generate minority class data. The enhancement of the ISMOTE algorithm lies in its ability
to more effectively identify and generate minority class samples in sparse regions, resolving the issue
of traditional SMOTE algorithms potentially neglecting sparse areas when generating synthetic samples.
Subsequently, we utilized the Pearson correlation coefficient for feature correlation analysis, screening and
analyzing the original features, and identified 13 feature indices. To further improve model performance and
simplify the computational process, we applied the KPCA algorithm to these indices for dimensionality
reduction, ultimately obtaining three comprehensive feature indices. Finally, we constructed a Stacking
ensemble algorithm model comprising base models (including KNN, RF, Naive Bayes, SVM, GBDT, and
XGBoost). To optimize the overall model performance, we introduced a fully connected cascade neural
network as a meta-layer model and employed grid search and the Levenberg-Marquardt (LM) algorithm
to optimize the base models and meta-layer model, respectively. This enabled the Stacking ensemble
algorithm better to learn the correlations among predictions from each base model, enhancing the model’s
generalization ability. Experimental results demonstrate that the proposed ISMOTE-KPCA-STACKING
model exhibits significant advantages in diagnosing vascular vertigo/dizziness, outperforming single base
models in multiple evaluation metrics. Furthermore, the model excels in handling imbalanced data and
feature selection, providing an effective method for accurately diagnosing vascular vertigo/dizziness.

INDEX TERMS Vascular vertigo/dizziness, improved SMOTE algorithm, KPCA, correlation analysis,
stacking.
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I. INTRODUCTION
Vertigo/dizziness is one of the most common symptoms of
vertebrobasilar artery stroke, with 47% to 75% of posterior
circulation stroke patients presenting with dizziness as the

99734
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9582-2645
https://orcid.org/0009-0000-3335-8998
https://orcid.org/0000-0002-3945-4363


D. Song et al.: Leveraging ISMOTE-KPCA-STACKING Algorithm

primary symptom. In the United States, dizziness and vertigo
account for 3.3% to 4.4% of emergency department visits,
with stroke constituting 3% to 4% of these cases [1], [2]. Vas-
cular vertigo/dizziness refers to central or peripheral vestibu-
lar syndrome caused by vascular diseases, which can either
persist (>24hours) or be transient (<24hours). The etiology
includes stroke, transient ischemic attacks, and vertebral
artery compression syndrome [3]. Vascular vertigo/dizziness
is classified as a malignant form of vertigo. It’s important
to recognize the seriousness of vascular dizziness/vertigo,
as it can lead to a stroke and have a devastating impact on
the patient’s health. Misdiagnosing an acute stroke could
have serious consequences, including missed opportunities
for effective treatment and increased risk of morbidity and
mortality. Conversely, overdiagnosis can lead to unnecessary
examinations and treatments. Its incidence continues to rise
with age [4], [5]. Typical vascular vertigo/dizziness often
presents with neurological symptoms and is relatively easy
to diagnose. However, when an attack does not accompany
neurological symptoms, it can lead to frequent referrals and
overutilization of expensive diagnostic methods, resulting in
a waste of medical resources and the occurrence of adverse
events. Moreover, its high incidence and recurrence rates
impose a significant economic burden on patients, their
families, and society, greatly diminishing patients’ quality of
life [6], [7].

In recent years, diagnosing vascular vertigo/dizziness has
increasingly gained prominence in clinical medicine. The
primary examination methods for vascular vertigo/dizziness
entail medical history collection and comprehensive physical
examination. As for diagnostic approaches, widely adopted
methods include HINTS (Head Impulse Test, Nystagmus
provoked byGaze, Test of Skew), ABCD2 score, STANDING
approach, and TriAGe+ score, among others [8]. The HINTS
test diagnoses by evaluating three ocular motor signs: head
impulse test, nystagmus provoked by gaze, and test of skew.
It has high accuracy and sensitivity but requires professional
skills and equipment, potentially unsuitable for all clinical
scenarios [9]. The ABCD2 score, as a method of cerebral
vascular risk stratification, is used to predict the risk of
stroke recurrence in patients with transient ischemic attacks.
Navi et al. conducted a retrospective analysis of 907 emer-
gency patients with dizziness or vertigo. They found that the
ABCD2 score could identify patients at risk of cerebrovascu-
lar disease among emergency patients with dizziness and ver-
tigo. However, its sensitivity and specificity are significantly
lower than the HINTS test [10]. The STANDING approach
includes differentiation between spontaneous and positional
nystagmus, assessment of nystagmus direction, head impulse
test, and postural balance evaluation. It can assist emergency
physicians in quickly diagnosing vascular vertigo/dizziness.
Vanni et al. proposed the STANDING approach for diag-
nosing central vertigo, with an overall accuracy of 88%,
sensitivity of 95%, specificity of 87%, and negative predictive
value of 99%. This method has high accuracy and reliability

for non-neurotologic physicians to rule out stroke and other
central vertigo cases. However, the experience and skills of
the examiner may influence its accuracy [11]. In addition to
the above clinical diagnostic methods, laboratory tests (such
as hemodynamic assessment, lipid measurement, and blood
glucose testing) and imaging techniques (such as CT, MRI,
etc.) can also assist in diagnosing vascular vertigo/dizziness.
In actual diagnosis, Although laboratory testing can provide
valuable information, an accurate diagnosis of vascular ver-
tigo/dizziness typically necessitates an integrated approach,
combining patient history, clinical symptoms, and physical
examination [8]. In imaging techniques, CT has extremely
low sensitivity for acute ischemic stroke, particularly pos-
terior circulation ischemic stroke, and its primary role in
diagnosing vascular vertigo/dizziness lies in the etiological
diagnosis of cerebral hemorrhage, with limited value for
the etiological diagnosis of ischemic stroke [12]. Current
methods for diagnosing vascular vertigo/dizziness present
numerous challenges. These methods exhibit low efficiency
and inadequate precision and require high technical skills
from the physician, with limited applicability. These con-
straints result in an over-reliance on the professional expertise
and experience of the healthcare provider during the diagno-
sis process.

With the development of computer technology, using
intelligent methods to establish clinical diagnosis prediction
models has become a research focus and hotspot in the
medical field. Artificial intelligence, represented by machine
learning, can process and analyze medical data and establish
clinical diagnosis prediction models, achieving intelligent
medical diagnosis and providing more efficient and effective
treatment for patients [13]. In establishing clinical diagno-
sis prediction models, data imbalance problems are often
encountered, such as the number of positive samples being
far smaller than the number of negative samples. Due to
the bias caused by imbalanced data, traditional machine
learning algorithms often perform poorly. Researchers have
conducted in-depth studies on the problem to address the data
imbalance issue. Gulnaz Ahmed et al. proposed a new deep
Convolutional Neural Network for detecting Alzheimer’s
Disease and used the ADASYN method to handle the data
imbalance issue. The proposed method showed promising
results in accuracy, AUC, F1 score, precision, and recall [14].
Yang et al. built a prediction model for kidney transplant
rejection reactions based on SMOTE and RNN algorithms.
The SMOTE algorithm reduces the imbalance between pos-
itive and negative samples and solves the problem of insuffi-
cient sample size, significantly improving model prediction
accuracy [15]. Chávez-Bosquez et al. aimed to determine
which oversampling algorithm could improve the perfor-
mance of the Guillain-Barré syndrome (GBS) classifier
by generating data for the minority class samples using
three different oversampling methods (Random Over Sam-
pling(ROS), SMOTE, and ADASYN). The results showed
that the SMOTE algorithm was the best data balancing
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method, which could improve the prediction model’s perfor-
mance [16]. Using data balancing algorithms, researchers can
effectively address the issue of data imbalance, improve the
accuracy and reliability of model predictions, and provide
more efficient and accurate services for clinical medical
diagnosis.

Features are the critical determinants of clinical diag-
nostic model performance, making feature selection a cru-
cial task. Using irrelevant or redundant features decreases
model performance and increases computational complexity.
Researchers have conducted extensive studies and proposed
various feature selection methods to select useful features
and reduce unnecessary ones. For instance, Han et al. used
an improved Gaussian fuzzy logic feature selection method
to score feature importance and chose high-importance fea-
tures to construct Alzheimer’s disease classification models,
resulting in good classification recognition performance [17].
Zhang et al. proposed a feature selection algorithm based on
discreteness and modified correlation, increasing the correla-
tion’s impact coefficient and making feature selection more
reasonable and accurate [18]. However, even with the selec-
tion of the most valuable features, practical model training
processes may still involve high redundancy and correla-
tion among features. Further feature processing is necessary,
and standard methods include feature dimension reduction.
Dimension reduction methods mainly include Locally Lin-
ear Embedding (LLE), Multi-dimensional Scaling (MDS),
Principle Component Analysis (PCA), and so on. He et al.
proposed two implementations of the quantum locally linear
embedding algorithm (QLLE) for nonlinear dimensional-
ity reduction on quantum devices, the linear-algebra-based
QLLE and the variational quantum locally linear embed-
ding algorithm (VQLLE), which achieve faster and more
efficient results than the classical LLE algorithm [19].
Li et al. proposed a Density-Canopy-Kmeans clustering
algorithm (DCK) for detecting network community struc-
ture, which integrates random distance and community
structure coefficient based on Jaccard distance and applies
Multi-dimensional Scaling (MDS) for dimension reduction.
The method has demonstrated higher classification accu-
racy than traditional community detection methods [20].
Xu et al. developed a classification model using princi-
pal component analysis (PCA) and support vector machine
(SVM) and successfully classified six types of psoriatic
skin diseases. The study found that PCA, as a method
for data dimensionality reduction, was effective in address-
ing the challenge of information overlap in classification
tasks [21].

In constructing clinical diagnostic models, single classifi-
cation algorithms are limited in their ability to consistently
perform better for every task due to their simulation of basic
data distribution. Many researchers have adopted ensemble
learning algorithms for classification model construction to
address these limitations. Ensemble algorithms are not a
single machine learning algorithm, but instead build multiple

machine learning models on a dataset and use the modeling
results of all models according to specific rules as the final
modeling result of the ensemble algorithm. Compared to
other single algorithms, ensemble algorithms perform better
and are thus widely used in the medical field. Ali, L et al.
proposed the use of the XGBoost algorithm to identify and
classify speech signals from Parkinson’s Disease patients,
and experiments have shown that its accuracy, precision,
AUC, and F1-Score are superior to other algorithms, con-
tributing to a better understanding of Parkinson’s Disease
and further analysis of speech features [22]. Su et al. con-
structed risk prediction models for coronary heart disease
using three ensemble learning algorithms, balanced data cate-
gories using the SMOTE(Synthetic Minority Over-sampling
Technique) algorithm, and optimized the models’ hyperpa-
rameters using the Bayesian optimization algorithm. The
experimental results showed that ensemble learning algo-
rithms perform well in predicting coronary heart disease
risk, with the LightGBM algorithm performing the best [23].
Nowadays, Ensemble algorithms have been widely applied to
diagnosing dizziness and vertigo, especially for typical types
of vertigo such as vertigo syndrome, BPPV (benign parox-
ysmal positional vertigo), and others. Kim et al. investigated
the feasibility of utilizing the Catboost algorithm with clin-
ical information to diagnose central vertigo. This algorithm
demonstrated high accuracy, sensitivity, and specificity in
diagnosing central vertigo, enabling effective classification of
central vertigo based on demographic, risk factors, vital signs,
and vertigo symptoms, thus providing valuable assistance for
diagnosis [24]. Kamogashira et al. assessed the application of
various machine learning algorithms in predicting vestibular
dysfunction in vertigo patients using the center of pressure
(COP) sway dataset measured during foam posturography.
The results revealed that the recall of the Bagging classi-
fier was significantly higher than logistic regression, proving
that ensemble learning algorithms can successfully iden-
tify vestibular dysfunction [25]. Vascular vertigo/dizziness
is a distinct type of vertigo induced by insufficient blood
supply to the central nervous system. In current research
on intelligent diagnostic methods, much attention has been
devoted to more common types of vertigo. In contrast,
diagnosing vascular vertigo/dizziness, particularly studies
employing integrated algorithms and other machine learn-
ing technologies, remains relatively unexplored. This lim-
its our capacity to understand and manage vascular ver-
tigo/dizziness. Moreover, while vascular vertigo/dizziness
typically doesn’t directly threaten life, it can severely impact
patients’ quality of life, affecting their work capabilities, daily
activities, and overall life satisfaction. Therefore, developing
and optimizing intelligent diagnostic techniques for vascular
vertigo/dizziness can help us diagnose this condition more
accurately, offering patients more effective and personalized
treatment plans.

In light of the limitations in existing research, we pro-
posed a novel intelligent diagnostic approach for vascular
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vertigo/dizziness disease. Firstly, many clinical feature
indexes of both vascular vertigo/dizziness patients and
normal patients were collected from medical databases
and underwent in-depth analysis and selection. To balance
the data distribution, an improved SMOTE algorithm was
applied to generate more minority samples to improve
the model’s recognition performance. Regarding feature
selection, we employed correlation analysis and the KPCA
algorithm to screen for effective features and reduce dimen-
sionality. Finally, a Stacking ensemble learning model based
on algorithms such as KNN, RF, SVM, and GBDT was
used for model training, and grid search and LM algorithm
were used to optimize the base model parameters. We used
evaluation methods such as recognition rate, precision,
F1-score, and recall to evaluate the model’s perfor-
mance. Results showed that the algorithm proposed in this
study had a high recognition effect. This study provides
a reference paradigm for other disease studies regard-
ing the extraction, analysis, modeling, and evaluation of
patient characteristics. It offers intelligent decision-making
support in the medical diagnostic process, which has
important practical significance and broad application
prospects.

II. MATERIALS AND METHODS
A. STUDY SUBJECTS
This study is a cross-sectional study conducted on patients
with vascular vertigo/dizziness who received treatment in the
Geriatric Department of Hubei Provincial Hospital of Tra-
ditional Chinese Medicine and individuals who had normal
blood routine examinations during their physical examination
process. As an observational research design was adopted in
this study, the patient’s personal information was removed,
and data was analyzed anonymously with the approval of the
Ethics Committee of Hubei Provincial Hospital of Traditional
Chinese Medicine. In addition, the Helsinki Declaration
of 1964 and its later amendments or similar ethical standards
were strictly adhered to, and all participants provided written
informed consent.

B. DIAGNOSTIC CRITERIA
According to the Barany Society’s 2022 Diagnostic Criteria
for vascular vertigo/dizziness [3]: a diagnosis of vascular
vertigo/dizziness can be made when the patient presents with
dizziness as the main clinical manifestation, possibly accom-
panied by symptoms such as nausea, vomiting, and tinnitus,
and imaging studies may reveal abnormalities such as tor-
tuous vascular courses, intracranial or extracranial arterial
stenosis, and abnormal vascular development. The patient’s
medical history may include past events of posterior circula-
tion dysfunction, leading to the compromised blood supply
to the posterior brain hemispheres, cerebellum, inner ear
vestibule, brainstem, and other areas, resulting in posterior
circulation transient ischemic attack or stroke. During symp-
tom episodes, the patient may exhibit nystagmus or other
neurological signs.

C. DATA COLLECTION
1) DATA INFORMATION
In this study, we collected various clinical and biochemical
indicators related to vascular vertigo. The clinical symptoms
and signs encompass postischemic circulation, hypertension,
hyperlipidemia, cervical spondylosis, stroke, cervical arte-
riosclerotic stenosis, coronary artery disease with coronary
artery stenosis, and cerebral artery insufficiency. Addition-
ally, the biochemical indicators include blood biochemistry
indices for lipid metabolism, which were obtained on the
day of admission. These indices consist of total cholesterol
(CHOL), triglycerides (TG), high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
small dense low-density lipoprotein cholesterol (sdLDL),
apolipoprotein A1 (APO-A1), apolipoprotein B (APO-B),
and lipoprotein (a) (LP(a)). Detailed information on the spe-
cific indicator assignments can be found in TABLE 1.

TABLE 1. Explanation of variable assignment.

2) INCLUSION CRITERIA
(1) Age ≥ 18 years;
(2) Meet the above diagnostic criteria for vascular ver-

tigo/dizziness;
(3) Patients and their families are aware and agree to

participate in the study;

VOLUME 11, 2023 99737



D. Song et al.: Leveraging ISMOTE-KPCA-STACKING Algorithm

(4) Complete admission information for the patient;
(5) Biochemical indices examination conducted on the day

of admission.

3) EXCLUSION CRITERIA
(1) Minors aged < 18 years;
(2) Lactating or pregnant women;
(3) Patients with serious diseases such as heart, brain,

kidney, blood, tumors, etc.;
(4) Patients who have not signed the informed consent

form;
(5) Patients with incomplete information;
(6) Patients who did not undergo biochemical indices

examination on admission or have incomplete data.

D. DATA PREPROCESSING
Original data is often imperfect and usually contains errors
and missing information. If these errors and missing infor-
mation are not processed, they may affect model training
results. Therefore, before inputting the dataset into the train-
ing algorithm, it is necessary to preprocess the dataset. This
includes handling abnormal values, normalizing, balancing
data, and extracting features.

1) ABNORMAL VALUE HANDLING
In medical data, errors in data input, measurement, and
sampling can lead to the presence of outliers, which can
cause deviation in experiments and produce incorrect results.
Therefore, it is necessary to detect and handle outliers in the
data. In this study, box plots were used to perform outlier
detection. The method of identifying outliers using box plots
differs from the 3σ rule, which uses statistical data such as
mean and standard deviation to determine whether a data
point is an outlier. The 3σ rule requires that the data is
normally distributed and is only suitable for a limited range
of data. Box plots, however, are a type of statistical graph that
displays the overall data distribution. They do not require any
specific distribution, making them well-suited for identifying
outliers in real-life medical data.

For the history indicators X1-X8, there are only two pos-
sibilities, either 0 or 1, there are no outliers, so it is not
considered. However, for the continuous indicators I1-I8,
we need to consider the range of the indicators and remove
outliers. According to the clinical indicators collected in this
study, we have expanded the range of box plots to detect
outliers, making them more tolerant of extreme values in the
data. Data points that exceed three times the interquartile
range beyond the quartiles are considered outliers. That is
data points that are higher than the upper limit of the box plot
(Q3 + 3IQR) or lower than the lower limit of the box plot
(Q1 - 3IQR). In this study, we used box plots to analyze
the I1-I8 indicators’ outliers; the final results are shown in
Figure 1. The red labels represent outliers, and the sam-
ples containing outliers were ultimately removed from the
dataset. After the screening, we confirmed 450 vascular ver-
tigo/dizziness samples and 150 normal samples for the final
dataset.

FIGURE 1. Outlier identification.

2) DATA NORMALIZATION PROCESSING
Evaluation indices often possess different dimensions and
units, impacting the data analysis outcomes. To mitigate the
effects of differing dimensions between indices, this paper
employs the maximum value normalization method for data
normalization. The data is processed using the following
formula:

xnormalization =
x − xmin

xmax − xmin
(1)

3) DATA IMBALANCE HANDLING
Imbalanced data refers to a situation where the sample size
of one or more classes in a dataset is significantly higher or
lower than the sample size of other classes. The class with
the larger sample size is often called the majority class, while
the class with the smaller sample size is called the minority
class. In imbalanced data, the information in the minority
class samples may be more critical. In this study, for example,
the ratio of the positive class to the negative class is approx-
imately 3:1 (i.e., patients with vascular vertigo/dizziness to
normal individuals). Based on this sample data, it is likely
that a model built using this data will misdiagnose normal
samples as being dizzy, which can cause significant problems
and affect the model’s accuracy. It is necessary to generate
data to balance the data to avoid the effects of data imbalance
on the model results.

SMOTE (Synthetic Minority Over-sampling Technique) is
an over-sampling algorithm proposed by Chawla Kevin et al.
It generates synthetic samples by interpolating between exist-
ingminority class samples based on their similarity in the fea-
ture space [26]. Specifically, it uses the k-nearest neighbors
of each minority class sample as references and randomly
selectsN to interpolate with a threshold valuewithin the range
of [0, 1]. Its principle is as follows:

Xnew = Xm + λ (Xn − Xm) (2)

where Xnew represents the new synthetic sample, Xm rep-
resents a minority class sample instance, Xn represents the

99738 VOLUME 11, 2023



D. Song et al.: Leveraging ISMOTE-KPCA-STACKING Algorithm

FIGURE 2. Unbalanced sample distribution.

k-nearest neighbors of Xm, and λ ∈ [0, 1] is a randomly
generated number.

SMOTE is a traditional algorithm that generates synthetic
samples for the minority class by interpolating between exist-
ing minority class samples based on their similarity in the
feature space. However, it does not consider the dataset’s dis-
tribution, generating the same number of synthetic samples
for each minority class sample. As illustrated in Figure 2, this
can result in synthetic samples being concentrated in densely
populated areas of the minority class while neglecting sparser
regions that may hold crucial classification information. Con-
sequently, this may pose challenges when training models
using the synthetic samples generated by SMOTE.

Therefore, we have proposed an improved SMOTE
method, which calculates the center offset value (COV) of
each instance by measuring the k-neighborhood centrality as
k increases, and selects the sparse samples of the minority
class with high COV values for synthesis, thus increasing the
diversity of the minority class.

In an n-dimensional dataset, COV is related to the
minority class instance Xm and its k-neighborhood region
centerCk (Xm). Ck (Xm) can be calculated as follows:

Ck (Xm) =
1
k

∑
q∈Nk (Xw)

(
Xq1 ,Xq2, · · · · · · ,Xqm

)
(3)

whereNk (Xw) is the set of k-neighbors of Xm. As the parame-
ter k increases, we measure the displacement of Ck (Xm) with
σi (Xm), as follows:

σi (Xm) = d (Ci (Xm) ,Ci+1 (Xm)) (4)

where d represents distance, i = 1,2, . . . . . . ,k-1. The value of
σi (Xm) is typically larger in sparse areas than in dense areas.
To represent the impact of k on the k-neighborhood centrality
of data nodes, the absolute error of center displacement is
used to represent the degree of change in the k-neighborhood
centrality, and the COV coefficient is defined by accumu-
lating the degree of change in k-neighborhood centrality

as follows:

Ccov (Xm) =

∑k−2

i=1
|σi+1 (Xm) − σi (Xm)| (5)

Outliers located in sparse regions result in larger COV values
compared to those located in dense areas. Thus, sparse sam-
ples in the minority class can be detected through large COV
values.

The ISMOTE method is an effective oversampling tech-
nique for addressing data imbalance issues, specifically
addressing the shortcomings of the conventional SMOTE
algorithm, which inadequately considers the distribution
characteristics of the dataset. By calculating the COV
and measuring k-nearest neighborhood centrality for each
instance, ISMOTE identifies and selects sparse minority class
samples with high COV values to synthesize, thereby enhanc-
ing the diversity of the minority class. This enables ISMOTE
better to capture the underlying distribution of the minority
class, ultimately improving classification performance. Com-
pared to other baseline methods like ROS and ADASYN,
ISMOTE exhibits distinct advantages. The ROS method
increases the proportion of the minority class by randomly
replicating its samples. However, it does not generate new
synthetic samples, potentially leading to model overfitting
and a lack of dataset diversity. While ADASYN also focuses
on generating new synthetic samples, it emphasizes creating
samples based on the density distribution of minority class
instances, differing from ISMOTE’s approach. The primary
advantage of ISMOTE over ADASYN lies in its explicit con-
sideration of data points’ k-nearest neighborhood centrality,
allowing for more targeted coverage of the minority class’s
sparse regions when generating synthetic samples. This leads
to a more diverse and representative synthetic sample col-
lection, enhancing classification performance. Consequently,
the ISMOTE method, when generating synthetic samples,
considers both dataset distribution and sparse regions, result-
ing in significant advantages in classification performance,
model generalizability, and dataset representational capacity
compared to alternative oversampling methods.

4) FEATURE EXTRACTION
Before we proceed with modeling, feature extraction, and
processing are crucial steps. Through feature extraction,
we can better understand the information in the dataset and
transform it into a form suitable for model training. In this
study, we employ correlation analysis and Kernel Principal
Component Analysis (KPCA) as two methods for feature
processing, preparing for the subsequent model training.

1. Correlation Analysis
During the feature extraction process, correlation analysis

is used to study the relationships between two variables.
It helps us understand the connections between different
features, guiding us in selecting features for model train-
ing. Additionally, correlation analysis assists in determin-
ing which features have the most significant impact on the
model’s predictions, directing us in selecting features for
the final model. To better measure the correlation between
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two random variables during the feature selection process,
this paper uses the Pearson correlation coefficient for feature
correlation analysis, aiding in understanding the relationship
between features and response variables. The calculation for-
mula is as follows:

r =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (6)

X and Y represent two random variables, while r is the
calculated correlation coefficient. The larger the absolute
value of r , the stronger the correlation. When r > 0, the two
random variables are positively correlated. When r < 0, the
two random variables are negatively correlated. When r = 0,
it indicates that the two random variables are uncorrelated.

2. KPCA Algorithm
Principal Component Analysis (PCA) is a dimensional-

ity reduction technique that projects high-dimensional data
onto a lower-dimensional space while preserving as much
of the original variance as possible [27]. It achieves this
by finding the directions in which the data varies the most,
and these directions are called principal components. The
first principal component accounts for the maximum variance
in the data, the second main component accounts for the
following highest variance, and so on. We first center the data
by subtracting the mean from each feature to perform PCA.
Then, we compute the covariance matrix of the centered data
and calculate the eigenvectors and eigenvalues of this matrix.
The eigenvectors with the highest eigenvalues are chosen as
the principal components, and the data is then projected onto
these components [28].
Kernel Principal Component Analysis (KPCA) is an exten-

sion of PCA that allows for non-linear dimensionality reduc-
tion. It achieves this by applying the kernel trick to the data,
which maps it into a higher-dimensional feature space where
the data is linearly separable. We can then use PCA in this
higher-dimensional space to find the principal components
and reduce the dimensionality of the data. One advantage
of KPCA is that it can handle non-linearly separable data,
which traditional PCA cannot. Additionally, KPCA can cap-
ture non-linear relationships in the data, which conventional
PCA may miss. The mathematical formulation of KPCA can
be expressed as follows:

Given a set of data points X = {x1, x2, . . . , xn}
in d-dimensional space, KPCA maps the data points
into a higher-dimensional feature space using a kernel
function k(x, y):

phi (x) = [k (x, x1) , k (x, x2) , . . . ,k (x, xn)] (7)

Then, the centered kernel matrix K is calculated as:

Kij = k(xi, xj) − 1/n∗sum(k(xi, xj)) (8)

The eigenvectors and eigenvalues of the matrix K are then
calculated, and the eigenvectors with the highest eigenvalues
are chosen as the principal components. The data is then

projected onto these main components to reduce the dimen-
sionality of the data.

As an extension of PCA, KPCA efficiently manages
non-linear relationships among features. By employing a ker-
nel function, KPCA can capture complex non-linear patterns
within the data. In this study, we utilize correlation analysis
and KPCA to extract meaningful features from the raw data
and transform them into a form suitable for model training.
These feature-processing methods not only help to reduce
the computational complexity of the model but also enhance
the model’s predictive capabilities. Upon completing feature
extraction and processing, we can input the processed fea-
tures into subsequent models for training and prediction.

E. MODEL CONSTRUCTION
1) MODEL INTRODUCTION
This paper adopts the Stacking algorithm in ensemble learn-
ing to establish an accurate prediction and diagnosis model
for vertigo disease. The Stacking model consists of diverse
basemodels, includingKNN,RF,Naive Bayes, SVM,GBDT,
and XGBoost, and a fully connected cascade neural network
serving as a meta-learner.

1. KNN algorithm
K -Nearest Neighbors (KNN) is a straightforward instance-
based algorithm for classification and regression that uses
a similarity measure, such as distance, to classify new data
points based on most of the closest stored cases [29]. Advan-
tages of KNN include ease of implementation, handling of
missing values, and resistance to the curse of dimensional-
ity. However, it can be computationally expensive for large
datasets, and choosing an appropriate K value is crucial for
performance, which can be done using cross-validation.

2. Random Forest algorithm
Random Forest(RF)is a machine learning method for clas-
sification and regression, made up of multiple decision
trees trained on randomly selected subsets of the data [30].
It predicts a sample by passing it through all decision trees
and aggregating their predictions for the final result. The
algorithm effectively handles missing or noisy data and has
the advantage of being relatively easy to interpret. The final
prediction is made by averaging the predictions of all trees,
weighted by their accuracy. Random Forest has hyperparam-
eters that can be tuned to improve performance, but it may be
slower than other algorithms in large datasets.

3. The Naive Bayes algorithm
The Naive Bayes algorithm is a widely used method for
classification problems. It uses the Bayes theorem to calculate
the probability of a sample belonging to each class and then
assigns it to the class with the highest probability [31]. It is
simple to implement as it only requires calculating proba-
bilities and making predictions based on them. Naive Bayes
is also fast and handles high-dimensional data effectively.
However, it makes the assumption of feature independence,
which may not always hold in real-world data. Despite this
limitation, Naive Bayes remains a valuable and effective
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method, especially when dealing with large datasets or high
feature dimensions.

4. SVM algorithm
Support Vector Machines (SVM) is a supervised learning
model that can be used for both classification and regression
tasks. The basic idea behind the SVM algorithm is to find a
hyperplane that maximally separates the data points belong-
ing to different classes [32]. SVM is effective in handling
high-dimensional data and is also good at dealing with non-
linear data. SVM is suitable for small sample size, non-linear,
and high-dimensional space problems and can be used with
other machine learning algorithms. SVM solves the convex
quadratic optimization problem by introducing the Lagrange
multiplier, which is expressed as:

L (ω, λ, α) =
1
2

∥ ω ∥
2

−

∑n

i=1
λi {[yi (ωxi + b) − 1]}

(9)

In the equation, ||ω|| is the norm of the normal hyperplane,
b is a constant, λi is the Lagrange multiplier, xi(i = 1, 2,. . . n)
is the linearly separable vector, and yi is the output class.

5. GBDT algorithm
Gradient Boosting Decision Trees (GBDT) is a machine
learning algorithm that sequentially constructs decision trees
for making predictions. Each successive tree is trained to
rectify the errors made by its predecessors. The final pre-
diction is determined by computing a weighted sum of all
tree predictions. As an ensemble method, GBDT can manage
continuous and categorical variables and address missing
values. Although it is relatively resistant to overfitting, hyper-
parameter choices can influence its performance, and it may
be computationally demanding with large datasets. GBDT
is effective for classification and regression tasks, making it
well-suited for handling complex data [33].

6. XGBoost algorithm
XGBoost (eXtremeGradient Boosting) is a machine-learning
algorithm based on gradient-boosting decision trees. It is
widely used in data science and machine learning competi-
tions due to its efficiency and effectiveness [34]. XGBoost
is an optimized distributed gradient boosting library that uses
CART decision trees as its base classifier. It fits new functions
by adding trees to predict the residuals of previous predic-
tions, then accumulates the forecasts of all trees to obtain the
final prediction result. The objective part of XGBoost is:

minL =

∑n

i=1
l
(
yi, ŷi

)
+

∑k

k=1
� (fk)

� (fk) = γT +
1
2
λ

∑r

j=1
W 2
j (10)

In the formula, n is the number of training samples, k is
the number of decision trees, and fk is the base learner. The
loss function L measures the difference between the actual
and predicted scores. The regularization term � includes
two parts, where represents the number of leaf nodes and W
represents the leaf node scores; γ and λ represent the penalty

strength, which can control the number of leaf nodes and limit
the node scores to prevent the model from overfitting to the
training data and losing prediction effectiveness.

7. Fully Connected Cascade Neural Network
A fully connected cascade neural network (FCNN) is a classic
deep learning model composed of multiple layers of neurons.
Unlike other neural networks, each layer of neurons in an
FCNN is connected to all neurons in the previous layer,
meaning it is a fully connected neural network [35].

The input layer is the frontmost layer in the network and
receives input data, which is transformed into output through
weightsW and biases b using the following formula:

z(l) = W (l)a(l−1)
+ b(l) (11)

where l represents the l-th layer, a(l−1) represents the output
of the (l−1)-th layer, and z(l) represents the input of the
l-th layer.

The output layer is the final layer in the network and
converts the network’s output data into the final result. The
output layer’s output can be transformed using an activation
function, with standard activation functions being the sigmoid
and tanh functions.

a(l) = σ (z(l)) (12)

a(l) = tanh(z(l)) (13)

where σ (z(l)) and tanh(z(l)) represent the output of the sig-
moid function and the tanh function, respectively.

The output of the network can be represented using the
following formula:

ŷ = a(L) (14)

where L represents the total number of layers in the network
and represents the output of the network.

8. Stacking algorithm
Ensemble learning is a technique that combines multiple
models’ predictions to improve overall accuracy. Stacking,
a specific ensemble learning method, trains several base
models and combines their predictions to form new features
for training a meta-model. This method aims to enhance
performance compared to any individual base model. The
base models’ performance and combined predictions are
considered [36]. The stacking process involves dividing the
feature data into training and testing sets and employing
n-fold cross-validation to train the base models. As depicted
in Figure 3, the training set undergoes division into n folds,
where the value of n depends on the specificmodel employed.
For each iteration, n-1 folds are utilized to train the base
models, while the remaining fold is used for making predic-
tions. This process is carried out n times, and the resulting
projections are combined to generate a new feature matrix
for the base models. The n-fold cross-validation ensures
that the testing set is predicted n times, with the mean of
these predictions taken to match the dimensions of the new
feature matrix for the base models with the training set.
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As shown in Figure 4 once the base models are trained
and their predictions are combined into new feature matri-
ces, they form the complete feature matrices for the meta-
learner’s training and testing sets. The meta-learner is then
trained on these full feature matrices to make the final
predictions.

In the first layer of a stacking model, diverse base models
are employed tomake predictions. These basemodels include
KNN, effective for identifying patterns and predicting based
on the closest data points; random forest, which handles
high-dimensional data and prevents overfitting; naive Bayes,
a simple and fast algorithm suitable for small datasets; and
SVM, capable of managing high-dimensional and sparse
data for classification and regression tasks. Additionally,
GBDT, an ensemble method using decision trees as base
models, excels at handling large datasets. At the same
time, XGBOOST is a robust gradient-boosting algorithm
frequently used in competitive machine learning competi-
tions. Utilizing diverse base models leverages their strengths,
enhancing the stacking model’s overall performance. This
study optimizes the first layer base models using a grid
search. Grid search optimization of machine learning algo-
rithms can be time-consuming when the range of hyperpa-
rameters is extensive. Conversely, a small hyperparameter
range may result in unsatisfactory prediction performance.
This study carefully selects the hyperparameter search space
for each base model to address these issues. The grid search
method iterates over the possible values within the chosen
range. The best prediction result for each hyperparameter set
is selected as the final set, aiming to balance optimization
time and performance. In the second layer of the stacking
model, we introduce an innovative approach by employ-
ing a fully connected cascade network with six neurons.
This unique configuration enhances the model’s learning
capabilities, incorporating diverse activation functions in its
architecture. Five of these neurons use the tanh activation
function, a non-linear function that maps input values to the
range (-1, 1). This activation function enables the network to
capture more complex patterns within the data and adapt to a
wide range of input values. The final neuron utilizes a linear
sum function, aggregating the output of the previous neurons
without further processing. This linear sum function serves
as the network’s output layer, allowing predictions based on
the combined output of the preceding neurons. The fully con-
nected cascade network, with its diverse activation functions
and innovative structure, effectively learns intricate patterns
in the data and results in more accurate predictions. This
innovation contributes to the model’s overall performance,
enhancing its ability to diagnose vascular vertigo/dizziness.
The Levenberg-Marquardt (LM) algorithm is employed for
the second layer to optimize the fully connected cascade
network weights. The LM algorithm is an iterative optimiza-
tion technique that minimizes the difference between the
predicted and network outputs. It starts with an initial set of
weights and iteratively updates them based on the gradient
of the error function, enabling the network to learn more

accurate predictions. The fundamental principles of the LM
algorithm are as follows:

Define the objective function f (x) as the sum of squared
residuals, where residuals are the differences between the
predicted output and the network’s output for each data point:

f (x) =

∑n

i=1
r2i (15)

Compute the Jacobian matrix J for the parameters x:

J = [
∂r1
∂x1

· · ·
∂r1
∂xn

· · ·
∂rn
∂x1

· · ·
∂rn
∂xn

] (16)

Calculate the Hessian matrixH of the objective function f (x):

H =

[
∂2f

∂x21
· · ·

∂2f
∂x1∂xn

· · ·
∂2f

∂xn∂x1
· · ·

∂2f
∂x2n

]
(17)

Update the parameters x iteratively using the following
equation:

xnew = xold −

(
JT J + λI

)−1
JT r (18)

here, λ is the damping factor, and I is the identity matrix. The
damping factor ensures that the Hessian matrix is positive
definite, which guarantees a decrease in the objective function
at each iteration.

By iteratively updating the parameters x and minimizing
the objective function f (x), the LM algorithm assists the fully
connected cascade network make more accurate predictions
for various tasks.

To summarize, the stacking ensemble model comprises
two layers. The first layer consists of a diverse set of base
models, including KNN, RF, Naive Bayes, SVM, GBDT,
and XGBoost. The second layer is a fully connected cascade
neural network that functions as a meta-learner, combining
the base models’ predictions to generate final predictions.
The overall model architecture is depicted in Figure 5.

2) MODEL EVALUATION INDEX
Model evaluation metrics are essential for assessing machine
learning classifiers’ performance and identifying improve-
ment areas. Among these metrics, the confusion matrix,
accuracy, precision, recall, and F1-score are commonly used
to comprehensively understand the model’s performance.
Additionally, the calibration curve is employed to measure
the accuracy of the classifier’s predicted probabilities.

A confusion matrix is a tool used to measure the accu-
racy of a classifier’s predictions, typically representing the
counts of true positive, false positive, true negative, and false
negative.

Accuracy denoted as A refers to the overall accuracy of the
classifier’s predictions, calculated as:

A =
TP+ TN

TP+ TN + FP+ FN
× 100% (19)

Precision, denoted as P, refers to the proportion of correctly
predicted data by the classifier, calculated as:

P =
TP

TP+ FP
× 100% (20)
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FIGURE 3. Principle of the base model.

FIGURE 4. New feature matrix.

Recall, denoted as R, refers to the proportion of all correct
data predicted by the classifier, calculated as:

R =
TP

TP + FN
×100% (21)

The F1-score denoted as F1, is the harmonic mean of preci-
sion and recall, calculated as:

F1 =
2PR
P+ R

×100% (22)

A calibration curve is a tool used to measure the accuracy of
the classifier’s predicted probabilities. The x-axis typically
represents the predicted probability, and the y-axis represents
the actual probability. The calibration curve will be close to
the diagonal if the classifier’s predicted chances are accurate.
These evaluation metrics help to provide a comprehensive
understanding of the model’s performance and can help iden-
tify areas for improvement.

3) MODEL TRAINING
After processing the data, we train the stacking model follow-
ing these steps:

1. Data Splitting
Divide the dataset into a 6:4 ratio for training and test-

ing sets, meaning 60% of the data is allocated for training
and 40% for testing. The sample distribution is detailed
in TABLE 2.

TABLE 2. Data set partitioning.

2. Model Construction
Build the stacking model using a Python 3 machine learn-

ing toolkit. Define the base models (KNN, RF, Naive Bayes,
SVM, GBDT, and XGBoost) and the meta-learner (FCNN).

3. Base Model Training
a. For each base model, use 5-fold cross-validation to split

the training set into minor training and validation sets for
evaluating model performance.
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FIGURE 5. Stacking algorithm framework.

b. Train each base model on the smaller training set using
their respective optimized hyperparameters.

c. Generate predictions for the validation and test sets using
the trained base models.

d. Calculate the average validation set predictions for all
folds of the base models.

4. Hyperparameter Optimization
Use grid search to find the optimal hyperparameters for

each base model, ensuring the best performance for each
model. TABLE 3 shows the optimized hyperparameters for
each model.

5. Meta-learner Input Preparation
a. Combine the average validation set predictions of the

base models into a new input feature set for the meta-learner.
This new feature set serves as the training set for the meta-
learner.

b. Combine the test set predictions of the base models into
a test set for the meta-learner.

6. Meta-learner Architecture and Training
a. Use 5-fold cross-validation to split the meta-learner’s

training set into smaller training and validation sets.

TABLE 3. Optimized hyperparameters for base models.

b. Initialize the fully connected cascade neural network
with six neurons.

c. Train the meta-learner on the smaller training set using
the Levenberg-Marquardt algorithm to optimize the weights.
This involves calculating the Jacobian and Hessian matrices
and iteratively updating the parameters tominimize the objec-
tive function.

d. Evaluate the meta-learner’s performance on the valida-
tion set to monitor the training process and avoid overfitting.

e. Repeat steps 6a through 6d until all folds of the meta-
learner’s training set are completed.

7. Model Evaluation
a. Make predictions on the test set using the trained base

models and meta-learner.
b. Calculate various performancemetrics, such as accuracy,

recall, F1-score, etc., to measure the model’s generalization
performance.

c. Compare the performance of the base models and stack-
ing models’ performance to evaluate whether the stacking
approach has improved prediction accuracy.

III. RESULTS
A. FEATURE SELECTION AND ANALYSIS
We first conducted a correlation heatmap analysis on the
original data containing 16 feature indices. As shown in
Figure 6, I1 (TG), I4 (LDL-C), and I7 (APO-B) have high
correlations, with correlation coefficients greater than 0.9.
Additionally, the correlation between I3 (HDL-C) and I6
(APO-A1) is 0.85, which is also relatively high. Therefore,
it is necessary to eliminate features with high correlations
during the feature selection. In this study, we removed the
three highly correlated indices, I4 (LDL-C), I7 (APO-B), and
I6 (APO-A1), and retained the remaining 13 feature indices.

After the correlation analysis, we applied the KPCA
algorithm to the remaining 13 feature indices and selected
the principal components based on a cumulative contribution
rate greater than 90%. As shown in Table 4, the first three
principal components account for a cumulative contribution
rate of 92.28%, and thus, we selected these three components.
By applying the KPCA algorithm, we effectively transformed
the original 13-dimensional data into three composite indices,
namely the aforementioned three principal components. This
methodology successfully mitigated signal overlap while
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TABLE 4. The contribution rate of principal components and cumulative
contribution rate.

FIGURE 6. Correlation heatmap analysis.

concurrently preserving valuable information. To establish
a clear connection between the data transformation and the
subsequent steps in our methodology, it’s crucial to mention
that these three composite indices, now representing the most
significant variation in data, will serve as the key features for
our model training.

To demonstrate the advantages of using KPCA for feature
dimensionality reduction, Figure 7 shows the dimensional-
ity reduction results using different algorithms (MDS, LLE,
PCA, and KPCA). In this figure, red denotes vertigo samples,
blue represents normal samples, and yellow signifies samples
generated by ISMOTE. As illustrated in Figure 7, KPCA
distinctly separates and effectively clusters the different cat-
egories. Although MDS, LLE, and PCA also achieve some
category separation, their clustering performance is signifi-
cantly less effective than KPCA. In conclusion, KPCA is this
dataset’s most effective dimensionality reduction algorithm.

B. THE PROPOSED MODEL PERFORMANCE
This study employed the data above processing strategies
to train and evaluate six base models (KNN, RF, Naive
Bayes, SVM, GBDT, and XGBoost) and the Stacking model.
As demonstrated in Table 5, the Stacking model exhibits out-
standing performance across all metrics, achieving a notable
recognition rate of 99.46%. With the assistance of optimized
data processing methods, the other base models also display
commendable performance in accuracy, precision, recall, and
F1-score, albeit with a certain degree of disparity compared
to the Stacking model.

TABLE 5. Performance metrics comparison of base models and stacking
model.

To better comprehend the classification performance,
we employ a confusion matrix (Figure 8) to demonstrate the
performance of the Stacking algorithm and six base models
(KNN, RF, Naive Bayes, SVM, GBDT, and XGBoost) on
the test set. The results show that the Stacking algorithm
misclassified only one diseased and one normal sample. This
superior performance can be attributed to the algorithm’s
ability to effectively integrate the strengths of each base
model, thereby enhancing the overall performance. RF and
XGBoost algorithms also perform strongly, with only sixmis-
classified samples. Notably, the RF algorithm demonstrates
a more balanced classification between the two categories.
While GBDT has the weakest performance among the base
models, it still performs relatively well, misclassifying only
14 samples. This may be due to effective data clustering
during the feature extraction process.

To further assess the prediction performance of the models,
we employ a calibration curve to visualize the prediction
accuracy of various models, including KNN, RF, Naive
Bayes, SVM, GBDT, XGBoost, and Stacking, as the thresh-
old varies, as shown in Figure 9. The results indicate that the
Stacking algorithm outperforms the others, followed closely
by RF and XGBoost algorithms. The calibration curves of
these three algorithms approach the diagonal line, suggesting
that their prediction results are relatively accurate. In contrast,
the Naïve Bayes and GBDT algorithms demonstrate poorer
performance, with their calibration curves deviating consid-
erably from the diagonal line. The results of this study show
the importance of employing a combination of optimized
data processing methods, diverse base models, and ensemble
algorithms to improve the performance of classification tasks
in complex and imbalanced datasets.

C. COMPARISON WITH OTHER MODELS
1) THE IMPACT OF DATA BALANCING ON MODEL
PERFORMANCE
Data balancing is an indispensable preprocessing step in
machine learning tasks, which can enhance models’ robust-
ness and generalization performance. In this study, we assess
the impact of data balancing on model performance by com-
paring the diagnostic accuracy of models trained on actual
imbalanced data and synthetically balanced data generated
by the ISMOTE algorithm. As shown in Figure 10 and
Figure 11, models trained on the balanced dataset generated
by the ISMOTE algorithm exhibit better diagnostic accuracy,
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FIGURE 7. Dimensionality reduction results using different algorithms (a. MDS, b. LLE, c. PCA, d. KPCA).

FIGURE 8. Confusion matrix for different models.

particularly in recognizing different categories more evenly.
Furthermore, the Stacking model demonstrates exemplary
performance on both real imbalanced data and generated
balanced data, highlighting its applicability and superiority
in handling imbalanced data classification tasks.

2) THE IMPACT OF DIFFERENT DATA BALANCING
ALGORITHMS ON MODEL PERFORMANCE
To evaluate the advantages of the ISMOTE algorithm,
we compare its performance with the ADASYN (Adap-
tive Synthetic Sampling) algorithm and the original SMOTE
algorithm. ADASYN is an extension of the SMOTE
algorithm that generates synthetic samples for the minority
class by considering the difficulty of learning for each data
point in the minority class. In contrast, SMOTE generates
synthetic samples by interpolating minority class instances
and their nearest neighbors without considering the learning
difficulty [37]. By maintaining other data processing and
model construction methods consistent with the approach
proposed in this study, we compare the performance of the
generation algorithms.

As depicted in Figure 12, the prediction results of the
ADASYN algorithm and the original SMOTE algorithm are
similar, with advantages for different base classifiers. In the
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FIGURE 9. Calibration curves for different models.

FIGURE 10. Comparison of diagnostic accuracy of different models based
on real imbalanced training sets.

FIGURE 11. Comparison of diagnostic accuracy of different models based
on synthetically balanced training sets.

Stacking model, the SMOTE algorithm performs slightly
better than the ADASYN algorithm, which could be due
to the dataset characteristics and the model’s sensitivity to
synthetic samples, leading to performance differences in

FIGURE 12. Comparison of different generation algorithms.

specific situations. However, the ISMOTE algorithm pro-
posed in this study significantly improves prediction results,
demonstrating high recognition effects for each base clas-
sification model. The proposed model achieves the highest
F1-score of 99.46%, surpassing the results of all other mod-
els, indicating that ISMOTE has certain improvements com-
pared to SMOTE and ADASYN algorithms. Additionally, the
results show that employing the feature selection and feature
dimensionality reduction methods mentioned in this paper
can significantly enhance the model’s performance.

3) THE IMPACT OF DIFFERENT DATA PROCESSING
METHODS ON MODEL PERFORMANCE
To investigate the influence of different data processingmeth-
ods on model performance and classification effect, we con-
duct experiments on the Stacking algorithm and KNN, RF,
Naive Bayes, SVM, GBDT, and XGBoost under three con-
ditions: original dataset, data processed using the ISMOTE
algorithm, and data processed using ISMOTE combined
with feature extraction. We calculate the accuracy, precision,
recall, and F1-score of the Stacking algorithm and six basic
models as evaluation indicators. The final results are shown
in Figure 13.

In Figure 13, compared to the models obtained after
data processing, the original dataset’s classification models
exhibit relatively poorer performance across all four evalu-
ation metrics. This suggests that once subjected to feature
extraction, the data possesses a certain degree of classifica-
tion ability. Specifically, by employing correlation analysis
and the KPCA algorithm for selecting comprehensive indi-
cators, the correlation between features can be reduced, and
some data noise can be mitigated. When adopting the same
data processing method, comparing the results across various
metrics reveals that the Stacking ensemble algorithm outper-
forms the individual base models in all metrics. This can
be primarily attributed to the Stacking ensemble algorithm’s
ability to effectively integrate various models and maximize
the performance of each algorithm. Moreover, as more effi-
cient data processing methods are utilized, the base model
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FIGURE 13. Comparison of model performance under three different processing methods.

evaluation metrics improve, further enhancing the perfor-
mance of the Stacking ensemble algorithm.

In conclusion, this study demonstrates that the ISMOTE
algorithm has a significant advantage in addressing imbal-
anced data problems. Compared to other data balancing
algorithms, such as SMOTE and ADASYN, the ISMOTE
algorithm exhibits better improvements in classification per-
formance. The feature selection and feature dimensionality
reduction methods mentioned in this paper also enhance
model performance. Lastly, the Stacking ensemble algorithm
outperforms individual base models across all evaluation
metrics, indicating its strong applicability and superiority in
handling imbalanced data classification tasks.

IV. DISCUSSION
Vascular vertigo/dizziness is a common neurological disor-
der characterized by sudden dizziness or imbalance, with
its pathogenesis involving various factors, including local
or systemic ischemia, hypoxia, endothelial dysfunction, and
neural dysregulation. These factors may lead to vascular
constriction, inflammatory response, and neuronal damage

in the inner ear and vestibular nucleus, subsequently affect-
ing vestibular function and balance perception [38]. With
the continuous development of medical research, our under-
standing of the etiology, pathogenesis, and diagnostic meth-
ods of vascular vertigo/dizziness is constantly expanding.
At present, the diagnosis of vascular vertigo/dizziness pre-
dominantly depends on the collection of medical history,
physical examinations, laboratory tests (such as hemody-
namics, blood lipids, blood glucose, etc.), and imaging tests
(such as MRI, CT, vestibular function tests, etc.) [4].These
findings necessitate further analysis and judgement from
physicians. However, this process is often influenced by the
physician’s experience, analytical abilities, and subjective
judgement, resulting in a time-consuming diagnostic pro-
cess with lower accuracy. This consequently hampers swift
and precise diagnosis and treatment. #Therefore, integrat-
ing intelligent diagnostic technology with existing diagnostic
methods to improve the accuracy and efficiency of vascular
vertigo/dizziness diagnosis has become a research focus.

Although intelligent diagnostic technology has made sig-
nificant progress in various medical conditions, research
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on intelligent diagnostic methods specifically for vascular
vertigo/dizziness is still very limited. In this study, we sig-
nificantly improved the diagnostic performance of vascu-
lar vertigo/dizziness using the ISMOTE-KPCA-STACKING
algorithm. The innovative aspects of the method proposed in
this study include:

1. Improved data balancing method: This study uses the
ISMOTE algorithm to generate minority class data. Com-
pared to the traditional SMOTE algorithm, the ISMOTE
algorithm has adaptive boundary detection capability, allow-
ing it to more effectively identify sparse and dense areas
and focus on generating synthetic samples in sparse areas.
Furthermore, the ISMOTE algorithm introduces a synthesis
strategy based on K-nearest neighbors and distance weights
to generate more representative samples. This data aug-
mentation method helps improve the model’s recognition of
minority class samples, effectively solving the data imbalance
problem.

2. Feature selection and dimensionality reduction opti-
mization: This study uses Pearson correlation coefficients to
analyze the original features’ correlation, selecting signifi-
cant feature indices and avoiding the impact of feature redun-
dancy and noise onmodel performance. TheKPCA algorithm
is then introduced to perform dimensionality reduction on the
selected features, mapping the feature space from high to low
dimensions while retaining the data’s main information. This
innovative method effectively improves model performance
and simplifies the calculation process, making the model
more robust when dealing with complex data.

3. Ensemble learning model: This study proposes a
Stacking-based ensemble learning model that integrates mul-
tiple base models and introduces a fully connected cascade
neural network as a meta-layer model. The inclusion of the
fully connected cascade neural network allows the ensemble
algorithm to better learn the correlations between the predic-
tions of different base models, further optimizing the overall
model performance and ultimately providing the ensemble
model with stronger generalization capabilities. Additionally,
this study uses grid search and the Levenberg-Marquardt
algorithm to optimize the parameters of the base models
andmeta-layer model, further improvingmodel performance.
This innovative ensemble learning model demonstrates sig-
nificant advantages in vascular vertigo/dizziness diagnosis,
helping to improve diagnostic accuracy and providing novel
insights and effective methods for solving similar problems.

This study significantly enhances the diagnostic per-
formance of vascular vertigo/dizziness through the use
of improved data balancing methods, feature selection
and dimensionality reduction optimization, and innovative
ensemble learningmodels. Thesemethods have advantages in
vascular vertigo/dizziness diagnosis and provide new insights
and effective methods for solving similar problems. To fur-
ther reveal the significance of this study, we will explore the
application and potential impact of this method in vascular
vertigo/dizziness diagnosis and treatment from multiple per-
spectives.

1.Feature importance and biomarkers: Our method empha-
sizes identifying essential features for accurately classifying
vascular vertigo/dizziness. We reveal potential biomarkers
associated with vascular vertigo/dizziness by applying corre-
lation analysis and KPCA algorithm for feature selection and
dimensionality reduction. These biomarkers can help to gain
a deeper understanding of the pathophysiology of vascular
vertigo/dizziness and may play a crucial role in discovering
new therapeutic targets.

2.Personalized medicine: Our method promotes the devel-
opment of personalized medicine by effectively differenti-
ating vascular vertigo/dizziness cases. Accurate diagnostic
information allows healthcare professionals to devise per-
sonalized treatment plans based on each patient’s etiology,
risk profile, and clinical presentation. This will help achieve
more targeted and effective treatments, reduce side effects,
and improve overall patient care.

3.Machine learning interpretability: Although the method
proposed in this study demonstrates good classification per-
formance, the interpretability of machine learning models
in medical settings may pose challenges. Future research
should focus on integrating explainable artificial intelligence
techniques into the model to enhance its transparency and
interpretability. This will allow clinicians to better understand
the reasoning process behind predictions, thereby increasing
trust in the intelligent diagnostic process.

4. Integration with clinical practice: To successfully apply
the method proposed in this study to clinical practice, seam-
less integration with existing workflows and decision support
systems is essential. This includes developing user-friendly
interfaces and tools for data input, analysis, and interpreta-
tion. Additionally, providing training and support for health-
care professionals to effectively use the intelligent diagnos-
tic system is crucial for its successful implementation and
adoption.

5.Validation in large, diverse populations: The diagnostic
performance of the proposed method needs to be validated in
larger, more diverse patient populations to ensure its applica-
bility and generalizability across different healthcare settings
and patient groups. This may require collaboration with mul-
tiple institutions and data sharing to achieve a sufficiently
large and varied dataset for validation purposes.

6.Longitudinal studies and outcome prediction: Future
research should not only focus on diagnosing vascular ver-
tigo/dizziness but also explore the potential of the proposed
method in predicting long-term outcomes and treatment
responses. This can help healthcare professionals to more
effectively monitor disease progression and adjust treatment
strategies accordingly, further improving patient care.

In conclusion, the ISMOTE-KPCA-STACKING algorithm
proposed in this study significantly improves the diagnostic
performance of vascular vertigo/dizziness, offering a novel
and effective approach for accurately diagnosing this com-
plex neurological disorder. The method has the potential to
contribute to personalized medicine, improve patient care,
and inform future research into the pathophysiology and
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treatment of vascular vertigo/dizziness. However, further
research is needed to address the challenges of machine
learning interpretability, integration with clinical practice,
validation in diverse populations, and longitudinal outcome
prediction. By addressing these challenges, we can pave the
way for the broad implementation of intelligent diagnostic
systems in vascular vertigo/dizziness and beyond.

V. CONCLUSION
This study proposed an efficient and accurate diagnostic
model based on the ISMOTE-KPCA-STACKING algorithm
to address the current challenges in diagnosing vascular
vertigo/dizziness. First, we removed outliers and normal-
ized the raw data. To address the data imbalance issue,
we used the improved SMOTE algorithm to generate data,
increasing the number of minority class samples to enhance
the model’s robustness and generalization capabilities. Next,
we employed the Pearson correlation coefficient for fea-
ture correlation analysis, selecting 13 feature indicators, and
introduced the KPCA algorithm for feature dimensional-
ity reduction. KPCA demonstrates a significant advantage
in class separation and effective clustering. Through the
KPCA algorithm, we successfully transformed the original
13-dimensional data into 3-dimensional data, reducing signal
overlap while preserving critical information, thus improving
the model’s performance. Finally, we constructed a Stacking
ensemble algorithm model comprising various base mod-
els, including KNN, RF, Naïve Bayes, SVM, GBDT, and
XGBoost, and used a fully connected cascading neural net-
work as the meta-layer model. To optimize the parameters of
the base models and the meta-layer model, we implemented
grid search and the LM algorithm respectively for precise
parameter adjustment. Compared to individual models, the
Stacking model effectively leverages the strengths of each
base model, achieving a comprehensive improvement in per-
formance metrics such as accuracy, precision, recall, and
F1-score.

The proposed ISMOTE-KPCA-STACKING algorithm
demonstrates a significant advantage in diagnosing vascular
vertigo/dizziness, providing an efficient and accurate solution
for complex and imbalanced dataset classification tasks. The
optimized data processing methods, diverse base models,
and ensemble algorithm combination have broad potential
in real-world clinical applications, contributing to improved
patient care and treatment outcomes and offering an inno-
vative data-driven solution in medical research. This study
further validates the enormous potential of machine learning
and data-driven methods in improving healthcare, optimizing
diagnostic processes, and enhancing patient quality of life.
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